
D-MATH Algebra I HS17
Prof. Emmanuel Kowalski

Solution 7

Groups, Subgroups, Group Homomorphism

1. Prove that the map f : R −→ C×, defined by f(x) := eix is a group homomor-
phism. Find its kernel and its image.

Solution: A basic property of the exponential of complex numbers tells us that
ei(x+y) = eixeiy, so that f is a group homomorphism. Since eix = cos(x) + i sin(x),
we deduce that eix = 1 if and only if cos(x) = 1 and sin(x) = 0, i.e., if and only
if x ∈ 2πZ. This means that ker(f) = 2πZ. As concerns the image, notice that
eix = cos(x) + i sin(x), for x ∈ R, is a parametrization of the unit circle of the
complex plane, so that

Im(f) = {a+ ib ∈ C such that a2 + b2 = 1}.

2. Find the order of the following elements:

(a) i, ei
√
3π and e

2πi
17 in the group C×;

(b)

(
1 1
0 1

)
and

(
2 3
1 4

)
in the group GL2(C);

(c) 1, 2 and 3 in F×17.

Solution:

(a) By definition, i2 = −1 6= 1, so that i4 = 1, as i3 = −i 6= 1, we can conclude
that i has order 4. For r ∈ R, we know that eir = 1 if and only if r = 2πk
for some k ∈ Z, as noticed in the Solution to Exercise 1. Let n ∈ Z>0 and
consider

wn := (ei
√
3π)n = ei

√
3nπ and zn := (e

2πi
17 )n = e

2πi
17
n.

The exponent in the former complex number cannot be of the form 2πik for
some integer k, because an equality 2πik = i

√
3πq implies that

√
3 ∈ Q,

which is false1. This implies that ei
√
3π has infinite order. On the other hand,

it is clear that z17 = 1, and that 2πi
17
n = 2πik for some integer k if and only

if 17|n, so that the order of e
2πi
17 is 17.

1Suppose that
√
3 ∈ Q and write

√
3 = a

b for some a, b ∈ Z. Then a2 = 3b2. Looking at the
decomposition into prime numbers of the two sides, we see that 3 appears an even number of times on
the left and an odd number of times of the right, contradiction.
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(b) Let A =

(
1 1
0 1

)
and B =

(
2 3
1 4

)
. By induction, one can prove that

An =

(
1 n
0 1

)
. This implies that An 6= Idn for n ∈ Z>0, so that A has

infinite order. The matrix B has infinite order as well, because det(B) = 5,
so that det(Bn) = 5n as seen in Linear Algebra, so that Bn 6= Id2 for n > 0
because det(Id2) = 1.

(c) Since 1 is the neutral element of F×17, it has order 1 by definition. For the
other two elements, we consider some of their powers modulo 17.

22 = 4, 23 = 8, 24 = 16 = −1, 28 = (−1)2 = 1.

Notice that for k ∈ {5, 6, 7}, we can say for sure that 2k 6= 1, because else
28−k = 28 · (2k)−1 = 1, which contradicts the above computed lower powers
of 2. This implies that ordF×

17
(2) = 8.

32 = 9, 33 = 27 = 10, 34 = 30 = 13 = −4, 38 = 16 = −1, 316 = 1.

Notice that for h ∈ {12, 13, 14, 15} we can write (3h)−1 = 316−h 6= −1 because
of computations above. Moreover, for h ∈ {1, 2, 3, 4, 5, 6, 7}, there is an
equality 38+k = 38·3k = −3k, from which we deduce that 3` 6= 1 for 4 < ` < 12
as well, so that ordF×

17
(3) = 16.

3. Let p be a prime number. Show that the cardinality of GL2(Fp) is equal the
number of ordered bases (e1, e2) of F2

p as a F-vector space, and that

Card(GL2(Fp)) = (p− 1)2p(p+ 1).

