D-MATH Algebra I HS17

Prof. Emmanuel Kowalski .
Solution 3

FrAcTION FIELDS, POLYNOMIAL RINGS

1. Show that the fraction field of Z[i] is
Q) ={a+ib:a,be Q}.
Similarly, show that the fraction field of Z[v/2] is Q(v/2) = {a +bv/2 : a,b € Q}.
Solution: We prove some useful lemmas.

Lemma 1. Let K be a field, S a non-trivial ring (that is, such that 1g # 0g) and
¢ : K — S a ring homomorphism. Then ¢ is injective.

Proof. Let z,y € K and suppose that ¢(z) = ¢(y). Then, since ¢ is a ring
homomorphism, p(z —y) = ¢(x) — ¢(y) = 0s. If x — y = Ok, then we are done.
Else, (z — y) has an inverse (z —y)~! € K and

0s = p(z —y)p((z —y) ) = oz —y)(z —y)™") = p(lk) = 1s,
a contradiction. O

Lemma 2 (Universal Property of the fraction field). Let R be an integral domain
and F := Frac(R). Let t: R — F be the inclusion r + L. For every field K and
injective ring homomorphism f @ R — K there exists a umque ring homomorphism
f:F — K such that fov= f, i.e., the following diagram commutes:

R\—» F = Frac(R)

It is given by f(Z):= f(r)f(s)~".

Proof. Suppose f : F — K is such a morphism and let £ € F. Then, f(%) =
f(u(r)) = f(r) and f(2) = ( (s)) = f(s). Then, in K, there is an equality

=7(1)=7()7 () =7 ()70



which implies, by multiplying by f(s)™!, that
F(2) = s (1)

Hence there is at most one way to define f so that the diagram above commutes.
Let us check that (1) is indeed a well-defined ring homomorphism F — K. First,
notice that for £ € F the elements s is supposed to be # 0, so that f(s) # 0
since f is injective and f(s)™! € K, so that the expression (1) makes sense. Now
suppose that ~ = Z—:, that is, s’ = r’s. Then, since f is a ring homomorphism,

F(2) = F0F ()7 = 0O T ()7 A ()
= FE S0 0 =T ()
so that f is well-defined. Clearly,

—_ - (1 _
Fue =7 (7) = =1 -
The fact that f respects the sum and the multiplication is similarly proven, by
using its definition. This concludes the proof of our claim. m

Now let us consider R = Z[i]. We first prove that {a +ib : a,b € Q} is a field.
It is easily checked that this subset of C is closed under sum and multiplication
and contains 1, so that it is a subring of the field C and as such it is an integral
domain. Given a,b € Q, such that (a,b) # (0,0), we see that a + ib # 0 and
N(a+ib) = (a+ib)(a —ib) = a* +b* # 0. Then

. b :
1:c12—~|—b2(a+2b) - <c12~|—b2 _Zaz—l—bQ) (a+ib),

so that (a + ib) has inverse

a .

2+02 a4 b2
This implies that Q(i) = {a + b : a,b € Q} is a field (a better way to define
Q(1) is actually to define it as the smallest subfield of C containing Q and i—
what we have just shown being that Q(i) = {a + b : a,b € Q}). The inclusion
[ Z]i] — Q(¢) sending a + ib — a + ib is a ring homomorphism, so that there
exists a unique ring homomorphism f : Frac(Z[i]) — Q(i) such that the following
diagram commutes:

e{a+ib:a,beQ}.

' — Frac

\/



By Lemma 1, f is injective. Moreover, for o + i3 € Q we can find integers
a,b,d € Z such that a + i = (a +ib)d~'. Then, as seen in Lemma 2,

f (azib) = (a+ib)d ' = a+if,

[a¥)

so that f is surjective. Hence f is the desired isomorphism Frac(Z[i]) = Q(4).

Similarly for R = Z[v/2], we first check that Q(v2) = {a + bv2 : a,b € Q} is a
field by noticing that each non trivial a + v/2b € Q has inverse
a—/2b a—/2b B a NG b

2b)7! = = = — V2 :
(a+v20) (a —V2b)(a++/2b) a?—2b>  a®— 20 a? — 2b?

Then, again, we have a unique ring homomorphism f : Frac(Z[v2]) — Q(v/2)
making the following diagram commute:

—+ Frac(Z[v2)])

\/

The ring homomorphism f is injective by Lemma 1 and surjective because each
a+ /23 € Q(v/2) can be written as # for suitable a,b,d € Z, so that it lies
in the image of f. Then f is an isomorphism Frac(Z[v/2]) = Q(v/2).

