
NumCSE

Autumn Semester 2017

Prof. Rima Alaifari

Exercise sheet 8

Splines

A. Dabrowski

Problem 8.1: Cubic splines

We implement interpolation of a discrete data set by a cubic spline.

Template: CubicSplines.cpp

Recall that the cubic spline s interpolating a given data set (t0, y0), . . . , (tn, yn) is a C2 function on [t0, tn]
which is a polynomial of third degree on every subinterval [tj, tj+1] for j = 0, . . . , n − 1, and such that

s(tj) = yj for every j = 0, . . . , n. To ensure uniquenss we impose the additional boundary conditions

s′′(t0) = s′′(tn) = 0.

Recall that since we can represent a polynomial of degree d as a vector of length d + 1 which contains the

polynomial’s coefficients, a cubic spline on a data set of length n+ 1 can be represented as a 4× n matrix,

where the column j specifies the coefficients of the interpolating polynomial on the interval [tj, tj + 1].

(a) Implement a C++ function cubicSpline which takes as input vectors T and Y, and returns the

matrix representing the cubic spline which interpolates them.

Hint: implement the formulae from the tablet notes to calculate the second derivatives of the splines in

the points tj, then use them to build the matrix associated to the spline.

SOLUTION:

1 MatrixXd cub icSp l ine (const VectorXd &T , const VectorXd &Y) {

2 // returns the matrix representing the spline interpolating the data

3 // with abscissae T and ordinatae Y. Each column represents the
coefficients

4 // of the cubic polynomial on a subinterval.

5 // Assumes T is sorted, has no repeated elements and T.size() ==
Y.size().

6

7 i n t n = T . size () − 1; // T and Y have length n+1

8

9 VectorXd h = T . t a i l (n) − T . head (n) ; // vector of lengths of subintervals

10

11 // build the matrix of the linear system associated to the second
derivatives

12 MatrixXd A = MatrixXd : : Zero (n−1, n−1) ;

13 A. diagonal () = (T . segment (2 , n−1) − T . segment (0 , n−1)) / 3 ;

14 A. diagonal (1) = h . segment (1 , n−2) / 6 ;

15 A. diagonal (−1) = h . segment (1 , n−2) / 6 ;

16

17 // build the vector of the finite differences of the data Y

18 VectorXd slope = (Y . t a i l (n) − Y. head (n)) . cwiseQuotient (h) ;

19

20 // right hand side vector for the system with matrix A

21 VectorXd r = slope . t a i l (n−1) − slope . head (n−1) ;

22

23 // solve the system and fill vector of second derivatives

24 VectorXd sigma (n+1) ;

25 sigma . segment (1 , n−1) = A. p a r t i a l P i v L u () . solve (r) ;

26 sigma (0) = 0 ; // "simple" boundary conditions

27 sigma (n) = 0 ; // "simple" boundary conditions

28

29 // build the spline matrix with polynomials’ coefficients

30 MatrixXd s p l i n e (4 , n) ;

1

31 s p l i n e . row (0) = Y. head (n) ;

32 s p l i n e . row (1) = slope − h . cwiseProduct (2∗sigma . head (n) + sigma . t a i l (n)) / 6 ;

33 s p l i n e . row (2) = sigma . head (n) / 2 ;

34 s p l i n e . row (3) = (sigma . t a i l (n) − sigma . head (n)) . cwiseQuotient (6∗h) ;

35

36 return s p l i n e ;

37 }

(b) Implement a C++ function which given a cubic spline, its interpolation nodes and a vector of evaluation

points, returns the value the spline takes on the evaluation points.

SOLUTION:

1 VectorXd eva lCubicSpl ine (const MatrixXd &S, const VectorXd &T , const VectorXd

&evalT) {

2 // Returns the values of the spline S calculated in the points X.

3 // Assumes T is sorted, with no repetetions.

4

5 i n t n = evalT . size () ;

6 VectorXd out (n) ;

7

8 for (i n t i =0; i < n ; i ++) {

9 for (i n t j =0; j < T . size () −1; j ++) {

10 i f (evalT (i) < T(j +1) | | j ==T . size ()−2) {

11 double x = evalT (i) − T(j) ;

12 out (i) = S(0 , j) + x∗ (S(1 , j) + x∗ (S(2 , j) + x∗S(3 , j))) ;

13 break ;

14 }

15 }

16 }

17

18 return out ;

19 }

(c) Run some tests of your spline evaluation function (see template).

2

Problem 8.2: Piecewise linear approximation on graded meshes

The quality of an interpolation depends heavily on the choice of the nodes: for instance if the

function to be interpolated has very large derivatives on a part of the domain, more interpolation

points will be required there. Commonly used tools to cope with this task are graded meshes, which

are explored in this problem.

Given a mesh T = {0 ≤ t0 < t1 < · · · < tn ≤ 1} on the unit interval I = [0, 1], we define the piecewise

linear interpolant :

IT : C0(I) → P1,T = {s ∈ C0(I), s|[tj−1,tj]
∈ P1 ∀ j}, s.t.

