D-MATH Algebra I HS17
Prof. Emmanuel Kowalski .
Solution 4

IDEALS, FIRST ISOMORPHISM THEOREM

1. Let R be a commutative ring.

(a) Show that there exists a unique ring homomorphism
¢« RIX1][X5] — R[X5][X)]

which sends X; — X;, X5 — X, and is the identity on R, and that ¢ is a ring
isomorphism. This means that the order of the variables in the expression
R[X1, X5] is irrelevant.

(b) Prove that there exists a ring isomorphism
R[X1, Xo] /X1 R[X,, Xo] = R[Xa].
Solution:

(a) Recall the universal properties for polynomial rings: for every ring homomor-
phism ¢t : A — S and element s € S, there exists a unique ring homomor-
phism  : A[X] — S such that oty = t, where 14 : A — A[X] is the
canonical inclusion. This can be expressed by a commutative diagram

or by saying that there is a bijection Hom(A[X],S) — Hom(A,S) x S
sending f +— (f oua, f(X)).
Let 621 : R — R[X,][X;] be the composition of canonical inclusions

L21

R <5 R[X5] <4 R[Xo][X)]

and 015 : R — R[X;][X3] the composition of canonical inclusions

L12

R < R[X1] 3 R[X1][X,].



Let S be any commutative ring and v : R — S a ring homomorphism. Fix
two elements s1, s, € S. By the universal property of the polynomial ring,

Vr € R, ui(u(r)) = u(r)

1. - : .
Aluy : R[X;] — S ring hom. : { w (X)) = 1. (1)

A second application of the universal property tells us that

g R[X4][X5] — S ring hom. : { Z/i;(EXS[)jL;.um(hz(f)) = u1(f)

By uniqueness in (1), the first of the two conditions on w5 above is equivalent
to saying that ua(t12(X1)) = s1 and p(612(r)) = u(r), so that we have proven
the following result:

Lemma 1 (Universal property for bivariate polynomial rings). Let R and S
be commutative rings, u: R — S a ring homomorphism and s1,s9 € S. Let
L1, t12 and O19 = 112 0 11 be the canonical inclusion as above. Then

Vr € R, o(015(r)) = u(r)
E”Ulg : R[Xl][XQ] — S ring hom.: U12<L12(X1>> =5
U12(X2) = 52

that is, such that the followmg diagram commutes:

\ V//

R[Xy, Xo] 112(X1) X
Applying Lemma 1 to S = R[X,][X1], u = 091 : R — R[Xs][X4], s1 = X3

and sy = 191(X3), we see that there exists a unique ring homomorphism
¢ RIXq][Xa] — R[Xo][X]
s.t. Vr € R, 012(’[") — 021(7"),
L12(X1> — X1 and
X2 — l21 (XQ)

as desired. Notice that in the text of the exercise the natural inclusions are
omitted for simplicity.
Let us now prove that ¢ is bijective by finding an inverse. Applying Lemma 1
with switched variable names to S = R[X ][ Xs], u = 012, 51 = 112(X;) and
s9 = Xg, we find a unique ring homomorphism
¢« RIXo][X1] — R[X4][X5]
s.t. Vr € R, ‘921(7’) — 912(7’)7
L21(X2> — X2 and
Xl — ng(Xl).



We now prove that ¢ o ¢ = idgjx,j[x,). Looking carefully, we see that

o RIX1][Xs] — R[X1][X5]
sends Vr € R, 015(r) — 612(7),
L12(X1) — L12<X1) and
Xy — Xo.
Again by Lemma 1, there exists precisely one such a ring homomorphism and
since the identity behaves as 1 o ¢, we get 1 o o = idpg[x,][x,). The equality

@ o1 = idp[x,)x,) can be proven analogously. We can then conclude that ¢
is a ring isomorphism.

