Algebra I

Assignment 8

NORMAL SUBGROUPS, QUOTIENT GROUPS, ISOMORPHISM THEOREMS FOR GROUPS

Let G be a group. We denote by Z(G) the center of G.

- 1. Show that $Z(S_n)$ is trivial for $n \ge 3$.
- 2. Show that any subgroup of a cyclic group is cyclic.
- 3. Let $G := \mathbb{R}/\mathbb{Z}$. Prove that G is isomorphic to the group $\{z \in \mathbb{C}^{\times} : |z| = 1\}$.
- 4. Let G be a group. Recall the group homomorphism $\rho: G \longrightarrow \operatorname{Aut}(G)$ seen in class, sending an element g to the automorphism $(x \mapsto gxg^{-1})$, that is the conjugation by x. We define the group of inner automorphisms of G as

$$\operatorname{Inn}(G) := \operatorname{Im}(\rho).$$

(a) Prove that $Inn(G) \triangleleft Aut(G)$.

We define the group of outer automorphisms of G as the quotient group Out(G) := Aut(G)/Inn(G).

- (b) Determine $Out(S_3)$. [*Hint:* S_3 is generated by the two permutations: τ : $(1 \mapsto 2 \mapsto 3 \mapsto 1)$ and $\sigma_{12} : (1 \mapsto 2 \mapsto 1, 3 \mapsto 3)$. Use Exercise 1]
- (c) Prove that $Out(GL_n(\mathbb{C})) \neq \{1\}$. [*Hint:* Complex conjugation, eigenvalues]
- (d) Suppose that Aut(G) is cyclic. Prove: G is abelian. [*Hint:* Exercise 2]
- 5. Let G be a group and H, K finite subgroups of G such that Card(H) and Card(K) are coprime.
 - (a) Prove that $H \cap K = \{1\}$.
 - (b) Suppose moreover that G is finite and $Card(G) = Card(H) \cdot Card(K)$. Prove that HK = G.
- 6. Let G be a group. For $a, b \in G$, define their commutator as

$$[a,b] := aba^{-1}b^{-1} \in G.$$

Define the *commutator subgroup of* G as

$$[G,G] := \langle \{[a,b] : a, b \in G\} \rangle.$$

(a) Prove that G is abelian if and only if [G, G] is trivial.

- (b) Prove that $[G, G] \triangleleft G$.
- (c) The *abelianization of* G is defined as the quotient group $G^{ab} := G/[G, G]$. Prove: G^{ab} is an abelian group.
- (d) Let $\pi : G \longrightarrow G^{ab}$ be the canonical projection. Prove: for each abelian group A and group homomorphism $\varphi : G \longrightarrow A$, there exists a unique group homomorphism $\overline{\varphi} : G^{ab} \longrightarrow A$ such that $\overline{\varphi} \circ \pi = \varphi$. [*Hint:* First, show that $[G,G] \subseteq \ker(\varphi)$]
- 7. Let $n \ge 3$ be an integer. Let D_n be the group of affine transformations of \mathbb{R}^2 mapping a regular polygon X_n of n sides to itself. Those transformations can be described in terms of permutations of the vertices of X_n . The group D_n contains 2n elements: n counterclockwise rotations by $2\pi k/n$ for $k = 0, \ldots, n-1$ around the center of X_n , as well as n symmetries with respect to lines through its center. In the picture below are drown, for n = 6, the symmetry axes of the 6 symmetries, the 6 rotations not being represented:

- (a) Let T be the rotation by $2\pi/n$, and S one of the n symmetries. Prove that $STS^{-1} = T^{-1}$ [*Hint:* Notice that an element of D_n is uniquely determined by where it maps two adjacent vertices of X_n]
- (b) Notice that for each integer k the element ST^k has order 2, and deduce that

$$D_n = \{ \mathrm{id}, T, \dots, T^{n-1}, S, ST, \dots, ST^{n-1} \}.$$

- (c) Determine $Z(D_n)$ for all n.
- (d) Let now n = 4. Prove that $\langle S \rangle \lhd \langle S, T^2 \rangle \lhd D_4$, but $\langle S \rangle \not \lhd D_4$, and determine explicitly the left and right cosets of $\langle S \rangle$ in D_4 .
- 8. Let G be a group and H, K subgroups of G.
 - (a) Prove that the intersection $xH \cap yK$ of two cosets of H and K respectively is either empty or a coset of $H \cap K$.
 - (b) Prove that each coset of $H \cap K$ is an intersection of a coset of H with a coset of K.
 - (c) Prove that if H and K have finite index in G, then $H \cap K$ has finite index as well.