Solution: Let b1 = (1, 0), b2 = (0, 1) be the canonical Fp-basis of F2
p. An automor-

phism ϕ of F2
p is uniquely determined by the images of b1 and b2. Let ei = ϕ(bi)

for i = 1, 2. Then (e1, e2) must be a basis of F2
p as well because those two vec-

tors generate the image which coincides with F2
p. This proves the first part of the

statement. The number of Fp-bases of F2
p is (p2 − 1)(p2 − p, because e1 can be

freely chosen among the p2− 1 non-zero vectors in F2
p and then e2 can be taken to

be any vector which is not one of the p multiples of e1. Hence

Card(GL2(Fp)) = (p2 − 1)(p2 − p) = (p− 1)2p(p+ 1).

4. Let C be a category and A,B isomorphic objects of C. Show that the groups
AutC(A) and AutC(B) are isomorphic.

Solution: Let f ∈ HomC(A,B) be an isomorphism with inverse g ∈ HomC(B,A).
We can define maps

ϕ : HomC(A,A) −→ HomC(B,B)

σ 7−→ f ◦ σ ◦ g.
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and

ψ : HomC(B,B) −→ HomC(A,A)

τ 7−→ g ◦ τ ◦ f.

Since f and g are inverses one another, we notice that for each τ ∈ HomC(B,B)
and σ ∈ HomC(A,A) there are equalities

(ϕ ◦ ψ)(τ) = f(gτf)g = (fg)τ(fg) = τ

(ψ ◦ ϕ)(σ) = g(fσg)f = (gf)σ(gf) = σ

so that ψ is an inverse of ϕ. Moreover, ϕ respects composition of morphisms.
Indeed, for any σ, σ′ ∈ HomC(A,A),

ϕ(σ ◦ σ′) = fσσ′g = fσ(gf)σ′g = (fσg)(fσ′g) = ϕ(σ)ϕ(σ′).

If σ is an automorphism of A with inverse σ−1, then (fσg)(fσ−1g) = fσσ−1g =
fg = idB, so that ϕ(σ) is an automorphism of B. Conversely if ϕ(σ) has inverse
τ , then σ = gϕ(σ)f can be seen to have inverse gτf , so that it is invertible as well.

Altogether, this proves that ϕ restrict to a group isomorphism

ϕ̄ : AutC(A)
∼−→ AutC(B).

5. Let G = GL2(F2) and consider the set X = (F2)
2r{(0, 0)}. Define H := Sym(X).

(a) Prove that

ϕ : G −→ H

α 7−→ (P 7→ α(P ))

is a well-defined group homomorphism.

(b) Show that ϕ is an group isomorphism

(c) Deduce that G ∼= S3.

Solution:

(a) For each α ∈ G = GL2(F2), we know that α((0, 0)) = (0, 0) and since α is
a bijection of (F2)

2, it must restrict to a bijection of X, sending P 7→ α(P ).
Hence the map ϕ is well-defined. Clearly, the composition of the restrictions
is the restriction of the composition, so that ϕ is a group homomorphism.

(b) The behavior of α ∈ G is completely determined by its restriction to X,
because as noticed above α((0, 0)) = (0, 0). Hence ϕ is injective. Notice
that |X| = 3, so that |H| = 3! = 6, whereas by Exercise 3 we know that
|G| = (2 − 1)2 · 2 · 3 = 6, so that the map ϕ is also surjective. This allows
us to conclude that ϕ is a group isomorphism, since the inverse of a bijective
group homomorphism is a group homomorphism as well (it can be proven in
an analog way to how it was done for rings in Assignment 2, Exercise 4).
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(c) By part (b), G ∼= H. Since |X| = 3, there is a bijection (that is, an iso-
morphism of sets) X ∼= {1, 2, 3} and by Exercise 4 we can conclude that
H := AutSets(X) ∼== AutSets({1, 2, 3}) =: S3, so that G ∼= S3 as can be seen
by composing the two isomorphisms with H.

