NumCSE

Autumn Semester 2017
Prof. Rima Alaifari

Exercise sheet 8
Splines

A. Dabrowski

Problem 8.1: Cubic splines

We implement interpolation of a discrete data set by a cubic spline.

Template: CubicSplines.cpp

Recall that the cubic spline s interpolating a given data set (to, yo), - - ., (ts, yx) is @ C2 function on [to, t,]
which is a polynomial of third degree on every subinterval [t;,t;,1] for j = 0,...,n — 1, and such that
s(tj) =Y for every j = 0,...,n. To ensure uniquenss we impose the additional boundary conditions
s"(tp) =s"(tn) = 0.

Recall that since we can represent a polynomial of degree d as a vector of length d 4+ 1 which contains the
polynomial’s coefficients, a cubic spline on a data set of length n 4+ 1 can be represented as a 4 X n matrix,
where the column j specifies the coefficients of the interpolating polynomial on the interval [t;, ¢; + 1].

(a) Implement a C++ function cubicSpline which takes as input vectors T and Y, and returns the
matrix representing the cubic spline which interpolates them.

Hint: implement the formulae from the tablet notes to calculate the second derivatives of the splines in
the points £;, then use them to build the matrix associated to the spline.

SOLUTION:

1 | MatrixXd cubicSpline (const VectorXd &T, const VectorXd &Y) {

2 // returns the matrix representing the spline interpolating the data

3 // with abscissae T and ordinatae Y. Each column represents the
coefficients

4 // of the cubic polynomial on a subinterval.

5 // Assumes T 1is sorted, has no repeated elements and T.size() ==
Y.size().

6

7 int n = T.size() — 1; // T and Y have length n+l

8

9 VectorXd h = T.tail(n) — T.head(n); // vector of lengths of subintervals

1 // build the matrix of the linear system associated to the second
derivatives

12 MatrixXd A = MatrixXd::Zero(n—1, n—1);

13 A.diagonal () = (T.segment(2,n—1) — T.segment(0,n—1))/3;

14 A.diagonal (1) = h.segment(1,n—2)/6;

15 A.diagonal(—1) = h.segment(1,n—2)/6;

16

17 // build the vector of the finite differences of the data Y
18 VectorXd slope = (Y. tail(n) — Y.head(n)).cwiseQuotient(h);

19

20 // right hand side vector for the system with matrix A

21 VectorXd r = slope. tail(n—1) — slope.head(n—1);

22

23 // solve the system and fill vector of second derivatives
24 VectorXd sigma(n+1);

25 sigma.segment(1,n—1) = A.partialPivLu () .solve(r);

2 sigma(0) = 0; // "simple" boundary conditions

27 sigma(n) = 0; // "simple" boundary conditions

28

29 // build the spline matrix with polynomials’ coefficients

30 MatrixXd spline(4, n);

31 spline .row(0)
32 spline .row (1)
33 spline .row(2)
34 spline .row(3)
35

36 return spline;

a7 |}

Y.head(n) ;

slope — h.cwiseProduct(2xsigma.head(n) + sigma.tail(n))/6;
sigma.head(n)/2;

(sigma. tail (n) — sigma.head(n)).cwiseQuotient(6xh) ;

(b) Implement a C++ function which given a cubic spline, its interpolation nodes and a vector of evaluation
points, returns the value the spline takes on the evaluation points.

SOLUTION:

1 |VectorXd evalCubicSpline (const MatrixXd &S, const VectorXd &T, const VectorXd
&evalT) {

2 // Returns the values of the spline S calculated in the points X.

3 // Assumes T is sorted, with no repetetions.

4

5 int n = evalT.size();

6 VectorXd out(n);

7

8 for (int i=0; i < n; i++) {

9 for (int j=0; | < T.size()—1; j++) {

10 if (evalT(i) < T(j+1) || j==T.size()—2) {

11 double x = evaIT(l) T(j);

12 out(i) = S(0,j) + xx(S(1,j) + xx(S(2,j) + xxS(3,j)));

13 break ;

14 }

15 }

16 }

17

18 return out;

19 }

(c) Run some tests of your spline evaluation function (see template).

Problem 8.2: Piecewise linear approximation on graded meshes

The quality of an interpolation depends heavily on the choice of the nodes: for instance if the
function to be interpolated has very large derivatives on a part of the domain, more interpolation
points will be required there. Commonly used tools to cope with this task are graded meshes, which
are explored in this problem.

