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Solution 3

Fraction Fields, Polynomial Rings

1. Show that the fraction field of Z[i] is

Q(i) = {a+ ib : a, b ∈ Q}.

Similarly, show that the fraction field of Z[
√

2] is Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}.
Solution: We prove some useful lemmas.

Lemma 1. Let K be a field, S a non-trivial ring (that is, such that 1S 6= 0S) and
ϕ : K −→ S a ring homomorphism. Then ϕ is injective.

Proof. Let x, y ∈ K and suppose that ϕ(x) = ϕ(y). Then, since ϕ is a ring
homomorphism, ϕ(x − y) = ϕ(x) − ϕ(y) = 0S. If x − y = 0K , then we are done.
Else, (x− y) has an inverse (x− y)−1 ∈ K and

0S = ϕ(x− y)ϕ((x− y)−1) = ϕ((x− y)(x− y)−1) = ϕ(1K) = 1S,

a contradiction.

Lemma 2 (Universal Property of the fraction field). Let R be an integral domain
and F := Frac(R). Let ι : R ↪→ F be the inclusion r 7→ r

1
. For every field K and

injective ring homomorphism f : R ↪→ K there exists a unique ring homomorphism
f : F −→ K such that f ◦ ι = f , i.e., the following diagram commutes:

R
ι- F = Frac(R)

K.

f

�

f-

It is given by f( r
s
) := f(r)f(s)−1.

Proof. Suppose f : F −→ K is such a morphism and let r
s
∈ F . Then, f( r

1
) =

f(ι(r)) = f(r) and f( s
1
) = f(ι(s)) = f(s). Then, in K, there is an equality

f(r) = f
(r

1

)
= f

(r
s

)
f
(s

1

)
= f

(r
s

)
f(s)
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which implies, by multiplying by f(s)−1, that

f
(r
s

)
= f(r)f(s)−1. (1)

Hence there is at most one way to define f so that the diagram above commutes.
Let us check that (1) is indeed a well-defined ring homomorphism F −→ K. First,
notice that for r

s
∈ F the elements s is supposed to be 6= 0, so that f(s) 6= 0

since f is injective and f(s)−1 ∈ K, so that the expression (1) makes sense. Now
suppose that r

s
= r′

s′
, that is, rs′ = r′s. Then, since f is a ring homomorphism,

f
(r
s

)
= f(r)f(s)−1 = f(r′)f(r)f(s′)f(r′)−1f(s)−1f(s′)−1

= f(r′)f(rs′)f(r′s)−1f(s′)−1
rs′=r′s

= f(r′)f(s′)−1 = f

(
r′

s′

)
so that f is well-defined. Clearly,

f(1F ) = f

(
1

1

)
= f(1)f(1)−1 = 1 · 1 = 1.

The fact that f respects the sum and the multiplication is similarly proven, by
using its definition. This concludes the proof of our claim.

Now let us consider R = Z[i]. We first prove that {a + ib : a, b ∈ Q} is a field.
It is easily checked that this subset of C is closed under sum and multiplication
and contains 1, so that it is a subring of the field C and as such it is an integral
domain. Given a, b ∈ Q, such that (a, b) 6= (0, 0), we see that a + ib 6= 0 and
N(a+ ib) = (a+ ib)(a− ib) = a2 + b2 6= 0. Then

1 =
a− ib
a2 + b2

(a+ ib) =

(
a

a2 + b2
− i b

a2 + b2

)
(a+ ib),

so that (a+ ib) has inverse

a

a2 + b2
− i b

a2 + b2
∈ {a+ ib : a, b ∈ Q}.

This implies that Q(i) = {a + ib : a, b ∈ Q} is a field (a better way to define
Q(i) is actually to define it as the smallest subfield of C containing Q and i—
what we have just shown being that Q(i) = {a + ib : a, b ∈ Q}). The inclusion
f : Z[i] −→ Q(i) sending a + ib 7→ a + ib is a ring homomorphism, so that there
exists a unique ring homomorphism f : Frac(Z[i]) −→ Q(i) such that the following
diagram commutes:

Z[i]
ι- Frac(Z[i])

Q(i)

f

�

f-
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By Lemma 1, f is injective. Moreover, for α + iβ ∈ Q we can find integers
a, b, d ∈ Z such that α + iβ = (a+ ib)d−1. Then, as seen in Lemma 2,

f

(
a+ ib

d

)
= (a+ ib)d−1 = α + iβ,

so that f is surjective. Hence f is the desired isomorphism Frac(Z[i]) ∼= Q(i).

