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Solution 2

Category theory, first definitions on Rings

1. Prove that a morphism in the category of sets is an isomorphism if and only if it
is a bijective map.

Solution: A morphism in the category of sets is a map f : X �! Y . The identity
morphism idZ : Z �! Z is the identity map.

Suppose that f is an isomorphism. Then there exists a map g : Y �! X such that
g � f = idX and f � g = idY . Let x1; x2 2 X be such that f(x1) = f(x2). Then

x1 = idX(x1) = g(f(x1)) = g(f(x2)) = idX(x2) = x2:

This means that f is injective. Moreover, for every y 2 Y we can write

y = idY (y) = f(g(y));

so that f is surjective. Hence f is a bijective map.

Conversely, assume that f is a bijective map. For each y 2 Y , the set

f�1(y) := fx 2 X : f(x) = yg

is non-empty because f is surjective. For each x; x0 2 f�1(y), we notice that
f(x) = y = f(x0), so that injectivity of f implies x = x0. This means that for
each y 2 Y there exists xy 2 X such that f�1(y) = fxyg. De�ne g : Y �! X as
g(y) := xy. Then 8x 2 X; (g � f)(x) = g(f(x)) = xf(x) = x because f : x 7! f(x).
On the other hand, 8y 2 Y; (f � g)(y) = f(xy) = y. This means that g is an
inverse of the morphism f , so that f is an isomorphism of sets.

2. Let C be a category and A an object of C. De�ne FA from C to sets by

8B object of C; FA(B) := HomC(A;B)

8f 2 HomC(B;C); FA(f) :=

�
HomC(A;B) �! HomC(A;C)

g 7! f � g

�
:

Prove that FA is a functor (it is called the functor represented by A).

Solution: First, notice that FA is well-de�ned. Indeed HomC(A;B) is de�ned to
be a set for all objects A and B in C. Moreover, for each f 2 HomC(B;C) and
g 2 HomC(A;B), composition in C gives f � g 2 HomC(A;C).

In order to prove that FA is a functor, we need to check that it maps identity
morphisms to identity morphisms and that it respects compositions.
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� Let B be an object of C. Then idB �g = g for each morphism g 2 HomC(A;B)
by de�nition of identity morphism. This implies that the map

FA(idB) : HomC(A;B) �! HomC(A;B)

g 7�! idB � g

is the identity of HomC(A;B). Hence FA(idB) = idFA(B) for each object B of
C.

� Let B;C and D be three objects in C and take morphisms f1 2 HomC(C;D)
and f2 2 HomC(B;C). Then FA(f1 � f2) and FA(f1) � FA(f2) are both maps
HomC(A;B) �! HomC(A;D). For g 2 HomC(A;B), we notice that

FA(f1 � f2)(g) = (f1 � f2) � g = f1 � (f2 � g) = f1 � (FA(f2)(g))

= FA(f1)
�
FA(f2)(g)

�
;

so that FA(f1 � f2) = FA(f1) �FA(f2) for each pair of composable morphisms
f1 and f2 in C.

3. We want to de�ne a category C as follows:

� An object (X; Y; f) of C is given by two sets X and Y and a map f : X �! Y .

� Amorphism (u; v) 2 HomC((X; Y; f); (X
0; Y 0; f 0)) is given by maps u : X �! X 0

and v : Y �! Y 0 such that the following diagram commutes:

X
f
- Y

X 0

u

?
f 0

- Y 0

v

?

(a) De�ne composition of morphisms so that C is indeed a category.

(b) Prove that F from C to sets de�ned by F ((X; Y; f)) = X and F ((u; v)) = u
is a functor.

Solution:

(a) Notice that the morphisms between two objects (X; Y; f) and (X 0; Y 0; f 0) in
C form a set, as they form a subclass of the set HomC((X; Y; f); (X

0; Y 0; f 0)).