(

IT f
)

(tj) = f (tj), j = 0, . . . , n.

(a) If we choose the uniform mesh T = {tj}
n
j=0

with tj = j/n, given a function f ∈ C2(I) what is the

asymptotic behavior of the error maxx∈I | f (x)− IT f (x)| when n → ∞?

Hint: use the following property of the interpolating polynomial: for every j, there exists ξ j ∈ [tj, tj+1]
such that

f (t)− pj(t) =
f ′′(ξ j)

6
(t − tj)(t − tj+1), for t ∈ [tj, tj+1],

where pj is the linear interpolant of f in [tj, tj+1].

SOLUTION:

From the previous identity we have

‖ f − IT f ‖L∞(I) ≤
1

2n2

∥

∥

∥
f (2)

∥

∥

∥

L∞(I)
(8.1)

because the meshwidth is h = 1/n. Thus, the convergence is quadratic, i.e. algebraic with order 2.

(b) What is the regularity of the function f : I → R, f (t) = tα, 0 < α < 2? In other words, for which

k ∈ N do we have f ∈ Ck(I)?

Hint: check the continuity of the derivatives in the endpoints of I.

SOLUTION:

If α = 1, f (t) = t clearly belongs to C∞(I). If 0 < α < 1, f ′(t) = αtα−1 blows up to infinity for t going

to 0, therefore f ∈ C0(I) \ C1(I). If 1 < α < 2, f ′ is continuous but f ′′(t) = α(α − 1)tα−2 blows up

to infinity for t going to 0, therefore f ∈ C1(I) \ C2(I).

More generally, for α ∈ N we have f (t) = tα ∈ C∞(I); on the other hand, if α > 0 is not an integer,

f ∈ C⌊α⌋(I), where ⌊α⌋ = floor(α) is the largest integer not larger than α.

(c) Study with some numerical experiments the convergence of the piecewise linear approximation of

f (t) = tα (with 0 < α < 2) on uniform meshes.

SOLUTION:

3

1 VectorXd eva lP iecewise In te rp (const VectorXd &T , const VectorXd &Y, const

VectorXd &evalT) {

2 // returns the values of the piecewise linear interpolant in evalT.

3

4 i n t n = evalT . size () ;

5 VectorXd out (n) ;

6

7 for (i n t i =0; i < n ; i ++) {

8 for (i n t j =0; j < T . size () −1; j ++) {

9 i f (evalT (i) < T(j +1) | | j ==T . size ()−2) {

10 double slope = (Y(j +1) − Y(j)) / (T (j +1) − T(j)) ;

11 out (i) = Y(j) + slope ∗ (evalT (i) − T(j)) ;

12 break ;

13 }

14 }

15 }

16

17 return out ;

18 }

19

20 double maxInterpError (double a , VectorXd T , VectorXd evalT) {

21

22 i n t n In te rpP ts = T . size () ;

23 VectorXd Y(n In te rpP ts) ;

24

25 for (i n t i =0; i < n In te rpP ts ; i ++) {

26 Y(i) = std : : pow(T(i) , a) ;

27 }

28

29 VectorXd e v a l I n t e r p = eva lP iecewise In te rp (T , Y, evalT) ;

30

31 double maxError = 0 ;

32 for (i n t i =0; i <evalT . size () ; i ++) {

33 double e r r o r = std : : abs (e v a l I n t e r p (i) − std : : pow(evalT (i) , a)) ;

34 i f (e r r o r > maxError)

35 maxError = e r r o r ;

36 }

37

38 return maxError ;

39 }

1 {// vary n, keep fixed alpha, uniform meshes

2 i n t nTests = 10;

3 i n t nEvalPts = 1 << 12;

4 VectorXd evalT = VectorXd : : LinSpaced (nEvalPts , 0 , 1) ;

5 VectorXd maxErrors (nTests) ;

6

7 for (i n t n=0; n<nTests ; n++) {

8 i n t nInterpNodes = 1 << n ;

9 VectorXd T = VectorXd : : LinSpaced (nInterpNodes , 0 , 1) ;

10 maxErrors (n) = std : : log (maxIn terpError (0 .531 , T , evalT)) ;

11 }

12

13 mglData daty ;

4

14 daty . L ink (maxErrors . t a i l (nTests) . data () , nTests) ;

15 mglGraph gr ;

16 gr . SetRanges (0 , nTests , −6, 0) ;

17 gr . Axis () ;

18 gr . P lo t (daty) ;

19 gr . WriteFrame (" uniformMesh_interpMaxErrorLog_varN . eps ") ;

20 }

Looking at the plots, the convergence is clearly algebraic: the rate is equal to α if it is smaller than 2,

and equal to 2 otherwise. In brief, we can say that the order is min{α, 2}.

Fig. 1

(d) In which mesh interval do you expect | f − IT f | to attain its maximum?