. Let R be an integral domain. Show that R[X|* = R*. Can R[X] be a field?

Solution: Of course, A* C A[X]* because A C A[X]. To conclude, we just
need to prove that any invertible f € A[X] is indeed in A*. Suppose that f €
A[X]*, and that fg = 1 for some g € A[X]. Of course f and g cannot be 0,
so that we have well-defined deg(f),deg(g) > 0. Being A a domain, we have
that deg(fg) = deg(f) + deg(g) (because the product of the leading coefficients is
the leading coefficient of the product, as it cannot vanish). Hence 0 = deg(1) =
deg(f) + deg(g), and the only possibility is that deg(f) = deg(g) = 0. Hence
fig € A, giving f € A*.

The ring R[X] cannot be field because X € R[X] has no inverse by degree reasons:
Xg(X) = 1for g(X) € R[X] would imply that deg(g)+1 = deg(1) = 0, impossible.
[This argument works because R is assumed to be a domain. Notice, however, that
if R were a commutative ring but not a domain, then R[X| would not be a domain
(it would contain the non-trivial zero-divisors of R), so that R[X] would not be a
field. Hence R[X] is never a field, whatever commutative ring R we consider.]

(a) Prove that 1+ 2X is a unit in (Z/4Z)[X].
(*b) Determine (Z/4Z)[X]*.



(c) Find f € (Z/47)[X] of degree 2 such that f(x) =0 for all x € Z/4Z.

Solution:

(a) We notice that (1 +2X)? =1+ 4X +4X? = 1 since 4 = 0 in Z/4Z. Hence
1+ 2X is an inverse of itself and as such it is a unit of (Z/4Z)[X].

(b) Taking inspiration from part (a), we notice that for each f € (Z/4Z)[X]
there is an equality (1+2f)* = 1+4f +4f%. We now prove that all units in
(Z/AZ)[X] are of this shape. Notice that the map

7/A7 — 1,)27.
x+— x (mod 2)

is a ring homomorphism. Indeed, it is well defined because if z, 2’ € Z are
congruent modulo 4, that is 4|2’ — x, then 2|z’ — z, so that x and 2’ are
congruent modulo 2, and moreover it respects sums and multiplications, and
it sends 1 — 1.

As seen in class, there exists a unique ring homomorphism
0:(Z/A7)[X] — (Z/27)[X]

sending X — X and Z/4Z > a + a (mod 2). It is the one which reduces
all coefficients modulo 2. If g,h € (Z/4Z)[X]*, with gh = 1, then 1 =
6(1) = 0(gh) = 0(g)0(h), so that 0(g) € (Z/2Z)[X]*. But Z/2Z is a field
and in particular an integral domain, so that (Z/2Z)[X]* = {1} by Exercise
2. This means that all non-constant coefficients of g are congruent to 0 or
2 modulo 4, whereas the constant coefficient can be only 1 or 3 modulo 4.
In particular, the degree-i coefficient of g for ¢ > 0 can be written as 2 - q;
for some a; € Z/4Z, whereas the constant coefficient of g can be written as
142 ag for some ag € Z/47Z. Altogether, g =1+ 2(ap+ a1 X +---+ a, X™)
and we can conclude that

(Z/AZ)[X]* = {L+2f : f € (Z/4Z)[X]}.

(c) We first notice that the polynomial ¢ := X?+ X satisfies the condition ¢(a) €
{0,2} for all @« € Z/4Z. Hence, since 2 -2 = 0 in Z/4Z, the polynomial
2t = 2X?% + 2X, still of degree-2, vanishes on every a € Z/4Z.

4. Let R be an integral domain.

(a) Prove that R[[X]] is an integral domain.
(b) Prove that 1 — X € R[[X]]*.



(c) Let now R = K be a field. Prove:

K[[X]]* := {ZanX"MO # 0} .

neN
[Hint: Find the coefficients of inverse power series inductively.]