(b) From now on we will not spell out the canonical immersions ¢ : R < R[X]. By
part (a), there is an isomorphism ¢ : R[X;, X5] — R[X», Xi] = R[X,][X;].
Moreover, there is a unique ring homomorphism evy : R[X5][X;] — R[X)]
which is the identity on R[X;] and sends X; +— 0. Let f = evgo ¢ :
R[X;, X3] — R[X,].

The map evy is surjective has it contains the image of the identity on R[X)]
which is all R[X5]. Hence f is surjective. Moreover,

d
ker(evy) = {f = Zanf ta; € R[Xs], a0 = O}
=0

— {f =X > a;X{ ;€ R[Xz]} = X1 R[Xo][X4].

j=1

Then ker(f) = ¢ (X1 R[X5][X1]) = X1R[X1, X3 because ¢ is an isomor-
phism. By the first isomorphism theorem, f induces an isomorphism

R[X1, X5l /X1 R[X1, Xo] = R[X1, Xo]/ ker(f) — im(f) = R[Xy].
2. Let m be a positive integer. Prove that there exists a ring isomorphism

ZIX)/mZ|X] — (Z/mZ)[X].

Solution: The projection Z — Z/mZ induces a unique ring homomorphism
7 LX] — Z/mZ]X]

sending a € Z to the constant polynomial a+mZ and X ~ X. For every f € Z[X],
the polynomial f € Z/mZ[X] is obtained by reducing each coefficient modulo m.

Let u = Z?:l uw; X" € Z/mZ|X]. For each u; € Z/mZ there exists a (canonical
representative) @; € {0,...,m — 1} such that u; = 4; + mZ. Then for f =
S ;X' € Z[X] we have 7(f) = u. This implies that 7 is a surjective map [It is

3



true in general that if 1 : R — S is a surjective ring homomorphism, the induced
ring homomorphism 1 : R[X] — S[X] sending X — X and R > r > (r) is
surjective as well, since each coefficient of every polynomial in S[X], as well as
X € S[X] is in the image of ¥ in S and hence in the image of ¥ in S[X]].

Moreover,

ker(m) ={f € Z|X] : 7(f) =0} = {f = Zanj € Z[X]: Z(aj +mZ) X’ = O}

= {f = ;X7 € Z[X]: Y (a; + mZ)X) = o}

J=0

d
= {f:Zanj € Z[X] : ¥y, aj—l—mZ:O}
=0

- {f =3 4, Xi € Z[X] 1V m|aj} = {mf : f € ZIX]} = m2Z[X],

=0
Then, by the first isomorphism theorem, the map 7 induces a ring isomorphism

Z[X]/mZ|X] = Z[X]/(ker(r)) > im(r) = (Z/mZ)[X].

3. Let p: R — S be a surjective ring homomorphism.

(a) Prove: if I C R is an ideal, then (/) is an ideal.

(b) Does (a) hold for any (i.e., not necessarily surjective) ring homomorphism?
Solution:
(a) Let 7,7 € p(I) and write j = ¢(i), j/ = (') for some 4,7’ € I. Theni—i' € I
because [ is an ideal, so that
§—3" = eli) = (i) = (i = i) € p(I).

This proves that ¢(I) is an abelian group. Notice that we did not use sur-
jectivity of ¢ for this part.

Now let j = (i) € p(I) for i € I and s € S. By surjectivity of ¢, we can
write s = () for some r € R. Then ir € I since I is an ideal, so that

js = ¢(1)p(r) = ¢(ir) € p(I).

Altogether, this proves that ¢(/) is an ideal.

(b) No, it does not. For instance, consider the immersion Z < Q. The ideal 2Z is
mapped to 2Z C Q, which is not an ideal, since for example 227! =1 & 27Z.
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4. Which of the following ideals are principal? Prove that they are not or find a
generator.

(a)
(b)

(c)
(d)
(*e)

(88,274)Z C Z;

(X, Y)C[X,Y] C C[X,Y] (Hint: Suppose f is a generator. Look at the
degree in X and Y of f);

(X, 2)Z[X] € Z[X];
(20,1 —14)Z[i] C Z[i] (Hint: Assignment 2, Exercise 5(b));
(X,2)Z/AZ[X] C Z/AZ[X] (Hint: Exercise 3).