Similarly for R = Z[
√

2], we first check that Q(
√

2) = {a + b
√

2 : a, b ∈ Q} is a
field by noticing that each non trivial a+

√
2b ∈ Q has inverse

(a+
√

2b)−1 =
a−
√

2b

(a−
√

2b)(a+
√

2b)
=
a−
√

2b

a2 − 2b2
=

a

a2 − 2b2
−
√

2
b

a2 − 2b2
.

Then, again, we have a unique ring homomorphism f : Frac(Z[
√

2]) −→ Q(
√

2)
making the following diagram commute:

Z[
√

2]
ι- Frac(Z[

√
2])

Q(
√

2)

f�

f-

The ring homomorphism f is injective by Lemma 1 and surjective because each
α +
√

2β ∈ Q(
√

2) can be written as a+b
√
2

d
for suitable a, b, d ∈ Z, so that it lies

in the image of f . Then f is an isomorphism Frac(Z[
√

2]) ∼= Q(
√

2).

2. Let R be an integral domain. Show that R[X]× = R×. Can R[X] be a field?

Solution: Of course, A× ⊆ A[X]× because A ⊆ A[X]. To conclude, we just
need to prove that any invertible f ∈ A[X] is indeed in A×. Suppose that f ∈
A[X]×, and that fg = 1 for some g ∈ A[X]. Of course f and g cannot be 0,
so that we have well-defined deg(f), deg(g) > 0. Being A a domain, we have
that deg(fg) = deg(f) + deg(g) (because the product of the leading coefficients is
the leading coefficient of the product, as it cannot vanish). Hence 0 = deg(1) =
deg(f) + deg(g), and the only possibility is that deg(f) = deg(g) = 0. Hence
f, g ∈ A, giving f ∈ A×.

The ring R[X] cannot be field because X ∈ R[X] has no inverse by degree reasons:
Xg(X) = 1 for g(X) ∈ R[X] would imply that deg(g)+1 = deg(1) = 0, impossible.
[This argument works because R is assumed to be a domain. Notice, however, that
if R were a commutative ring but not a domain, then R[X] would not be a domain
(it would contain the non-trivial zero-divisors of R), so that R[X] would not be a
field. Hence R[X] is never a field, whatever commutative ring R we consider.]

3. (a) Prove that 1 + 2X is a unit in (Z/4Z)[X].

(*b) Determine (Z/4Z)[X]×.

3



(c) Find f ∈ (Z/4Z)[X] of degree 2 such that f(x) = 0 for all x ∈ Z/4Z.

Solution:

(a) We notice that (1 + 2X)2 = 1 + 4X + 4X2 = 1 since 4 = 0 in Z/4Z. Hence
1 + 2X is an inverse of itself and as such it is a unit of (Z/4Z)[X].

(b) Taking inspiration from part (a), we notice that for each f ∈ (Z/4Z)[X]
there is an equality (1 + 2f)2 = 1 + 4f + 4f 2. We now prove that all units in
(Z/4Z)[X] are of this shape. Notice that the map

Z/4Z −→ Z/2Z
x 7−→ x (mod 2)

is a ring homomorphism. Indeed, it is well defined because if x, x′ ∈ Z are
congruent modulo 4, that is 4|x′ − x, then 2|x′ − x, so that x and x′ are
congruent modulo 2, and moreover it respects sums and multiplications, and
it sends 1 7→ 1.