Givenamesh 7 = {0 <ty <t <---<t, <1}ontheunitinterval I = [0, 1], we define the piecewise
linear interpolant:

l7: CO(I) — 771,7‘ = {S S CO(I), S|[t]-,1,t]-] S Vj}, s.t. (I’Tf>(tj) = f(t]'), j=0,...,n

(a) If we choose the uniform mesh 7" = {t;}_ with t; = j/n, given a function f € C2(I) what is the
asymptotic behavior of the error max,cy |f(x) — I7f(x)| when n — o0?

Hint: use the following property of the interpolating polynomial: for every j, there exists (_fj € [t]-, t]-+1]

such that e
f(t)—Pj(t):f 6] (E—t;)(t—tis1), fort € [t tia],

where p; is the linear interpolant of fin [t;, t;1].

SOLUTION:

From the previous identity we have

1f =17 flli=(p) < 217“1‘(2)”Lm(1) (8.1)

because the meshwidth is # = 1/n. Thus, the convergence is quadratic, i.e. algebraic with order 2.

(b) What is the regularity of the function f : I — R, f(f) =%, 0 < a < 2? In other words, for which
k € IN do we have f € Ck(I)?

Hint: check the continuity of the derivatives in the endpoints of I.

SOLUTION:

lfa = 1, f(t) = t clearly belongs to C®(I). If 0 < & < 1, f/(t) = at*~! blows up to infinity for ¢ going
to 0, therefore f € CO(I)\ C1(I). If 1 < a < 2, f" is continuous but f”'(t) = a(ax — 1)t*~2 blows up
to infinity for ¢ going to 0, therefore f € C*(I) \ C3(I).

More generally, for « € IN we have f(t) = t* € C*(I); on the other hand, if « > 0 is not an integer,
f e cle(I), where |a| = floor(a) is the largest integer not larger than «.

(c) Study with some numerical experiments the convergence of the piecewise linear approximation of
f(t) = t* (with 0 < & < 2) on uniform meshes.

SOLUTION:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

VectorXd evalPiecewiselnterp(const VectorXd &T, const VectorXd &Y, const

VectorXd &evalT) {

// returns the values of the piecewise linear interpolant in evalT.

int n = evalT.size();
VectorXd out(n);

for (int i=0; i < n; i++) {
for (int j=0; | < T.size()—1; j++) {
if (evalT(i) < T(j+1) || j==T.size()—-2) {

double slope = (Y(j+1) — Y(j)) / (T(j+1) — T(j));

out(i) = Y(j) + slope x (evalT(i) — T(j));
break ;

}

return out;

}

double maxlInterpError (double a, VectorXd T, VectorXd evalT)

int ninterpPts = T.size();
VectorXd Y(niInterpPts);

for (int i=0; i<ninterpPts; i++) {
Y(i) = std::pow(T(i), a);
}

VectorXd evallnterp = evalPiecewiselnterp (T, Y, evalT);

double maxError = 0;
for (int i=0; i<evalT.size(); i++) {

{

double error = std::abs(evallnterp(i) — std::pow(evalT (i), a));

if (error > maxError)
maxError = error;

}

return maxError;

{// vary n, keep fixed alpha, uniform meshes

int nTests = 10;

int nEvalPts = 1 << 12;

VectorXd evalT = VectorXd::LinSpaced(nEvalPts, 0, 1);
VectorXd maxErrors(nTests);

for (int n=0; n<nTests; n++) {
int ninterpNodes = 1 << n;

VectorXd T = VectorXd::LinSpaced(ninterpNodes, 0, 1);
maxErrors(n) = std::log(maxinterpError(0.531, T, evalT));

}

mglData daty;

14 daty.Link (maxErrors. tail (nTests).data(), nTests);

15 mglGraph gr;

16 gr.SetRanges(0, nTests, —6, 0);

17 gr.Axis () ;

18 gr.Plot(daty);

19 gr.WriteFrame ("uniformMesh_interpMaxErrorLog_varN.eps")
20 }

Looking at the plots, the convergence is clearly algebraic: the rate is equal to « if it is smaller than 2,

and equal to 2 otherwise. In brief, we can say that the order is min{«, 2}.

Pw. lin. mtp. on uniform meshes: error

In max-norm

10-2
T

alpha=0.100000
alpha=0.300000
- alpha=0.500000
SH alpha=0.700000
—| | ——— alpha=0.900000
alpha=1.100000
alpha=1.300000
alpha=1.500000
alpha=1.700000
alpha=1.900000
—— alpha=2.100000
-------------- alpha=2.300000
.............. alpha=2.500000
alpha=2.700000 I

alpha=2-900000
10

n = # subintervals

Fig. 1

(d) In which mesh interval do you expect | f — |7 f| to attain its maximum?