Solution:

(a)

As seen in class, every ideal in Z is principal. Moreover, (88,274)Z is gener-
ated by gcd(88,274) which can be obtained with the Euclidean division:

274 =3-88+10

88 =8-10+8
10=1-8+42
8=4-2

Hence (88,274)Z = 27Z. Notice that the Bezout identity obtained by the
Euclidean division, i.e. 2 = 9 - 274 — 28 - 88, proves the harder inclusion
(88,274)Z 2 27.

We prove that (X, Y)C[X, Y] is not a principal ideal in C[X, Y]. Since C is an
integral domain, the total degree of a product of polynomials f, g € C[X, Y]
is the sum of their total degrees. This can be checked by noticing that the
total degree of f € C[X,Y] can be defined as the degree of the polynomial
7(f) € C[X], where 7 is the unique ring homomorphism C[X,Y] — C[X]
extending idc(x] and sending ¥ +— X.

Suppose that (X, Y)C[X,Y] = fC[X,Y]. Then f divides X, so that deg(f) <
1. Moreover, f € (X,Y)C[X,Y] implies that f = X f1+Y f5 for some fi, f> €
C[X, Y], so that f has trivial constant term. Since f # 0 (as (X,Y)C[X, Y]
is non-trivial), the only possibility is that f = aX + bY for some (a,b) €
C2~.{(0,0)}. Since X = fg; and Y = fg, for some gy, g» € C[X,Y], by degree
reasons both g; and g, must be constants. The equality X = fg; implies that
b = 0, whereas Y = fgo implies that a = 0, giving a contradiction. Hence
(X,Y)C[X,Y] is not a principal ideal.

We prove that (X, 2)Z[X] is not a principal ideal in Z[X, 2].

Suppose that (X, 2)Z[X]| = fZ[X] for some f € Z[X]. Since Z is an integral
domain, the degree is additive. Then f|2 implies that f is constant. The
only possibilities are f = +1 and f = +2. Since f = 2gy + X g; for some



9o, 1 € Z[X], we see that f # £1, so that the only possibility is that f = +2
and (X, 2)Z[X] = 2Z[X] = —2Z[X]. But 2 1 X, because multiples of 2 are
polynomials containing even coefficients only, which is a contradiction.

By Assignment 2, Exercise 3, we can perform Euclidean division on Z[i] and
this allows us to find a greatest common divisor.

We first divide 2i by 1 — i, as |2i| = 2 > v/2 = |1 — i|. Notice that

20 2i(141i)  2i—2
1—7  1—42 1-—42

—i—1¢e i,

so that 1 — ¢ is already the greatest common divisor. More simply, 2i €
(1 —2)Z]i], so that (2i,1 —1)Z[i] = (1 — 4)Z][i] and it is a principal ideal.

We want to prove that the given ideal is not principal. Since Z/47Z is not a
domain, we cannot use additivity of the degree on products.

In the notation of Exercise 3, one can prove that if I = (rq,...,7y), then
o(I) = (¢(r1),...,¢(r))S. Indeed, the elements p(r;) lay in ¢(I) by def-
inition and so does the ideal they generate since ¢(I) is an ideal in S by
surjectivity of ¢ (here we are using that if an ideal contains some elements,
then it contains the ideal they generate, which follows immediately from Ex-
ercise 7), whereas any element of ¢(I) can be written as y = @(Z?Zl AT5)

for some \; € R, so that y = Zle ©(Aj)p(r;) € (p(r1), ..., eo(ry))S.
Consider now the unique ring homomorphism p : Z/4Z[X| — Z/27Z[X]
which sends X — X and reduces modulo 4 the coefficients. Let I =
(X,2)2/47|X]. Then p(I) = (X,0)Z/2Z|X]| = XZ/2Z|X]. Suppose by
contradiction that I = fZ/4Z[X] for some f € Z/4Z[X]. Then p(I) =
p(f)Z/AZ[X]. Then X|p(f) and p(f)|X which means that f = uX for some
unit u € (Z/2Z[X])* = {1} since Z/2Z is an integral domain (Assignment
3, Exercise 2). Hence p(f) = X so that f = X + 2¢ for some g € Z/AZ[X],
which means that

