Übungsblatt 2

- 1. Finden Sie je ein Beispiel für eine Relation auf den natürlichen Zahlen ℕ, die von den Eigenschaften einer Äquivalenzrelation
 - a) nur die Symmetrie;
 - **b)** nur die Transitivität;
 - c) die Reflexivität und die Transitivität, aber nicht die Symmetrie erfüllt.
- **2.** Seien X, Y, Z Mengen und $f: X \to Y$ sowie $q: Y \to Z$ Funktionen.
 - a) Zeigen Sie, dass g surjektiv ist, falls $g \circ f$ surjektiv ist.
 - **b)** Zeigen Sie, dass f injektiv ist, falls $g \circ f$ injektiv ist.
 - c) Folgern Sie, dass f bijektiv ist, falls f eine Umkehrabbildung besitzt. (Genauer: Falls eine Abbildung $h: Y \to X$ existiert mit $h \circ f = \mathrm{id}_X$ und $f \circ h = \mathrm{id}_Y$, dann ist f bijektiv und es gilt $h = f^{-1}$.)
- **3.** Sei X eine nichtleere Menge. Wir betrachten die Abbildung

$$\Phi \colon \mathcal{P}(X) \to \{0,1\}^X, A \mapsto \mathbb{1}_A,$$

die einer Teilmenge $A \subset X$ deren charakteristische Funktion $\mathbb{1}_A$ zuordnet. Zeigen Sie auf die folgenden beiden Arten, dass Φ bijektiv ist:

- a) indem Sie direkt verifizieren, dass Φ injektiv und surjektiv ist;
- **b)** unter Verwendung von Aufgabe 2.c), indem Sie explizit eine Umkehrabbildung angeben.

Folgern Sie, dass für jede Menge X die Mengen $\mathcal{P}(X)$ und $\{0,1\}^X$ gleichmächtig sind.

Erinnerung: Mit Y^X bezeichnen wir die Menge aller Abbildungen $X \to Y$. Hier ist also speziell $\{0,1\}^X$ die Menge aller Abbildungen $X \to \{0,1\}$.

Bitte wenden!

- **4.** Seien \sim eine Äquivalenzrelation auf X und $\dot{\sim}$ eine Äquivalenzrelation auf Y, sowie $f \colon X \to Y$ eine Abbildung, so dass $x \sim x'$ stets $f(x) \dot{\sim} f(x')$ impliziert.
 - a) Zeigen Sie, dass es eine eindeutig bestimmte Abbildung $\tilde{f}\colon X/\sim \to Y/\dot{\sim}$ gibt, die $\tilde{f}([x]_\sim)=[f(x)]_{\dot{\sim}}$ für alle $x\in X$ erfüllt.
 - **b)** Zeigen Sie, dass \tilde{f} surjektiv ist, falls f surjektiv ist.
 - c) Ist f notwendigerweise surjektiv, falls \tilde{f} surjektiv ist? Begründen Sie Ihre Antwort.
- **5.** Für $n \in \mathbb{N}$ bezeichnen wir mit $X_n = \{1, \dots, n\}^2$ die Menge der Felder eines $n \times n$ -Schachbretts. Hierauf definieren wir eine Relation \sim , wobei $a \sim b$ genau dann gelten soll, wenn ein Springer von Feld a des sonst leeren Bretts X_n das Feld b in endlich vielen Zügen erreichen kann.
 - a) Zeigen Sie, dass \sim eine Äquivalenzrelation auf X_n ist.
 - **b**) Beschreiben Sie die Menge X_n/\sim in Abhängigkeit von n.
- **6.** a) Sei X eine unendliche Menge. Zeigen Sie, dass es eine Injektion $\mathbb{N} \to X$ gibt.
 - **b)** Folgern Sie aus Teil a), dass jede Menge X entweder endlich, abzählbar unendlich, oder überabzählbar ist.
 - c) Zeigen Sie, dass es unendlich viele überabzählbare Kardinalitäten gibt.

