Algebra I

Assignment 2

CATEGORY THEORY, FIRST DEFINITIONS ON RINGS

- 1. Prove that a morphism in the category of sets is an isomorphism if and only if it is a bijective map.
- 2. Let \mathcal{C} be a category and A an object of \mathcal{C} . Define F_A from \mathcal{C} to sets by

$$\forall B \text{ object of } \mathcal{C}, \ F_A(B) := \operatorname{Hom}_{\mathcal{C}}(A, B)$$
$$\forall f \in \operatorname{Hom}_{\mathcal{C}}(B, C), \ F_A(f) := \left(\begin{array}{c} \operatorname{Hom}_{\mathcal{C}}(A, B) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A, C) \\ g \mapsto f \circ g \end{array} \right).$$

Prove that F_A is a functor (it is called the *functor represented by A*).

- 3. We want to define a category C as follows:
 - An object (X, Y, f) of \mathcal{C} is given by two sets X and Y and a map $f : X \longrightarrow Y$.
 - A morphism $(u, v) \in \text{Hom}_{\mathcal{C}}((X, Y, f), (X', Y', f'))$ is given by maps $u : X \longrightarrow X'$ and $v : Y \longrightarrow Y'$ such that the following diagram commutes:

- (a) Define composition of morphisms so that C is indeed a category.
- (b) Prove that F from C to sets defined by F((X, Y, f)) = X and F((u, v)) = u is a functor.
- 4. Let R and S be two rings and $f : R \longrightarrow S$ a map between them. Prove that f is a ring isomorphism if and only if it is ring homomorphism and it is bijective.
- 5. (a) Compute the units of $\mathbb{Z}[i]$.
 - (b) (Euclidean division in $\mathbb{Z}[i]$) Let $z, w \in \mathbb{Z}[i] \setminus \{0\}$. Prove that there exist $q, r \in \mathbb{Z}[i]$ such that $z = q \cdot w + r$ and |r| < |w|. [Hint: Define $q \in \mathbb{Z}[i]$ such that it is a good approximation of $\frac{z}{w} \in \mathbb{C}$.]

- 6. Let $F(\mathbb{R}, \mathbb{C})$ the set of functions $\mathbb{R} \longrightarrow \mathbb{C}$. Denote by $C(\mathbb{R}, \mathbb{C})$ the subset of continuous functions and by $C_0(\mathbb{R}, \mathbb{C})$ the subset of continuous bounded functions.
 - (a) Check that $F(\mathbb{R}, \mathbb{C})$, endowed with pointwise sum and multiplication, is a commutative ring. Find $F(\mathbb{R}, \mathbb{C})^{\times}$.
 - (b) Prove that $C_0(\mathbb{R}, \mathbb{C})$ and $C(\mathbb{R}, \mathbb{C})$ are subrings of $F(\mathbb{R}, \mathbb{C})$.
 - (c) Determine $C(\mathbb{R},\mathbb{C})^{\times}$ and $C_0(\mathbb{R},\mathbb{C})^{\times}$.
 - (d) Is $C_0(\mathbb{R}, \mathbb{C})$ an integral domain?
 - (e) Which of the following maps are ring homomorphisms?
 - i. $\varphi: C_0(\mathbb{R}, \mathbb{C}) \longrightarrow \mathbb{C}$, sending $f \mapsto f(1)$; ii. $\psi: C_0(\mathbb{R}, \mathbb{C}) \longrightarrow \mathbb{R}$, sending $f \mapsto \sup_{x \in \mathbb{R}} |f(x)|$; iii. $\eta: C(\mathbb{R}, \mathbb{C}) \longrightarrow \mathbb{R}$, sending $f \mapsto \operatorname{Re}(f(0))$; iv. $\theta: \mathbb{Z} \longrightarrow F(\mathbb{R}, \mathbb{C})$ sending $n \in \mathbb{Z}$ to the constant function with value n.
- 7. Let $\mathbb{F}_2 \cong \mathbb{Z}/2\mathbb{Z}$ be the field with two elements 0, 1. Define

$$R := \left\{ \left(\begin{array}{cc} a & b \\ b & a+b \end{array} \right) : a, b \in \mathbb{F}_2 \right\}.$$

- (a) Prove that R is a commutative ring under the usual matrix sum and multiplication.
- (b) Prove that R is a field with exactly four elements.
- 8. Let R be a finite integral domain. Prove that R is a field. [*Hint:* For each $x \in R \setminus \{0\}$, consider the map $R \longrightarrow R$ sending $a \mapsto ax$. Is it injective/surjective?]