Given three objects (X; Y; f), (X 0; Y 0; f 0) and (X 00; Y 00; f 00) in C and mor-
phisms (u; v) : (X; Y; f) �! (X 0; Y 0; f 0) and (u0; v0) : (X 0; Y 0; f 0) �! (X 00; Y 00; f 00),
that is, maps

u : X �! X 0; v : Y �! Y 0; u0 : X 0 �! X 00; v0 : Y 0 �! Y 00
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such that

f 0 � u = v � f (1)

f 00 � u0 = v0 � f 0; (2)

we de�ne

(u0; v0) � (u; v) := (u0 � u; v0 � v):

This de�nition is well-given because

f 00 � (u0 � u) = (f 00 � u0) � u
(2)
= (v0 � f 0) � u

= v0 � (f 0 � u)
(1)
= v0 � (v � f) = (v0 � v) � f:

In order to conclude that C is a category, we need to check existence of iden-
tities and associativity of composition. Those properties follow immediately
from the same property in the category of sets, since we have de�ned com-
position coordinate-wise. Let us see this very explicitly:

� For each object (U; V; g) of C, consider the morphism e(U;V;g) := (idU ; idV ) 2
HomC((U; V; g); (U; V; g)). This is an identity of (U; V; g). Indeed, for each
object (X; Y; f) of C and morphism (u; v) from (X; Y; f) to (U; V; g), one
has

e(U;V;g) � (u; v) = (idU ; idV ) � (u; v) = (idU � u; idV � v) = (u; v);

so that e(U;V;g) is a left unit. Similarly, one can prove that e(U;V;g) is a
right unit.

� Let (X; Y; f), (X 0; Y 0; f 0), (X 00; Y 00; f 00), (u; v) : (X; Y; f) �! (X 0; Y 0; f 0)
and (u0; v0) : (X 0; Y 0; f 0) �! (X 00; Y 00; f 00) be as above, and take a fourth
object (X 000; Y 000; f 000) and a morphism (u00; v00) : (X 00; Y 00; f 00) �! (X 000; Y 000; f 000).
Then

((u00; v00) � (u0; v0)) � (u; v) = (u00 � u0; v00 � v0) � (u; v)

= ((u00 � u0) � u; (v00 � v0) � v) = (u00 � (u0 � u); v00 � (v0 � v))

= (u00; v00) � ((u0 � u; v0 � v)) = (u00; v00) � ((u0; v0) � (u; v))

and by arbitrarity of all objects and morphisms involved we can conclude
that the composition law we de�ned is associative.

4. Let R and S be two rings and f : R �! S a map between them. Prove that f is
a ring isomorphism if and only if it is ring homomorphism and it is bijective.

Solution: Suppose that f : R �! S is a ring isomorphism. Then, by de�nition, it is
a ring homomorphism and there exists an inverse ring homomorphism g : S �! R.
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In particular, at level of sets, g is an inverse map, so that, by exercise 1., f is
bijective.

Now suppose that f : R �! S is a bijective ring homomorphism. Then, by Exercise
1., there exists a map of sets g : S �! R such that f � g = idS and g � f = idR.
We need to check that g is itself a ring homomorphism. First, notice that

g(1S) = g(f(1R)) = 1R;

because f is a ring homomorphism so that f(1R) = 1S. Now, for s1; s2 2 S, let
r1; r2 2 R be such that f(r1) = s1 and f(r2) = s2. Notice that g(s1) = r1 and
g(s2) = r2. Then

g(s1 + s2) = g(f(r1) + f(r2))
(�)
= g(f(r1 + r2)) = r1 + r2 = g(s1) + g(s2)

g(s1 � s2) = g(f(r1) � f(r2))
(�)
= g(f(r1 � r2)) = r1 � r2 = g(s1) � g(s2)

which allows us to conclude that g is a ring homomorphism. (In the equalities (�)
above we used the fact that f is a ring homomorphism).

5. (a) Compute the units of Z[i].

(b) (Euclidean division in Z[i]) Let z; w 2 Z[i] r f0g. Prove that there exist
q; r 2 Z[i] such that z = q � w + r and jrj < jwj. [Hint: De�ne q 2 Z[i] such
that it is a good approximation of z

w
2 C.]