SOLUTION:

5

The error representation in the linear case (n = 1) for some τt ∈ (tj, tj+1) reads as:

∀ t ∈ (tj, tj+1)
∣

∣

∣
f (t)−

(

IT f
)

(t)
∣

∣

∣
=

1

2
| f ′′(τt) (t − tj)(t − tj+1)|

≤
1

8
| f ′′(τt)| (tj+1 − tj)

2 =
1

8n2
| f ′′(τt)|

Therefore the error can be large only in the subintervals where the second derivative of f is large.

| f ′′(t)| =
∣

∣α(α − 1)tα−2
∣

∣ is monotonically decreasing for 0 < α < 2: therefore, we can expect a large

error in the first subinterval, the one that is closer to 0.

(e) Compute by hand the exact value of ‖ f − IT f ‖L∞(I). Use the result of the Point (d) to simplify the

problem. Compare the order of convergence obtained with the one observed numerically.

SOLUTION:

From Point (d) we expect that the maximum appears in the first subinterval. Then, for t ∈ (0, 1/n) and

0 < α < 2 (with α 6= 1), let us find this maximum by considering the error function ϕ:

ϕ(t) = f (t)−
(

IT f
)

(t) = tα − t
1

nα−1
, (ϕ(0) = ϕ(1/n) = 0)

ϕ′(t) = αtα−1 −
1

nα−1

ϕ′(t∗) = 0 if t∗ =
1

n
α−1/(1−α)

max
t∈(0,1/n)

|ϕ(t)| = |ϕ(t∗)| =
∣

∣

∣

α−α/(1−α)

nα
−

α−1/(1−α)

nα

∣

∣

∣
=

1

nα

∣

∣

∣
α−α/(1−α) − α−1/(1−α)

∣

∣

∣
= O(n−α) = O(hα)

The order of convergence in h = 1/n is equal to the parameter α, as in a certain way observed

in Fig. 1. This plot is however skewed by the presence of measurements for α ∼ 1, given that the

interpolant exactly captures f (t) = tα for α = 1.

(f) Since the interpolation error is concentrated in the left part of the domain, it seems reasonable

to use a finer mesh only in this part. A common choice is an algebraically graded mesh, defined as

G =
{

tj =
(

j
n

)β
, j = 0, . . . , n

}

for a parameter β > 1. An example is depicted in Fig. 2 for β = 2.

6

Fig. 2

For a fixed parameter α in the definition of f , determine with a numerical experiment the rate of conver-

gence of the piecewise linear interpolant IG on the graded mesh G as a function of the parameter β. Try

for instance α = 1/2, α = 3/4 or α = 4/3.

How do you have to choose β in order to recover the optimal rate O(n−2) (if possible)?

SOLUTION:

1 double a = 0 . 5 ; // varying this manually

2 double b = 2/ a ; // varied this manually to find best value;

3 // better idea: vary it automatically, using

4 // linear regression to estimate convergence rate.

5

6 {// vary n, keep fixed alpha = 1/2, graded mesh

7 i n t nTests = 10;

8 i n t nEvalPts = 1 << 12;

9 VectorXd evalT = VectorXd : : LinSpaced (nEvalPts , 0 , 1) ;

7

10 VectorXd maxErrors (nTests) ;

11

12 for (i n t n=0; n<nTests ; n++) {

13 i n t nInterpNodes = 1 << n ;

14 VectorXd T = VectorXd : : LinSpaced (nInterpNodes , 0 , 1) ;

15 for (i n t i =0; i <nInterpNodes ; i ++) {

16 T(i) = std : : pow(T(i) , b) ;

17 }

18

19 maxErrors (n) = std : : log (maxIn terpError (0 . 5 , T , evalT)) ;

20 }

21

22 mglData daty ;

23 daty . L ink (maxErrors . t a i l (nTests) . data () , nTests) ;

24 mglGraph gr ;

25 gr . SetRanges (0 , nTests , −16, 0) ;

26 gr . Axis () ;

27 gr . P lo t (daty) ;

28 gr . WriteFrame (" gradedMesh_interpMaxErrorLog_varN . eps ") ;

29 }

The comparison of the plots for different values of α suggests that the choice of β = 2/α guarantees

quadratic convergence.

Proceeding as in (d), we can see that the maximal error in the first subinterval (0, t1) = (0, 1/nβ) is

equal to 1/nαβ (α−α/(1−α) − α−1/(1−α)) = O(n−αβ) (replace the interval size 1/n with 1/nβ in those

equations). This implies that a necessary condition to have quadratic convergence is β ≥ 2/α. In order

to find an upper bound on the optimal β, we should control the error committed in every subinterval.

If we were not satsfied by the numerical results, a more rigorous derivation of the optimal β could be

obtained with the computation of ϕ(t∗).

8

	Problem 8.1: Cubic splines ()
	Problem 8.2: Piecewise linear approximation on graded meshes (prb:GradedMeshes)