6. Let p be a prime number. Consider the set

G :=

{(
a b
0 c

)
∈ GL2(Fp)

}
⊂ GL2(Fp).

(a) Show that G is a subgroup of GL2(Fp).
(b) Prove that the map

ϕ : G −→ F×p × F×p(
a b
0 c

)
7−→ (a, c)

is a group homomorphism, where F×p × F×p is endowed with componentwise
multiplication, and that ker(ϕ) ∼= (Fp,+).

(c) For p = 3, determine the partition of G into its conjugacy classes.

Solution:

(a) The given subset G contains the identity matrix, so it is not empty. Moreover,
it is closed under multiplication because the lower-left entry in the product
of two matrices of the given shape is zero. Finally, the matrix(

a b
0 c

)−1
=

1

ac

(
c −b
0 a

)
=

(
1/a −b/ac
0 1/c

)
still lies in G, so that G is a subgroup of GL2(Fp).

(b) Notice that F×p × F×p is a group because the axioms hold in each component
and the operation is indeed defined component-wise. The neutral element is
(1, 1).

Given two matrices

(
a b
0 c

)
,

(
a′ b′

0 c′

)
∈ G, we notice that(

a b
0 c

)(
a′ b′

0 c′

)
=

(
aa′ ab′ + bc′

0 cc′

)
,

so that

ϕ

((
a b
0 c

)(
a′ b′

0 c′

))
= (aa′, cc′)

= (a, c)(a′, c′) = ϕ

(
a b
0 c

)
ϕ

(
a′ b′

0 c′

)
.
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We see that ker(ϕ) consists of all the matrices of G with 1 on the diagonal.
Notice that the upper-right element can be freely chosen as the determinant

of a matrix of the form

(
1 b
0 1

)
is always 1 6= 0. This proves that the

following is a well-defined bijective map:

ξ : Fp −→ ker(ϕ)

b 7−→
(

1 b
0 1

)
It is also immediate to check that ξ is a group homomorphism, since for all
b, b′ ∈ Fp we can write

ξ(b+ b′) =

(
1 b+ b′

0 1

)
=

(
1 b
0 1

)(
1 b′

0 1

)
= ξ(b) · ξ(b′).

Hence ξ is a bijective group homomorphism and as such it is a group isomor-
phism (see Exercise 5(b)).

(c) We will write the coefficients in F3 as 1, 0 and −1.

For each x ∈ G, denote by C(x) the conjugation class of x, that is, the set
{gxg−1 : g ∈ G} of conjugates of x. Notice that the equality gxg−1 = x is
equivalent to gx = xg, so that we have equivalent conditions

C(x) = {x} ⇐⇒ ∀g ∈ G, gxg−1 = x ⇐⇒ ∀g ∈ G, gx = xg ⇐⇒ x ∈ Z(G)

meaning that the conjugacy classes of precisely one element are those con-
sisting of one element of the center. Hence we start by computing Z(G).

Suppose that A =

(
a b
0 c

)
∈ Z(G). Then, in particular, A commutes with(

1 1
0 1

)
and with

(
1 0
0 −1

)
, which implies that

(
a b+ c
0 c

)
=

(
1 1
0 1

)
A = A

(
1 1
0 1

)
=

(
a a+ b
0 c

)
(
a b
0 −c

)
=

(
1 0
0 −1

)
A = A

(
1 0
0 −1

)
=

(
a −b
0 −c

)
and so a = c and b = −b, which is equivalent to b = 2b and hence b = 0. So

the center can only contain scalar matrices

(
a 0
0 a

)
, which are easily seen

to commute with any matrix in G. Hence

Z(G) =

{(
1 0
0 1

)
,

(
−1 0
0 −1

)}
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Now we look at the other elements of G. We know that the determinant is
constant on a single conjugation class, so that, so we can already divide the
elements of GrZ(G) by determinant (= ±1). Moreover, if two matrices are
conjugated in G, then they are conjugated in GL2(Fp), i.e., they are similar,
and as seen in Linear Algebra they have the same eigenvalues, so we can
already separate matrices with different eigenvalues as well.

