Answer sheet compilation instructions

• Use only black or blue pen.

For open answers:

- Write clearly only **inside** boxes, away from the borders.
- Write a **single** character (number or letter) per box.
- Start writing from the left, leaving empty boxes on the right.

For multiple choice and true/false questions:

- Fill the circle for the answer you consider correct (only one answer is correct).
- Remarks and computations have **no** influence on points awarded.
- Any unclear or double marking will be considered as an answer not given (0 points).
- Wrong answers give **negative** points.

Exam instructions

- Turn off your devices and leave them in your bag.
- Only pens and Legi should be on the table.
- Fill last name and Legi number on the answer sheet.
- Turn this sheet only when instructed to do so.
- At the end of the exam, take everything except the single answer sheet which you want to submit.

Questions

NumCSE midterm, HS 2017

1. Cancellation error [12 P.]

Which of the following expressions can be affected by cancellation errors for some choice of x in the specified interval? (True = affected by cancellation, False = **not** affected by cancellation).

(a)
$$y = x^2 - \sqrt{x^2 + 2}$$
, for $x \in [2, \infty)$.

(b)
$$y = \frac{1 - \cos(x)}{x^2}$$
, for $x \in (0, \frac{\pi}{2})$.

(c)
$$y = \log_2(x - \sqrt{x - 1})$$
, for $x \in [1, \infty)$.

(d)
$$y = \exp(x) - \exp(2(x-1))$$
, for $x \in (1,2]$.

2. Numerical Stability [8 P.]

Let $\tilde{F}: X \mapsto \tilde{Y}$ be an algorithm for the problem $F: X \mapsto Y$.

- (a) True or false: if $\tilde{\mathbf{F}}$ is backward stable then, for any $\mathbf{x} \in \mathbf{X}$, $\tilde{\mathbf{F}}(\mathbf{x})$ will be close False
- (b) True or false: backward stability of $\tilde{\mathbf{F}}$ implies mixed stability. $\sqrt{\mathbf{F}}$
- (c) Among the following, choose the best definition of condition number of F in x:

(i)
$$\sup_{\Delta x \text{ small}} \left(\frac{\|F(x + \Delta x) - F(x)\|}{\|F(x)\|} \cdot \frac{\|\Delta x\|}{\|x\|} \right)$$

$$\begin{aligned} \text{(i)} \quad & \sup_{\Delta x \, \text{small}} \left(\frac{\|F(x + \Delta x) - F(x)\|}{\|F(x)\|} \cdot \frac{\|\Delta x\|}{\|x\|} \right) \\ \text{(ii)} \quad & \sup_{\Delta x \, \text{small}} \left(\frac{\|F(x + \Delta x) - F(x)\|}{\|F(x)\|} \cdot \frac{\|x\|}{\|\Delta x\|} \right) \end{aligned}$$

$$(iii) \ \inf_{\Delta x \, \mathrm{small}} \left(\frac{||F(x + \Delta x) - F(x)||}{||F(x)||} \cdot \frac{||\Delta x||}{||x||} \right)$$

(iv)
$$\inf_{\Delta x \text{ small}} \left(\frac{\|\mathbf{F}(\mathbf{x} + \Delta \mathbf{x}) - \mathbf{F}(\mathbf{x})\|}{\|\mathbf{F}(\mathbf{x})\|} \cdot \frac{\|\mathbf{x}\|}{\|\Delta \mathbf{x}\|} \right)$$

3. Singular Value Decomposition [9 P.]

Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 36 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Let U, Σ, V be the matrices involved in the **thin** singular value decomposition of **A** (in particular $\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}$).

- (a) What is the condition number of Σ ?
- 36/3 = 12 or ∞ $(12)^2 = 144$ or ∞ (b) What is the condition number of $\Sigma^{T}\Sigma$?
- (c) What are the dimensions of U (number of rows \times number of columns)?

$$5 \times 3$$
 or 5×5

4. Linear system solution through LU decomposition [9 P.]

Consider the following C++/Eigen function:

```
int solve_triang(int n) {
       using namespace Eigen;
2
       MatrixXd A = MatrixXd::Zero(n,n);
3
       for (int i=0; i < n; i++) {
5
            for (int j=i; j < n; j++) {
6
                // fill upper triangular part of A
7
                A(i,j) = 2;
            }
       }
10
11
       // fill b
12
       VectorXd b = 46 * VectorXd::Ones(n);
13
14
       // compute solution to Ax = b
15
       VectorXd x = A.fullPivLu().solve(b);
16
17
       return x(n-1);
18
19
```

- (a) What is the value returned by solve_triang(2017)? 23
- (b) Choose the lowest correct asymptotic complexity of the function as $n \to \infty$:
 - (i) $O(n \log n)$
 - (ii) $O(n^2)$
 - (iii) $O(n^2 \log n)$
 - $O(n^3)$
- (c) Suppose we replace line 16 with

VectorXd x = A.triangularView<Upper>().solve(b);

Choose the lowest correct asymptotic complexity of the modified function as $n \to \infty$:

- (i) $O(n \log n)$
- $O(n^2)$
- (iii) $O(n^2 \log n)$
- (iv) $O(n^3)$

5. Linear Least Squares [12 P.]

Consider the linear least squares problem:

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m,n}$ is a large sparse matrix and $\mathbf{b} \in \mathbb{R}^m$, for $m \ge n$ and $m, n \in \mathbb{N}$.

(a) State whether the following relations are true or false:

(i)
$$\mathcal{N}(\mathbf{A}^{\top}\mathbf{A}) = \mathcal{R}(\mathbf{A}^{\top})^{\perp}$$

(ii)
$$\mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \mathcal{N}(\mathbf{A})^{\perp}$$

(iii)
$$\mathcal{R}(\mathbf{A}^{\top}\mathbf{A}) = \mathcal{R}(\mathbf{A}^{\top})$$

(iv)
$$\mathcal{R}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \mathcal{N}(\mathbf{A})^{\perp}$$

Here \mathcal{R} stands for range and \mathcal{N} for null-space.

- (b) If x^* is unique, then what is the rank of **A**?
- (c) Assuming **A** is well-conditioned and a unique solution exists, choose the most efficient method to solve (1) among the following:
 - (i) Normal equations
 - (ii) Householder QR decomposition
 - (iii) Extended normal equations
 - (iv) Singular value decomposition