Solution:

(a) Recall that an element of R[[X]] can be written as a formal power series
a =Y 7ya;X". Consider another element b = > > j;X7. Recall how the
product ab is defined:

w-(Sax) (Low) X (T an)r @
i=0 §=0 k=0 it+j=k

i,j>0
We first prove that X* is not a zero-divisor for any k € N. This is be-
cause multiplication by X* translates the coefficients of b up by adding some

zero coefficients in the beginning, as can be seen formally by considering the
product above for a = X?, that is, a; = d;r. Then

Z (ll'bj = Z (Szwbj — { gk—K Zig’

i+j=k i+j=k
i,j>0 i,j>0
so that X*b = 0 implies that b,_, = 0 for each k > ¢, i.e., b = 0.
Suppose that ab = 0 and a # 0.
e We reduce to the case ap # 0. Let i = min{i € N : a; # 0}. Then a
is divisible by X%, as can be seen by defining o = Yoo o Qutip X" and
proving similarly as done above for the product X*‘b that

10—1 [ee)
X" = E 0- X"+ g Aytig—in X " = a.
u=0 u=tg

Then ab = X ab and we notice that o has non-zero constant coefficient.
Moreover, since 0 = ab = X ab and X is not a zero divisor, we deduce
that ab = 0. This means that, without loss of generality, we can assume
that ag # 0 from the beginning.

e We hence assume that ag # 0. Then, looking at the constant coefficient

in (2), the assumption ab = 0 implies that agby = 0. Since R is a domain
and ag # 0, it must be the case that by = 0.



e Suppose that bg,...,bx_1 = 0. Then, looking at the degree-k coefficient
in (2), the assumption ab = 0 implies that

0= Z aibj: Z aibj—FCLobk: Z (l,"O—FCLQbk:CLobk,

i+j=k 0<j<k 0<j<k
,7>0 i=k—j i=k—j

which tells us that b, = 0 since ag # 0 and R is a domain.

Hence, by induction, we proved that b = 0, so that R[[X]] is an integral
domain.

Alternative, faster solution: Let a,b € R[[X]] and assume that a,b # 0. Let
s,t € N be the smallest integers such that a; # 0 and b; # 0. Then the
(s + t)-th coefficient of ab is asb; # 0, which implies that ab # 0. Hence
R[[X]] is an integral domain.

Basic calculus suggests that
1-X =

Let us check that this is the case by computing (1 — X) 72 X/ with the
definition (2) above, 1 — X having coefficients 1, —1,0,0,...:

1=X)) XT=1-1X"4> (1+1-(-1)X*=1+> 0x*=1.
Jj=0 k=1 k=1

This proves that 1 — X € R[[X]].

The equality ab = 1 for a,b € K[[X]] (with coefficients a; and b; respectively)
is equivalent to the equalities

{ CLQbO =1
agbk = — Zf;é ak_jbj, k> 0.

The first equation tells us that if a € K[[X]]* then ay # 0. Conversely, if
ag # 0, there exists a; !¢ K and the equations above are equivalent to

bo = aal
—1 k-1
bk = —ag Zj:O ak_jbj, k> 0.

which inductively define the coefficients by of the inverse b of a. We can hence
conclude that

K[[X]]* = {Z an X" 1 ag # o} .

neN

6



5. Let R be a commutative ring.
(a) Show that there exists a unique map D : R[X| — R[X] such that
D(X') =iX"" i>1
D(1)=0
which is R-linear, i.e., such that

Vr e RNVf, g€ R[X], D(rf+g)=rD(f)+ D(g).

(b) Is D a ring homomorphism?
(c) Prove that for all f, g € R[X] one has

D(fg) = fD(g) + gD(f)

(*d) We say that a € R is a multiple root of f € R[X] if there exists g € R[X]
such that f = (X — a)%g. Prove: «a is a multiple root of f if and only if
f(a) = D(f)(a) = 0. [Hint: Notice that X* = (X —a+a)* = (X —a)gp +a*
for some g € R[X] and deduce that for each h € R[X] we can write h =
(X — a)l + h(«a) for some ¢ € R[X]. You'll need to use part (b) as well.]

Solution:

(a) Suppose such a map D exists. Notice that R-linearity implies additivity
because in the definition one can take » = 1. Then,

D(0) = D(0 +0) = D(0) + D(0),
so that 0 = D(0). Now, the condition of linearity for g = 0 gives

Vr € RYf € R[X], D(rf) = D(rf +0) = rD(f) + D(0) = rD(f). (3)

The additivity of D can be inductively proven to generalize to finite sums, so
that if f =" ,a;X" the given conditions on D give

=D (zn: aiXi> = zn: D (a;x") 2 zn:aiD(Xi) = zn:aiz'Xi_l.
=0 1=0 1=0 1=1

so that D is uniquely defined. Let us now check that (4) indeed defines an
R-linear map satisfying the given properties. Those properties are trivially
satisfied by construction. As concerns linearity, let f = Y% @, X", g =
> i—obi X7 € R[X] and r € R (the sums describing f and g range up to



n = max deg(f), deg(g), by eventually adding zero higher coefficients to one
of the two polynomials). Then rf +g =ry 7 (a;r +b;) X7 and

n

D(rf+g)=> (ar +b;)jX"~

j=1
=7 a X7 4+ biX = rD(f) + D(g),
j=1 Jj=1

so that D is R-linear and we are done.