Solution: We will make use of the complex norm N : C �! R>0 de�ned by
N(z) = zz. For a + ib 2 Z[i], this gives N(a + ib) = a2 + b2 2 N. Notice that for
each x; y 2 C

N(xy) = xyxy = xxyy = N(x)N(y): (3)

(a) Let x = a + ib 2 Z[i]. If x is a unit, then xy = 1 for some y 2 Z. Then, by
(3),

1 = N(1) = N(x)N(y);

and sinceN(x); N(y) 2 N we deduce thatN(x) = 1. This means that a2+b2 =
1. This implies that a2 6 1 and b2 6 1, so that a; b 2 f�1; 0; 1g. The only
possibilities are (a; b) = (�1; 0) and (a; b) = (0;�1), which implies that
Z[i]� � f�1;�ig. Since those four elements are all units since 12 = (�1)2 =
i � (�i) = 1, which allows us to conclude that Z = f�1;�ig.

(b) Let u; v 2 R be such that

z

w
= u+ iv:
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There exist u0; v0 2 Z such that ju � u0j 6
1
2
and jv � v0j 6

1
2
. De�ne

q := u0 + iv0 and r := z � qw. In order to conclude, we need to check that
jrj < jwj, or, equivalently, that j r

w
j < 1. This is done by noticing that

r

w
=
z � qw

w
= (u� u0) + i(v � v0)

which implies, by de�nition of complex absolute value, that

��� r
w

���2 = ju� u0j
2 + jv � v0j

2
6

1

4
+

1

4
=

1

2
< 1:

6. Let F (R;C) the set of functions R �! C. Denote by C(R;C) the subset of conti-
nuous functions and by C0(R;C) the subset of continuous bounded functions.

(a) Check that F (R;C), endowed with pointwise sum and multiplication, is a
commutative ring. Find F (R;C)�.

(b) Prove that C0(R;C) and C(R;C) are subrings of F (R;C).

(c) Determine C(R;C)� and C0(R;C)
�.

(d) Is C0(R;C) an integral domain?

(e) Which of the following maps are ring homomorphisms?

i. ' : C0(R;C) �! C, sending f 7! f(1);

ii.  : C0(R;C) �! R, sending f 7! supx2R jf(x)j;

iii. � : C(R;C) �! R, sending f 7! Re(f(0));

iv. � : Z �! F (R;C) sending n 2 Z to the constant function with value n.

Solution:

(a) The operations + and � on F (R;C) are de�ned pointwise, that is,

(f + g)(x) := f(x) + g(x)

(f � g)(x) := f(x)g(x):

With a notation abuse, we denote by 0 and 1 the functions R �! C with
constant value 0 and 1 respectively. Let � : F (R;C) �! F (R;C) be de�ned
by (�f)(x) := �f(x). Then the (F (R;C);+;�; �; 0; 1) satis�es all the axioms
for a commutative. Indeed, for all a; b; c 2 F (R;C) the following hold:

� 8x 2 R, (a + (b + c))(x) = a(x) + (b + c)(x) = a(x) + b(x) + c(x) =
(a+ b)(x)+ c(x) = ((a+ b)+ c)(x), so that a+(b+ c) = (a+ b)+ c (sum
is associative);

� 8x 2 R, (a + b)(x) = a(x) + b(x) = b(x) + a(x) = (b + a)(x), so that
a+ b = b+ a (sum is commutative);

5



� 8x 2 R, (0 + a)(x) = 0(x) + a(x) = 0+ a(x) = a(x), so that 0+ a = a (0
is neutral for the sum on the left);

� 8x 2 R, (a + (�a))(x) = a(x) + (�a)(x) = a(x) + (�a(x)) = 0 = 0(x),
so that a+ (�a) = 0 (the map \�" is an inversion for the sum);

� 8x 2 R, (a � (b � c))(x) = a(x)(b � c)(x) = a(x)b(x)c(x) = (a � b)(x)c(x) =
((a � b) � c)(x), so that a � (b � c) = (a � b) � c (product is associative);

� 8x 2 R, (a � b)(x) = a(x)b(x) = b(x)a(x) = (b � a)(x), so that a � b = b � a
(product is commutative);

� 8x 2 R, (1 � a)(x) = 1(x) � a(x) = 1 � a(x) = a(x), so that 1 + a = a (1 is
neutral for the product on the left);

� 8x 2 R, (a � (b+ c))(x) = a(x)(b+ c)(x) = a(x)(b(x)+ c(x)) = a(x)b(x)+
a(x)c(x) = (a�b)(x)+(a�c)(x), so that a�(b+c) = a�b+a�c (distributivity).