SOLUTION:

The error representation in the linear case (n = 1) for some 7; € (t]-, t]-+1) reads as:

Ve (tti1) ‘f(t) — (le)(t)‘ () (£ =) (t = tjt1)]

1 i
= E f T
< @] = 52 = 1" ()]
- 8]] 812
Therefore the error can be large only in the subintervals where the second derivative of f is large.

If"(t)| = |a(a — 1)t*~2| is monotonically decreasing for 0 < a < 2: therefore, we can expect a large
error in the first subinterval, the one that is closer to 0.

(e) Compute by hand the exact value of [|f — I7f|[(). Use the result of the Point (d) to simplify the
problem. Compare the order of convergence obtained with the one observed numerically.

SOLUTION:

From Point (d) we expect that the maximum appears in the first subinterval. Then, for t € (0,1/n) and
0 < a < 2 (with @ # 1), let us find this maximum by considering the error function ¢:

1

p(t) = f(t) = (I7f)(t) =t* —t ey (¢(0) = ¢(1/n) =0)
e 1
q)/(t):lxt 1 F
o(t)=0 if #* %ocl/(l“)
a0/ (1-a) a1/ (1—a) 1
)| =)| = _ /(=) _ -1/ (1-x) — O = O(h"
max [o(n)] = lo(t") — — " () = O()

The order of convergence in h = 1/n is equal to the parameter a, as in a certain way observed
in Fig. 1. This plot is however skewed by the presence of measurements for &« ~ 1, given that the
interpolant exactly captures f(t) = t* for a = 1.

(f) Since the interpolation error is concentrated in the left part of the domain, it seems reasonable
to use a finer mesh only in this part. A common choice is an algebraically graded mesh, defined as

N
g = {t]- = (i) , = 0,...,n} for a parameter B > 1. An example is depicted in Fig. 2 for f = 2.

n

Fig. 2

0.8

0.6

0.4

algeb. graded mesh, beta=2

0.2

0.2 0.4 0.6 0.8
uniform mesh

For a fixed parameter « in the definition of f, determine with a numerical experiment the rate of conver-
gence of the piecewise linear interpolant I on the graded mesh G as a function of the parameter B. Try
forinstanceax = 1/2, 0 =3/4ora = 4/3.

How do you have to choose B in order to recover the optimal rate O(n_z) (if possible)?

SOLUTION:

1 double a = 0.5; // varying this manually

2 double b = 2/a; // varied this manually to find best value;

3 // better idea: vary it automatically, using

4 // linear regression to estimate convergence rate.
5

6 {// vary n, keep fixed alpha = 1/2, graded mesh

7 int nTests = 10;

8 int nEvalPts = 1 << 12;

9 VectorXd evalT = VectorXd::LinSpaced(nEvalPts, 0, 1);

7

10 VectorXd maxErrors(nTests);

1"

12 for (int n=0; n<nTests; n++) {

13 int ninterpNodes = 1 << n;

14 VectorXd T = VectorXd::LinSpaced(ninterpNodes, 0, 1);
15 for (int i=0; i<nlnterpNodes; i++) {

16 T(i) = std::pow(T(i), b);

17 }

18

19 maxErrors(n) = std::log(maxinterpError(0.5, T, evalT));
20 }

21

22 mglData daty;

23 daty.Link(maxErrors. tail (nTests).data(), nTests);

24 mglGraph gr;

25 gr.SetRanges(0, nTests, —16, 0);

2 gr.Axis () ;

27 gr.Plot(daty);

28 gr.WriteFrame ("gradedMesh_interpMaxErrorLog_varN.eps") ;

29 }

The comparison of the plots for different values of a suggests that the choice of B = 2/« guarantees

quadratic convergence.

Proceeding as in (d), we can see that the maximal error in the first subinterval (0,t;) = (0,1/nP) is
equalto 1/n* (a=%/(1-0) _ =1/ (1=0)y — O(n—2P) (replace the interval size 1/n with 1/1P in those
equations). This implies that a necessary condition to have quadratic convergence is f > 2/«. In order
to find an upper bound on the optimal 3, we should control the error committed in every subinterval.
If we were not satsfied by the numerical results, a more rigorous derivation of the optimal B could be

obtained with the computation of ¢(t*).

	Problem 8.1: Cubic splines ()
	Problem 8.2: Piecewise linear approximation on graded meshes (prb:GradedMeshes)