W eZ/AZIX]: f=2+X + X2

Now suppose that fg = 2 for ¢ = ag + a; X + X? - h € Z/4Z[X] where
h € Z/AZ[X] and ag, a1, ay € Z/47. Then

2= fg=2ag+ (201 £ ap)X + X?*(+a, +h + 1)

implies that 2ag = 2, which is true for ap = +1, and 2a; + a9 = 0, hence
2a; £ 1 = 0 which implies that 1 = —2ay, impossible in Z/47Z. This is a
contradiction, so that (2, X)Z/4Z[X] is not a principal ideal in Z/47Z[X].

Give an example of a commutative ring R with nonzero ideals I and J such
that 7N J = {0}.



(b) Prove: if I and J are nonzero ideals in a domain R, then I N J # {0}.

Solution:

(a) As part (b) suggests, we need to look at a ring which is not an integral
domain and which is big enough to contain two non-trivial ideals with zero
intersection. An easy example is R = Z/67Z, which contains the ideals 27 /6Z
and 3Z/6Z.

Another example is Z x 7Z, the operations being defined componentwise: as
shown in Exercise 6(b), the subsets 0 x Z and Z x 0 are ideals. Clearly, they
have trivial intersection.

(b) We prove the statement by contraposition. Suppose I, J are non-trivial ideals
in a commutative ring R and that INJ = {0}. Let ¢ € I~{0} and j € J~{0}.
Since both I and J are ideals, we have 15 € I N J = 0, so that ¢j = 0 and
1, ) are non-trivial zero-divisors, so that R is not an integral domain, proving
the desired statement.

6. Let Ry, Ry be two commutative rings.

(a) Prove that the set Ry X Ry, endowed with componentwise sum and multipli-
cation, is a commutative ring.

(b) Prove that R; x {0} is an ideal in R; x Ry and that there is an isomorphism
(Ry X Ry)/(Ry x {0}) — Ry.
(¢) Find all ring homomorphisms Z x Z — Z.
Solution:

(a) Both sum and multiplication on R; X Ry are associative and commutative,
since they are defined component-wise and both properties hold in R; and
R2.

The element (Og,,0g,) (resp., (1g,,1g,)) is a neutral element for the sum
(resp., the multiplication), again because the operations are defined component-
wise. Each element (ry,75) € Ry X Ry is seen to have inverse element with
respect to the sum (—rq, —1r3) € R.

As an example for all the above arguments, we conclude with an explicit
check of distributivity. Let r1, s1,t; € Ry and 79, s9,t5 € Ry. Then

(r1,7m2) - ((51,82) + (t1,t2) ) = (r1,72) - (51 + t1, 52 + t2) )

= (Tl(Sl + tl),TQ(SQ + tg)) = (7“151 + T’ltl, 959 + ’f’gtg)
= (r151,7282) + (r1t1,m2ts) = (r1,72) - (51, 82) + (r1,72) - (t1,t2).

Hence R; X R,, endowed with component-wise sum and multiplication, is a
commutative ring.



7.

(b)

(a)
(b)

(a)

Consider the projection map 7 : Ry X Ry — Ry sending (r1,72) — 9. Since
the operations on R; x Ry are defined component-wise, 7 respects sum and
multiplication. Moreover, m(1g,xg,) = m((1,1)) = 1. This implies that 7 is
a ring homomorphism. Notice that

ker(m) = {(r1,72) € Ry X Ry : 179 =0} = Ry x {0}

is an ideal. As 7 is surjective (for each s € Ry, m(0,s) = s), the first
isomorphism theorem gives an isomorphism

(Ry % Ry)/(Ry x {0}) = (R x Ry)/ker(r) = im(r) = Rs.