As seen in class, there exists a unique ring homomorphism

θ : (Z/4Z)[X] −→ (Z/2Z)[X]

sending X 7→ X and Z/4Z 3 a 7→ a (mod 2). It is the one which reduces
all coefficients modulo 2. If g, h ∈ (Z/4Z)[X]×, with gh = 1, then 1 =
θ(1) = θ(gh) = θ(g)θ(h), so that θ(g) ∈ (Z/2Z)[X]×. But Z/2Z is a field
and in particular an integral domain, so that (Z/2Z)[X]× = {1} by Exercise
2. This means that all non-constant coefficients of g are congruent to 0 or
2 modulo 4, whereas the constant coefficient can be only 1 or 3 modulo 4.
In particular, the degree-i coefficient of g for i > 0 can be written as 2 · ai
for some ai ∈ Z/4Z, whereas the constant coefficient of g can be written as
1 + 2 · a0 for some a0 ∈ Z/4Z. Altogether, g = 1 + 2(a0 + a1X + · · ·+ anX

n)
and we can conclude that

(Z/4Z)[X]× = {1 + 2f : f ∈ (Z/4Z)[X]} .

(c) We first notice that the polynomial t := X2 +X satisfies the condition t(α) ∈
{0, 2} for all α ∈ Z/4Z. Hence, since 2 · 2 = 0 in Z/4Z, the polynomial
2t = 2X2 + 2X, still of degree-2, vanishes on every a ∈ Z/4Z.

4. Let R be an integral domain.

(a) Prove that R[[X]] is an integral domain.

(b) Prove that 1−X ∈ R[[X]]×.
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(c) Let now R = K be a field. Prove:

K[[X]]× :=

{∑
n∈N

anX
n|a0 6= 0

}
.

[Hint: Find the coefficients of inverse power series inductively.]

Solution:

(a) Recall that an element of R[[X]] can be written as a formal power series
a =

∑∞
i=0 aiX

i. Consider another element b =
∑∞

j=0 jjX
j. Recall how the

product ab is defined:

ab =

(
∞∑
i=0

aiX
i

)
·

(
∞∑
j=0

bjX
j

)
=
∞∑
k=0

( ∑
i+j=k
i,j>0

aibj

)
Xk (2)

We first prove that X` is not a zero-divisor for any k ∈ N. This is be-
cause multiplication by X` translates the coefficients of b up by adding some
zero coefficients in the beginning, as can be seen formally by considering the
product above for a = X`, that is, ai = δi`. Then∑

i+j=k
i,j>0

aibj =
∑
i+j=k
i,j>0

δi,`bj =

{
bk−` k > `
0 k < `,

so that X`b = 0 implies that bk−` = 0 for each k > `, i.e., b = 0.

Suppose that ab = 0 and a 6= 0.

• We reduce to the case a0 6= 0. Let i0 = min{i ∈ N : ai 6= 0}. Then a
is divisible by X i0 , as can be seen by defining α =

∑∞
u=0 au+i0X

u and
proving similarly as done above for the product X`b that

X i0α =

i0−1∑
u=0

0 ·Xu +
∞∑
u=i0

au+i0−i0X
u = a.

Then ab = X i0αb and we notice that α has non-zero constant coefficient.
Moreover, since 0 = ab = X i0αb and X i0 is not a zero divisor, we deduce
that αb = 0. This means that, without loss of generality, we can assume
that a0 6= 0 from the beginning.

• We hence assume that a0 6= 0. Then, looking at the constant coefficient
in (2), the assumption ab = 0 implies that a0b0 = 0. Since R is a domain
and a0 6= 0, it must be the case that b0 = 0.
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• Suppose that b0, . . . , bk−1 = 0. Then, looking at the degree-k coefficient
in (2), the assumption ab = 0 implies that

0 =
∑
i+j=k
i,j>0

aibj =
∑

06j<k
i=k−j

aibj + a0bk =
∑

06j<k
i=k−j

ai · 0 + a0bk = a0bk,

which tells us that bk = 0 since a0 6= 0 and R is a domain.

Hence, by induction, we proved that b = 0, so that R[[X]] is an integral
domain.

Alternative, faster solution: Let a, b ∈ R[[X]] and assume that a, b 6= 0. Let
s, t ∈ N be the smallest integers such that as 6= 0 and bt 6= 0. Then the
(s + t)-th coefficient of ab is asbt 6= 0, which implies that ab 6= 0. Hence
R[[X]] is an integral domain.