- 7. Multiple-Choice-Fragen (Mehrere Antworten können richtig sein!)
 - **1.** Seien X, Y Mengen und $A, A' \subset X$ sowie $B, B' \subset Y$ Teilmengen. Sei weiters * eine Mengenoperation. In welchen Fällen gilt

$$(A*A')\times(B*B')=(A\times B)*(A'\times B')?$$

- (a) $* = \cap$
- (b) $* = \cup$
- (c) $* = \$
- (d) $*=\triangle$, wobei die symmetrische Differenz $C\triangle D$ zweier Mengen $C,D\subset Z$ per Definition aus genau den Elementen von Z besteht, die in genau einer der Mengen C,D enthalten sind.
- **2.** Seien X, Y Mengen, $f: X \to Y$ eine Abbildung und $A \subset X, B \subset Y$ Teilmengen. Welche der folgenden Aussagen sind immer wahr?
- (a) $A \subset f^{-1}(f(A))$
- (b) $A \supset f^{-1}(f(A))$
- (c) $B \subset f(f^{-1}(B))$
- (d) $B\supset f(f^{-1}(B))$
- **3.** Seien X,Y,Z Mengen und $f\colon X\to Y$ sowie $g\colon Y\to Z$ Funktionen. Welche der folgenden Schlüsse gelten allgemein?
- (a) Wenn $g \circ f$ surjektiv ist, dann ist f surjektiv.
- (b) Wenn $g \circ f$ injektiv ist, dann ist g injektiv.
- (c) Wenn $f^{-1}(f(A)) = A$ für jede Teilmenge $A \subset X$ gilt, dann ist f injektiv.
- (d) Wenn $f(f^{-1}(B)) = B$ für jede Teilmenge $B \subset Y$ gilt, dann ist f surjektiv.

- **4.** In dieser Aufgabe behaupten wir fälschlicherweise, dass jede symmetrische und transitive Relation \sim auf einer Menge X auch reflexiv (und damit eine Äquivalenzrelation) ist. Welche Zeilen des folgenden Beweises sind fehlerhaft?
- (a) Sei $x \in X$ ein beliebiges Element. Sei $y \in X$, so dass $x \sim y$.
- (b) Wegen Symmetrie der Relation gilt also auch $y \sim x$.
- (c) Aus der Transitivität von \sim folgt die Implikation $(x \sim y) \land (y \sim x) \implies x \sim x$.
- (d) Zusammen mit dem zuvor Festgestellten folgt daraus $x \sim x$, was zu zeigen war.
- **5.** Seien A,B endliche Teilmengen einer Menge X. Welche der folgenden Formeln sind richtig?
- (a) $|A \cup B| = |A| + |B|$
- (b) $|A \cap B| = \min\{|A|, |B|\}$
- (c) $|A \times B| = |A||B|$
- (d) $|B^A| = |B|^{|A|}$, falls $A, B \neq \emptyset$

- **6.** Sei $n \in \mathbb{N}$. Das Schubfachprinzip besagt, dass eine Abbildung von einer Menge mit mehr als n Elementen nach $\{1, \ldots, n\}$ nicht injektiv sein kann. Was folgt daraus?
- (a) Werden 91 Briefe auf 13 Postfächer verteilt, so enthält zumindest ein Postfach 8 Briefe.
- (b) Werden (n+1)! Briefe auf 2^n Postfächer verteilt, so enthält zumindest ein Postfach n Briefe.
- (c) Eine Abbildung $\{1, \ldots, n\} \to \{1, \ldots, n+1\}$ kann nicht surjektiv sein.
- (d) Sind x_1, \ldots, x_{n+1} paarweise verschiedene Punkte im Intervall [0, 1], so gibt es $1 \le j < k \le n+1$ mit $|x_j x_k| \le 1/n$.

- Elektronische Erklärung der Bereitschaft eine oder mehrere Aufgaben vorzulösen: bis Mittwoch, 4. Oktober 2017, 11:00, unter http://tiny.cc/vorxn/.
- Abgabe der schriftlichen Lösungen zu denjenigen Aufgaben, für welche Sie ausgewählt wurden: bis Mittwoch, 4. Oktober 2017, 15:15, im Fach Ihres Übungsleiters im HG F 27, per E-Mail an Ihren Übungsleiter oder im Kolloquium.
- Online-Abgabe der Multiple-Choice-Fragen: bis Freitag, 6. Oktober 2017, 8:00, unter https://echo.ethz.ch/s/.