Let f 2 F (R;C)�, with inverse g. This means that

8x 2 R; f(x)g(x) = 1:

Then f(x) 6= 0 for every x 2 R. On the other hand, every non-zero complex
number z 2 C r f0g is invertible, so that if f 2 F (R;C) is nowhere zero,
then we can de�ne

g(x) :=
1

f(x)

and this is an inverse of f in F (R;C). Hence

F (R;C)� = ff : R �! C : 8x 2 R; f(x) 6= 0g:

(b) Given a subset R of a ring S, we say that R is a subring of S if the ring
operations on S restrict to R, and R is a ring when endowed with those
restrictions, with 0R = 0S and 1R = 1S. Clearly, if R is closed under the
operations +;� and � of S and it contains 0S and 1S, then the ring axioms
hold for R, since they hold for the whole superset S.

First, notice that C0(R;C) � C(R;C) by de�nition. The constant functions 0
and 1 are continuous and bounded, hence they both belong to C0(R;C) and
C(R;C). Basic calculus tells us moreover that for f; g continuous functions
the functions f + g, �f and fg are continuous. Hence C(R;C) is a subring
of F (R;C).

Let f; g be bounded functions, that is, suppose there are numbers Mf ;Mg 2
R>0 such that jf(x)j < Mf and jg(x)j < Mg for each x 2 R. Then for each
x 2 R

j(f + g)(x)j 6 jf(x)j+ jg(x)j < Mf +Mg

j(�f)(x)j = j � f(x)j = jf(x)j < Mf

j(f � g)(x)j = jf(x)g(x)j = jf(x)j � jg(x)j < MfMg
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which means that f + g, �f and f � g are bounded functions. This means
that the ring operations on F (R;C) restrict to continuous functions and to
bounded functions and hence to C0(R;C), which is a subring of F (R;C).

(c) If f 2 C(R;C)� or f 2 C0(R;C)
�, then there exists an inverse in the relevant

subring and hence in F (R;C). This implies that

C(R;C)� � C(R;C) \ F (R;C)�; C0(R;C)
� � C0(R;C) \ F (R;C)

�;

so that by part a) we can restrict our attention to functions f such that
f(x) 6= 0 for all x 2 R. By basic calculus, when such a function is continuous,
so is the function 1

f
. This means that

C(R;C)� = C(R;C) \ F (R;C)�

= ff : R �! Cj8x 2 R f(x) 6= 0 and f is continuousg:

Now let f 2 C0(R;C) \ F (R;C)
�. Since the inverse of an element is unique,

f is invertible in C0(R;C) if and only if 1
f
is in C0(R;C), which is the case

if and only if 1
f
is bounded (since it is always continuous, as we have just

noticed). Notice that, for all x 2 R

���� 1f (x)
���� < Nf () jf(x)j >

1

Nf

;

so that f is invertible if and only if there exists " > 0 such that jf(x)j > "
for all x 2 X. Hence

C0(R;C)
� =

�
f : R �! C

���� 9" > 0;9N > 0 2 8x 2 X" < jf(x)j < N
and f is continuous

�
:

(d) C0(R;C) is not an integral domain. Indeed, considering the functions f1; f2 :
R �! C

f1(x) :=

�
0 if x < 0 or x > 1
x� x2 if x 2 [0; 1]

f2(x) :=

�
0 if x < �1 or x > 0
�x� x2 if x 2 [�1; 0];

we see that they are continuous (since f1(0) = f1(1) = 0 and f2(�1) =
f2(0) = 0) and bounded, since they both have image in R>0 and maximum
value 1

4
= f1(

1
2
) = f2(�

1
2
), which shows moreover that f1 6= 0 6= f2. But

f1 � f2 = 0 because f1(x) = 0 for x 6 0 and f2(x) = 0 for x > 0, so that
f1(x)f2(x) = 0 for all x 2 R. Hence f1 and f2 are zero-divisors and C0(R;C)
is not an integral domain.
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(e) i. ' is a ring homomorphism. Indeed '(1) = 1(1) = 1, whereas for f; g 2
C0(R;C) we observe that

