Algebra I

Assignment 3

FRACTION FIELDS, POLYNOMIAL RINGS

1. Show that the fraction field of $\mathbb{Z}[i]$ is

$$\mathbb{Q}(i) = \{a + ib : a, b \in \mathbb{Q}\}.$$

Similarly, show that the fraction field of $\mathbb{Z}[\sqrt{2}]$ is $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$

- 2. Let R be an integral domain. Show that $R[X]^{\times} = R^{\times}$. Can R[X] be a field?
- 3. (a) Prove that 1 + 2X is a unit in $\mathbb{Z}/4\mathbb{Z}[X]$.
 - (*b) Determine $(\mathbb{Z}/4\mathbb{Z})[X]^{\times}$.
 - (c) Find $f \in (\mathbb{Z}/4\mathbb{Z})[X]$ of degree 2 such that f(x) = 0 for all $x \in \mathbb{Z}/4\mathbb{Z}$.
- 4. Let R be an integral domain.
 - (a) Prove that R[[X]] is an integral domain.
 - (b) Prove that $1 X \in R[[X]]^{\times}$.
 - (c) Let now R = K be a field. Prove:

$$K[[X]]^{\times} := \left\{ \sum_{n \in \mathbb{N}} a_n X^n | a_0 \neq 0 \right\}.$$

[*Hint:* Find the coefficients of inverse power series inductively.]

- 5. Let R be a commutative ring.
 - (a) Show that there exists a unique map $D: R[X] \longrightarrow R[X]$ such that

$$D(X^i) = iX^{i-1}, \quad i \ge 1$$
$$D(1) = 0$$

which is R-linear, i.e., such that

$$\forall r \in R, \forall f, g \in R[X], \ D(rf+g) = rD(f) + D(g).$$

- (b) Is D a ring homomorphism?
- (c) Prove that for all $f, g \in R[X]$ one has

$$D(fg) = fD(g) + gD(f)$$

HS17

- (*d) We say that $\alpha \in R$ is a multiple root of $f \in R[X]$ if there exists $g \in R[X]$ such that $f = (X - \alpha)^2 g$. Prove: α is a multiple root of f if and only if $f(\alpha) = D(f)(\alpha) = 0$. [Hint: Notice that $X^k = (X - \alpha + \alpha)^k = (X - \alpha)g_k + \alpha^k$ for some $g_k \in R[X]$ and deduce that for each $h \in R[X]$ we can write $h = (X - \alpha)\ell + h(\alpha)$ for some $\ell \in R[X]$. You'll need to use part (b) as well.]
- 6. Let R be a domain and F = Frac(R). Prove that $Frac(R[X]) \cong F(X)$.