Let f : Z x Z — Z be a ring homomorphism. Let e = (1,0) € Z — Z.
Notice that 1 —e = (1,1) —(1,0) = (0, 1), so that every element (a,b) € Z x Z
can be decomposed as

(a,b)=a-e+b-(1—e)=b-1g+(a—0)-e
and this means that
f((a,b)) =b+(a—0b)f(e). (2)

Since e is idempotent, that is, e = e, we obtain an equality f(e)? = f(e?) =
f(e) € Z, which holds only for f(e) € {0,1}. For f(e) = 0, (2) reads
f((a,b)) = b, whereas for f(e) =1 it reads f((a,b)) = a. Those are the two
projections on the first and second coordinate, that are proven as in (b) to
be ring homomorphisms. Hence there are precisely two ring homomorphisms
7. x 4. — 7., that is, the two projections.

Let (Ij)jex be a family of ideals in R. Prove: (;_x I; is an ideal in R.
Let {z1,...,z5} C R. Prove that

(x1,...,zp)R = ﬂ I

ICR ideal
s.t. Vica; €1

Solution:

Let u,v € ﬂjGX I;, meaning that u,v € I; for each j € X. Then, for each
j € X, u—wv € Ijsince I; is an ideal, implying that u — v € (\;cx ;-

Now let r € R and u € ﬂjeX I;. Then, for each j € X, ru € I; since [; is an
ideal, so that ru € ﬂjex I;. We can hence conclude that ﬂjex I; is an ideal.



8.

9.

(b) We prove the two inclusions.
The elements of (x1,...,z,)R have the form 22;1 rjxz; for r; € R, so that

for r € R we obtain TZ?:I rir; = Z?:1(7”Tj)xj € (z1,...,xp)R. Moreover,
if Z?zl rix; is another element of this set, then
h
Z it — Z rivg =Y (r;—ri)r; € (v1,...,25)R.
j=1 j=1 j=1
Hence (x1,...,2,)R is an ideal. Since for each k=1,... h
h
T = Z 6jkrj7
j=1
the ideal (z1,...,z,)R contains all the elements 7y, so that it appears itself
in the intersection () rcridear /. This provers the inclusion “27.
s.t. Vica, €1

Now let I C R be an ideal containing all the elements x;. Then, for each
(rj)jex € R, we have ryxz; € I, so that ), ;r;a;, because I is an ideal.
Hence (xy,...,2,)R C I. By arbitrarity of I, (z1,...,z,)R is contained in
N 1ckridear I and we are done.

s.t. Vicx, el

Let R # 0 be a commutative ring whose only ideals are {0} and R. Prove that R
is a field.

Solution: Let x € R~ {0}. Then 0 # = € xR, so that xR # 0 and by hypothesis
xR = R. This implies that 1 € R, i.e., there exists r € R such that zr = rxz =1,
so that x € R*. Hence R* = R~ {0} and R is a field.

(a) Let ¢ : R — S be a ring homomorphism and I C R and J C S ideals such
that ¢(I) C J. Prove that there exists a unique morphism @ : R/I — S/J
such that the following diagram

R—> 5
A
R/I % S/J,
where pr and pg are canonical projections, commutes, i.e., P o pr = pg © ®.
(b) What can you say about @ when I = o~ 1(J)?
Solution:
() Let = ps o p. Then $(I) = ps((1)) € ps(J) = {0/}, s0 that I C ker(®)

and by the statement of the First Isomorphism Theorem given in class we
obtain that there exists a unique ring homomorphism @ : R/I — S/J such

that @ opr =9 = psop.



(b) Since ¢~'(J) = ¢~ (s ({0s/s})) = ¥ ({0sys}) = ker(v), if I = o~'(J),
then the first isomorphism theorem tells us that @ is injective.
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