(b) Basic calculus suggests that

1

1−X
=
∞∑
j=0

Xj.

Let us check that this is the case by computing (1 − X)
∑∞

j=0X
j with the

definition (2) above, 1−X having coefficients 1,−1, 0, 0, . . . :

(1−X)
∞∑
j=0

Xj = 1 · 1X0 +
∞∑
k=1

(1 + 1 · (−1))Xk = 1 +
∞∑
k=1

0Xk = 1.

This proves that 1−X ∈ R[[X]].

(c) The equality ab = 1 for a, b ∈ K[[X]] (with coefficients ai and bj respectively)
is equivalent to the equalities{

a0b0 = 1

a0bk = −
∑k−1

j=0 ak−jbj, k > 0.

The first equation tells us that if a ∈ K[[X]]× then a0 6= 0. Conversely, if
a0 6= 0, there exists a−10 ∈ K and the equations above are equivalent to{

b0 = a−10

bk = −a−10

∑k−1
j=0 ak−jbj, k > 0.

which inductively define the coefficients bk of the inverse b of a. We can hence
conclude that

K[[X]]× =

{∑
n∈N

anX
n : a0 6= 0

}
.
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5. Let R be a commutative ring.

(a) Show that there exists a unique map D : R[X] −→ R[X] such that

D(X i) = iX i−1, i > 1

D(1) = 0

which is R-linear, i.e., such that

∀r ∈ R, ∀f, g ∈ R[X], D(rf + g) = rD(f) +D(g).

(b) Is D a ring homomorphism?

(c) Prove that for all f, g ∈ R[X] one has

D(fg) = fD(g) + gD(f)

(*d) We say that α ∈ R is a multiple root of f ∈ R[X] if there exists g ∈ R[X]
such that f = (X − α)2g. Prove: α is a multiple root of f if and only if
f(α) = D(f)(α) = 0. [Hint: Notice that Xk = (X−α+α)k = (X−α)gk+αk

for some gk ∈ R[X] and deduce that for each h ∈ R[X] we can write h =
(X − α)`+ h(α) for some ` ∈ R[X]. You’ll need to use part (b) as well.]

Solution:

(a) Suppose such a map D exists. Notice that R-linearity implies additivity
because in the definition one can take r = 1. Then,

D(0) = D(0 + 0) = D(0) +D(0),

so that 0 = D(0). Now, the condition of linearity for g = 0 gives

∀r ∈ R, ∀f ∈ R[X], D(rf) = D(rf + 0) = rD(f) +D(0) = rD(f). (3)

The additivity of D can be inductively proven to generalize to finite sums, so
that if f =

∑n
i=0 aiX

i the given conditions on D give

D(f) = D

(
n∑
i=0

aiX
i

)
=

n∑
i=0

D
(
aiX

i
) (3)

=
n∑
i=0

aiD(X i) =
n∑
i=1

aiiX
i−1. (4)

so that D is uniquely defined. Let us now check that (4) indeed defines an
R-linear map satisfying the given properties. Those properties are trivially
satisfied by construction. As concerns linearity, let f =

∑n
i=0 aiX

i, g =∑n
j=0 bjX

j ∈ R[X] and r ∈ R (the sums describing f and g range up to
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n = max deg(f), deg(g), by eventually adding zero higher coefficients to one
of the two polynomials). Then rf + g = r

∑n
j=0(ajr + bj)X

j and

D(rf + g) =
n∑
j=1

(ajr + bj)jX
j−1

= r

n∑
j=1

ajjX
j−1 +

n∑
j=1

bjjX
j−1 = rD(f) +D(g),

so that D is R-linear and we are done.

(b) The map D cannot be a ring homomorphism, since it sends 1 7→ 0 6= 1.
Unless R is the trivial ring, in which case R[X] = 0 and D : 0 −→ 0 is a ring
homomorphism as well.