• Matrices in Gr Z(G) with determinant 1 and eigenvalues (1, 1) are(
1 1
0 1

)
,

(
1 −1
0 1

)
.

We notice that

(
1 −1
0 1

)−1
=

(
1 1
0 1

)
so that the two matrices are

conjugated if and only if there exists a matrix C =

(
a b
0 c

)
such that

C

(
1 1
0 1

)
C−1 =

(
1 1
0 1

)−1
, which is equivalent to the condition(

1 1
0 1

)
C

(
1 1
0 1

)
= C which is seen to hold every time a+c = 0, for

example for C =

(
1 0
0 −1

)
. Hence the two matrices are in the same

conjugacy class.

• Matrices in Gr Z(G) with determinant 1 and eigenvalues (−1,−1) are(
−1 1
0 −1

)
,

(
−1 −1
0 −1

)
.

These two matrices are the opposites of the one in the previous case, so
that changing sign on both sides of an equality expressing that the two
matrices in the previous case are conjugated in G, we see that the two
given matrices are conjugated in G, too.

• Matrices in Gr Z(G) with determinant −1 are(
1 0
0 −1

)
,

(
1 1
0 −1

)
,

(
1 −1
0 −1

)
,(

−1 0
0 1

)
,

(
−1 1
0 1

)
,

(
−1 −1
0 1

)
.

We first realise that any matrix of the form

(
1 x
0 −1

)
cannot be conju-

gated to any matrix of the form

(
−1 y
0 1

)
. Indeed, suppose that there
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exists C =

(
a b
0 c

)
∈ G such that C

(
1 x
0 −1

)
=

(
−1 y
0 1

)
C. A

comparison of the coefficients on the diagonal tells us that a = −a and
c = −c, i.e., a = c = 0, contradiction with C ∈ G.
On the other hand, matrices with the same diagonal are conjugated:

the equality C

(
1 x
0 −1

)
=

(
1 y
0 −1

)
C for C =

(
a b
0 c

)
∈ G is

equivalent to asking that ax − b = b + cy, that is, b = cy − ax. Hence

one can choose C =

(
−1 x+ y
0 1

)
. By changing sign on both sides,

the same matrix C gives an equality C

(
−1 −x
0 1

)
=

(
−1 −y
0 1

)
C

for each x and y.

In conclusion the conjugation classes of G are:{(
1 0
0 1

)}
,

{(
−1 0
0 −1

)}
,{(

1 1
0 1

)
,

(
1 −1
0 1

)}
,

{(
−1 1
0 −1

)
,

(
−1 −1
0 −1

)}
,{(

1 0
0 −1

)
,

(
1 1
0 −1

)
,

(
1 −1
0 −1

)}
,{(

−1 0
0 1

)
,

(
−1 1
0 1

)
,

(
−1 −1
0 1

)}
.

7. Let G = GL2(Q) and consider its elements A =

(
0 −1
1 0

)
and B =

(
0 1
−1 1

)
.

Show that A4 = Id2 = B6, but that (AB)n 6= Id2 for each n > 1.

Solution: We compute

A2 =

(
−1 0
0 −1

)
,

which clearly implies that A4 = (A2)2 = Id2. Moreover,

B2 =

(
−1 1
−1 0

)
,

so that

B3 =

(
−1 1
−1 0

)(
0 1
−1 1

)
=

(
−1 0
0 −1

)
= A2

and B6 = Id2. On the other hand,

AB =

(
1 −1
0 1

)
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tells us by induction that

(AB)n =

(
1 −n
0 1

)
,

so that (AB)n 6= Id2 for each n > 1.
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