Algebra I

Assignment 5

PRIME AND MAXIMAL IDEALS, ARITHMETIC OF POLYNOMIALS

1. Let R be a commutative ring. Assume that there exists an ideal $I \subset R$ such that

$$R^{\times} = R \smallsetminus I \tag{1}$$

- (a) Show that I is a maximal ideal.
- (b) Show that I is the unique maximal ideal in R.
- (c) Conversely, assume that I is the unique maximal ideal of a commutative ring R. Prove that R[×] = R \ I holds.

We call a commutative ring R local if there is an ideal $I = \mathfrak{m}_R \subset R$ satisfying (1) (which as just shown is equivalent to asking that \mathfrak{m}_R is the unique maximal ideal of R). The field R/\mathfrak{m}_R is called the *residue field* of the local ring R.

2. Let p be a prime number and consider the set

$$\mathbb{Z}_{(p)} = \left\{ x \in \mathbb{Q} : x = \frac{a}{b} \text{ for some } a, b \in \mathbb{Z}, \ p \nmid b \right\}.$$

- (a) Show that $\mathbb{Z}_{(p)}$ is a commutative ring.
- (b) Show that $\mathbb{Z}_{(p)}$ is a local ring. Find its maximal ideal and its residue field.
- 3. Let R be a commutative ring and I, J ideals in R. Define the ideal

$$IJ := (\{ij : i \in I, j \in J\})R.$$

- (a) Why is the set $\{ij : i \in I, j \in J\}$ not necessarily an ideal?
- (b) Show that $IJ \subset I \cap J$ and find an example in which the inclusion is strict.
- (c) Prove that if I and J are coprime, then $I \cap J = IJ$.
- 4. (a) Consider the polynomials $p, q \in \mathbb{Q}[X]$ defined by

$$p := X^3 - \frac{5}{2}X^2 + \frac{3}{2}X$$
 and $q = 2X^2 - X - 3$.

Compute the Euclidean division of p by q.

(b) Find a single generator of the principal ideal $(p,q)\mathbb{Q}[X] \subseteq \mathbb{Q}[X]$

(c) Let $K = \mathbb{C}(T)$. Compute the Euclidean division in K[X] of

 $f = X^3 + TX^2 - 1$ by $g = (1+T)X^2 - 1$.

- (d) Using Euclidean division in $\mathbb{F}_3[X]$, where $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$ is the field of three elements, check that the ideals $(X^4 + 2X + 1)\mathbb{F}_3[X]$ and $(X^2 + X 1)\mathbb{F}_3[X]$ are coprime.
- 5. Let R be a commutative ring and $I \subset R$ an ideal.
 - (a) Show that for $J \subset R$ an ideal containing I, there is an isomorphism

$$(R/I)/(J/I) \xrightarrow{\sim} R/J.$$

- (b) Show that the maximal (resp., prime) ideals of R/I are the ideals J/I where $J \subset R$ is a maximal (resp., prime) ideal containing I.
- 6. Find all the ideals of $\mathbb{Z}/8\mathbb{Z}$. Which are prime? Which are maximal?
- 7. Which of the following ideals of $\mathbb{Z}/4\mathbb{Z}[X]$ are prime? Which are maximal? [*Hint:* quotient ring]
 - (a) $(X,2)(\mathbb{Z}/4\mathbb{Z}[X]) \subset \mathbb{Z}/4\mathbb{Z}[X];$
 - (b) $2(\mathbb{Z}/4\mathbb{Z}[X]) \subset \mathbb{Z}/4\mathbb{Z}[X];$
 - (c) $(X-1)(\mathbb{Z}/4\mathbb{Z}[X]) \subset \mathbb{Z}/4\mathbb{Z}[X].$
- 8. Let R_1, R_2 be two commutative rings and $R = R_1 \times R_2$. Let $I \subset R$ be an ideal and define

$$I_1 := \{ a \in R_1 : (a, 0) \in I \} \subset R_1$$
$$I_2 := \{ b \in R_2 : (0, b) \in I \} \subset R_2.$$

- (a) Show that I_1, I_2 are ideals in R and that $I = I_1 \times I_2$.
- (b) Prove that the ideal I is maximal (resp., prime) if and only if either $I_1 = R_1$ and I_2 is maximal (resp., prime) or $I_2 = R_2$ and I_1 is maximal (resp., prime).