(c) The identity can be directly checked by writing f =
∑m

i=0 aiX
i and g =∑n

j=0 bjX
j and computing both sides. An equivalent (but faster) way to do

this is to observe that both sides of the identity D(fg) = fD(g) + gD(f) are
linear in f and in g. Then it is enough to check the equality for an arbitrary
f and g = Xk, k > 0, and this is then equivalent to check the equality for
f = Xj and g = Xk, with j, k > 0, which is immediate:

D(XjXk) = D(Xj+k) = (j + k)Dj+k−1 = Xj · kXk−1 +Xk · jXj−1.

(d) We follow the hint. The equalities

Xk = (X − α + α)k = αk +
k∑
i=1

(
k

i

)
(X − α)iαk−i

= αk + (X − α)
k∑
i=1

(
k

i

)
(X − α)i−1αk−i = αk + (X − α)gk,

holding for gk =
∑k

i=1

(
k
i

)
(X − α)i−1αk−i, imply for h =

∑n
k=0 ukX

k that

h =
n∑
k=0

ukX
k =

n∑
k=0

(ukα
k + uk(X − α)gk)

=
n∑
k=0

ukα
k + (X − α)

n∑
k=0

ukgk = h(α) + (X − α)`h

for `h =
∑n

k=0 ukgk ∈ R[X].

Let f ∈ R[X] and assume that f = (X − α)` for some ` ∈ R[X]. Then
f(α) = 0 · g(0) = 0. Conversely, writing f = f(α) + (X − α)`f as above, we
see that f(α) = 0 implies that f = (X − α)` for some ` = `f . This proves
the following statement:

f(α) = 0 ⇐⇒ ∃` ∈ R[X] : f = (X − α)`
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Let’s now move one degree further using D.

Suppose that α is a multiple root of f , that is, f = (X − α)2g for some
g ∈ R[X]. In particular we can write f = (X − α)` for ` = (X − α)g so that
f(α) = 0 by the statement we just proved. Moreover, by part (c),

D(f) = D((X − α)2)g + (X − α)2D(g) = 2(X − α)g + (X − α)2D(g)

so that D(f)(α) = 0 · g(α) + 0 ·D(g)(0) = 0.

Conversely, assume that f(α) = D(f)(α) = 0. We write f = (X − α)h and

h = h(α) + (X − α)`h (5)

and compute the equality

D(f)
(c)
= h+ (X − α)D(h)

= h(α) + (X − α)`h + (X − α)D(h)

which evaluated at α gives

0 = h(α) + 0 + 0.

Then (5) reads h = (X − α)`h and we can conclude that f = (X − α)h =
(X − α)2`h, so that α is a multiple root of f .

6. Let R be a domain and F = Frac(R). Prove that Frac(R[X]) ∼= F (X).

Solution: The canonical inclusion j : R −→ F = Frac(R) induces a canonical
homomorphism of rings j′ : R[X] −→ F [X]. Consider the canonical inclusions
ιR : R[X] −→ Frac(R[X]) and ιF : F [X] −→ Frac(F [X]) = F (X). By Lemma 2
there exists a unique ring homomorphism j′ : Frac(R[X]) −→ Frac(F [X]) = F (X)
such that the following diagram commutes (the maps without label are the usual
inclusions of constant polynomials):

R - R[X]
ιR- Frac(R[X])

F

j

?
- F [X]

j′

?
ιF- Frac(F [X])

j′

?

= F (X)

The ring homomorphism j′ is injective by Lemma 1.

Now let q = f/g ∈ F (X) be a fraction of polynomials f, g ∈ F (X). Write
f =

∑n
k=0

ak
bk
Xk for ak, bk ∈ R. Then

f =
n∑
k=0

ak
bk
Xk =

1∏
k bk

n∑
k=0

a′kX
k
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for suitable coefficients a′k ∈ R. Similarly with g. This means that there exist
r, s ∈ R and f0, g0 ∈ R[X] such that

f =
1

r
f0, g =

1

s
g0.

Then

q =
f

g
=

1
r
f0

1
s
g0

=
sf0
rg0

= j′
(
sf0
rg0

)
,

the last equality holding by Lemma 2—the fraction in the brackets on the right
hand side is an element of Frac(R[X]) as sf0, rg0 ∈ R[X].
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