The map D cannot be a ring homomorphism, since it sends 1 — 0 # 1.
Unless R is the trivial ring, in which case R[X]| =0 and D :0 — 0 is a ring
homomorphism as well.

The identity can be directly checked by writing f = Y " ¢, X" and g =
Z?:o b; X’ and computing both sides. An equivalent (but faster) way to do
this is to observe that both sides of the identity D(fg) = fD(g)+ gD(f) are
linear in f and in g. Then it is enough to check the equality for an arbitrary
fand g = X*, k > 0, and this is then equivalent to check the equality for
f =X’ and g = X*, with j, k > 0, which is immediate:

D(XIX*®) = D(X7™) = (j + k)DITF1 = X7 g X1 4 XX

We follow the hint. The equalities

Xf=(X-a+a) =o/“+zk: (’?)(X—a)io/f—i

- 7
=1

=+ (X —a) i <’:> (X —a) o = o + (X —a)gp,

i=1

holding for g = Zle (k) (X —a)~a* imply for h = >} up X" that

7
n

h = Zuka = Z(ukak + up(X — a)gr)
k=0 k=0

= Zukak + (X —a) Zukgk = h(a) + (X — a)ty
k=0 k=0

for £, =Y ;o ukgr € R[X].

Let f € R[X] and assume that f = (X — «)f for some ¢ € R[X]. Then
f(a) =0-g(0) = 0. Conversely, writing f = f(a) + (X — a)ly as above, we
see that f(a) = 0 implies that f = (X — a)¢ for some ¢ = ¢;. This proves
the following statement:

fla)=0 < W eRX]: f=(X—a)



Let’s now move one degree further using D.

Suppose that « is a multiple root of f, that is, f = (X — a)?g for some
g € R[X]. In particular we can write f = (X — a)f for £ = (X — a)g so that
f(a) =0 by the statement we just proved. Moreover, by part (c),

D(f) = D((X —a)®)g+ (X —a)’D(g) = 2(X — a)g + (X — a)’D(g)

so that D(f)(a) =0-g(a) +0-D(g)(0) =0.
Conversely, assume that f(a) = D(f)(a) = 0. We write f = (X — a)h and

h = h(a) + (X — a)ly (5)
and compute the equality

D(f) L h+ (X - a)D(h)
= h(a) + (X — a)ly, + (X — a)D(h)

which evaluated at a gives
0=h(a)+0+0.

Then (5) reads h = (X — a)¢, and we can conclude that f = (X —a)h =
(X — )20, so that « is a multiple root of f.

6. Let R be a domain and F' = Frac(R). Prove that Frac(R[X]) = F(X).

Solution: The canonical inclusion j : R — F = Frac(R) induces a canonical
homomorphism of rings j' : R[X] — F[X]. Consider the canonical inclusions
tr : R[X] — Frac(R[X]) and vy : F[X] — Frac(F[X]) = F(X). By Lemma 2
there exists a unique ring homomorphism 5 : Frac(R[X]) — Frac(F[X]) = F(X)
such that the following diagram commutes (the maps without label are the usual
inclusions of constant polynomials):

R — R[X] =& Frac(R[X))

[

F — F[X] 5 Frac(F[X]) = F(X)

The ring homomorphism j’ is injective by Lemma 1.

Now let ¢ = f/g € F(X) be a fraction of polynomials f,g € F(X). Write
f =10 ®X" for ar, by € R. Then

- Ak <k 1 - ! vk
— —X = aX
P B




for suitable coefficients a;, € R. Similarly with g. This means that there exist
r,s € R and fy, go € R[X] such that

1 1
f==Jfo, 9= —90.
T S

Then

q:—: —= _j
9o

f_ 2l S_fo_—/(S_fO)
g 9 T ’

the last equality holding by Lemma 2—the fraction in the brackets on the right
hand side is an element of Frac(R[X]) as sfy,rg0 € R[X].
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