'(f + g) = (f + g)(1) = f(1) + g(1) = '(f) + '(g)

'(f � g) = (f � g)(1) = f(1)g(1) = '(f)'(g):

ii.  is not a ring homomorphism, because it does not respect the sum. For
example, let f; g : R �! C be de�ned by

f(x) = sin(x); g(x) = � sin(x):

Then jf(x)j = jg(x)j = j sin(x)j 6 1 for all x 2 R (so that f; g 2 C0(R;C),
and since jf(�=2)j = jg(�=2)j = 1 we see that sup jf j = sup jgj = 1. This
means that  (f) =  (g) = 1. Clearly, f + g = 0, so that

 (f + g) = 0 6= 2 =  (f) +  (g)

and  is not a ring homomorphism.

iii. � is not a ring homomorphism, because it does not respect the product.
For example, let f = g : R �! C be the constant function with value
i. Then f � g = �1, the constant function with value �1. Then, since
Re(i) = 0 and Re(�1) = �1,

�(fg) = �1 6= 0 = 0 � 0 = �(f)�(g)

and � is not a ring homomorphism.

iv. � is a ring homomorphism. Indeed, 1Z is mapped to the constant function
of value 1, and for each n;m 2 Z, the sum (resp., the product) of the
function of constant value n with the function of constant value m is the
function of constant value n+m (resp., nm).

7. Let F2
�= Z=2Z be the �eld with two elements 0; 1. De�ne

R :=

��
a b
b a+ b

�
: a; b 2 F2

�
:

(a) Prove that R is a commutative ring under the usual matrix sum and multi-
plication.

(b) Prove that R is a �eld with exactly four elements.

Solution:

(a) As usual, the matrices

�
0 0
0 0

�
and

�
1 0
0 1

�
(obtained for (a; b) = (0; 0)

and for (a; b) = (1; 0) respectively) are seen to be neutral elements for + and
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� respectively. Moreover, for each a; b; a0; b0 2 F2, we see that�
a b
b a+ b

�
+

�
a0 b0

b0 a0 + b0

�
=

�
a+ a0 b+ b0

b+ b0 (a+ a0) + (b+ b0)

�
�
a b
b a+ b

��
a0 b0

b0 a0 + b0

�
=

�
aa0 + bb0 ab0 + a0b+ bb0

a0b+ ab0 + bb0 bb0 + aa0 + ab0 + ba0 + bb0

�

and both results still belong toR. As can be proven in general, sum of matrices
is commutative and associative, whereas multiplication is associative. This
proves that R is a ring. Moreover, one can check the commutativity from
the above equation by noticing that the result of the multiplication does not
change after switching a with a0 and b with b0.

(b) There are four choices of parameters (a; b) 2 F
2
2. Since the �rst row of the

matrix is (a; b), each choice gives a di�erent matrix. Hence jRj = 4. Those

matrices are 0R, 1R,

�
0 1
1 1

�
and

�
1 1
1 0

�
. Notice that 1 � 1 = 1 and

�
0 1
1 1

�
�

�
1 1
1 0

�
=

�
1 0
0 1

�
= 1R;

so that each non-zero matrix is invertible in the commutative ring R. Hence
R is a �eld with 4 elements.

8. Let R be a �nite integral domain. Prove that R is a �eld. [Hint: For each x 2
Rr f0g, consider the map R �! R sending a 7! ax. Is it injective/surjective?]

Solution: Let x 2 R r f0g. Call fx : R �! R the map a 7! ax. Suppose that
fx(a) = fx(b) for a; b 2 R. Then (a � b)x = ax � bx = fx(a) � fx(b) = 0 and
since R is an integral domain and x 6= 0 we deduce that a� b = 0, so that a = b.
This implies that fx is injective. Since R is a �nite set, fx is also surjective. In
particular, there exists y 2 R such that yx = fx(y) = 1R, meaning that x has a
left inverse. Being R commutative, x has a right inverse as well. By arbitrarity of
x 2 Rr f0g, we can conclude that R is a �eld.
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