Solution 10

GROUP ACTIONS, THE SYMMETRIC GROUP

- 1. Let p be a prime number and T the set of one-dimensional \mathbb{F}_p -subspaces in $(\mathbb{F}_p)^{n+1}$, i.e., of lines through the origin in $(\mathbb{F}_p)^{n+1}$.
 - (a) Show that $GL_{n+1}(\mathbb{F}_p)$ acts transitively on T by $g \cdot L = g(L)$.
 - (b) Compute the stabilizer of the line $L_0 := \langle (1, 0, \dots, 0) \rangle \in T$.
 - (c) Compute Card(T). [Hint: T has the same number of elements of the set of orbits of \mathbb{F}_p^{\times} acting on $(\mathbb{F}_p)^{n+1} \setminus \{0\}$

Solution:

(a) In the following, all 'lines' are supposed to be line through the origin. Under the identification $\mathrm{GL}_{n+1}(\mathbb{F}_p) \cong \mathrm{Aut}_{\mathbb{F}_p}(\mathbb{F}_p^{n+1})$, in the statement $g \cdot L$ is defined as the image of the line L under g, which we know is again a line.

The axioms of group action are trivially checked.

A line in $GL_{n+1}(\mathbb{F}_p)$ can be determined by a non-zero vector. Since any nonzero vector v_0 of \mathbb{F}_p^{n+1} can be completed to a basis, there exists for each $v_0 \neq 0$ an automorphism of the \mathbb{F}_p -vector space \mathbb{F}_p^{n+1} sending $(1,0,\ldots,0)\mapsto v_0$ (in other words, the action of $\mathrm{GL}_{n+1}(\mathbb{F}_p)$ on \mathbb{F}_p^{n+1} is transitive). Such an automorphism sends the line L_0 generated by $(1,0,\ldots,0)$ to the one generated by v_0 , which is a arbitrary. Hence the $\mathrm{GL}_{n+1}(\mathbb{F}_p)$ -orbit of L_0 is T and the $\mathrm{GL}_{n+1}(\mathbb{F}_p)$ -action on T is transitive.

(b) An automorphism of \mathbb{F}_p^{n+1} sends $L_0 \mapsto L_0$ if and only if it sends $(1,0,\ldots,0)$ to $(\lambda, 0, \dots, 0)$ for $\lambda \in \mathbb{F}_p$. Hence

$$\operatorname{Stab}(L_0) = \left\{ \begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix} \in \operatorname{GL}_{n+1}(\mathbb{F}_p) \right\}.$$

(c) One can use the hint to obtain that

$$Card(T) = \frac{p^{n+1} - 1}{p-1} = 1 + p + \dots + p^n.$$

Alternatively, one can use the orbit stabilizer theorem, which tells us that

$$T \cong \operatorname{GL}_{n+1}(\mathbb{F}_p)/\operatorname{Stab}(L_0).$$

We notice that $\operatorname{Card}(\operatorname{Stab}(L_0)) = (p-1)p^n\operatorname{Card}(\operatorname{GL}_n(\mathbb{F}_p))$, since the upper left entry can be any element of \mathbb{F}_p^{\times} , the remaining n elements in the first row are arbitrary elements of \mathbb{F}_p and the remaining element for an invertible $n \times n$ matrix. For the cardinality of $\operatorname{GL}_n(\mathbb{F}_p)$, one can generalize the counting of bases in Assignment 7, Exercise 3 and obtain

$$Card(GL_n(\mathbb{F}_p)) = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}).$$

Altogether, this lets us compute

$$\operatorname{Card}(T) = \frac{\operatorname{Card}(\operatorname{GL}_{n+1}(\mathbb{F}_p))}{(p-1)p^n\operatorname{Card}(\operatorname{GL}_n(\mathbb{F}_p))}$$
$$= \frac{(p^{n+1}-1)(p^{n+1}-p)\cdots(p^{n+1}-p^n)}{(p-1)p^n(p^n-1)(p^n-p)\cdots(p^n-p^{n-1})} = \frac{p^{n+1}-1}{p-1}.$$

2. Consider the standard action of $GL_2(\mathbb{R})$ on \mathbb{R}^2 . Determine the orbits of (1,0) under each of the subgroups

$$H_1 := \left\{ \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right) \right\}, \ H_2 := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \right\}, \ H_3 := \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) \right\}, \ H_4 := SO_2(\mathbb{R}).$$

Solution: This is done by looking at the images of (1,0) under the matrices of the given forms, which coincides with the first column of the matrix.

- Since the first column of $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for all t, the H_1 -orbit of (1,0) is $\{(1,0)\}$.
- The matrices in H_2 and H_3 have all first column equal to $\begin{pmatrix} a \\ 0 \end{pmatrix}$ for $a \in \mathbb{R}^{\times}$. Hence the H_2 -orbit and the H_3 -orbit of (1,0) coincide and they are given by $\{(a,0):\}$, the horizontal line through the origin, removed of the origin.
- Since a generic element of $SO_2(\mathbb{R})$ is a matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ with $\theta \in \mathbb{R}$, we can conclude that the H_4 -orbit of (1,0) is $\{(\cos \theta, \sin \theta) \in \mathbb{R}^2\} = \{(a,b) \in \mathbb{R}^2 : a^2 + b^2 = 1\}$.
- 3. Let G be a group acting on a set T. Fix $x_0 \in T$. Let $H \subset G$ be a subgroup and define X to be the H-orbit of x_0 . Show that, for $g \in G$,

$$g \cdot X = \{g \cdot x : x \in X\}$$

is the gHg^{-1} -orbit of $g \cdot x_0$.

Solution: The qHq^{-1} -orbit of $q \cdot x_0$ is

$$(gHg^{-1}) \cdot (g \cdot x_0) = \{(ghg^{-1}) \cdot (g \cdot x_0) : h \in H\} = \{g \cdot (h \cdot x_0) : h \in H\} = g \cdot X,$$

where the last equality is due to the fact that the H-orbit of x_0 is, by definition, the set of elements $h \cdot x_0$ with $h \in H$.

4. Let $\sigma \in S_n$. Denote by $F(\sigma)$ the number of points fixed by σ . Prove that the following formulas hold:

$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) = 1$$
$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma)^2 = 2$$

[Hint: Notice that $F(\sigma) = \sum_{x:\sigma(x)=x} 1$. Invert the order of summation.]

Solution: As suggested by the hint, we see that $F(\sigma) = \sum_{x:\sigma(x)=x} 1$. Then

$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) = \frac{1}{n!} \sum_{\sigma \in S_n} \sum_{x: \sigma(x) = x} 1 = \frac{1}{n!} \sum_{x=1}^n \sum_{\sigma \in S_n: \sigma(x) = x} 1 = \frac{1}{n!} \sum_{x=1}^n (n-1)! = \frac{1}{n} \cdot n = 1.$$

We have used the fact that $\operatorname{Card}(\operatorname{Stab}_{S_n}(x)) = (n-1)!$, since a permutation $\sigma \in S_n$ fixing x is given an arbitrary partition of $\{1, \ldots, n\} \setminus \{x\}$. For the average of $(F(\sigma))^2$, we first look at the product of sums

$$(F(\sigma))^2 = \left(\sum_{x:\sigma(x)=x} 1\right) \left(\sum_{y:\sigma(x)=x} 1\right) = \sum_{\substack{x,y \in \{1,\dots,n\} \\ \sigma(x)=x \\ \sigma(y)=y}} 1.$$

Then, switching the summation order,

$$\frac{1}{n!} \sum_{\sigma \in S_n} (F(\sigma))^2 = \frac{1}{n!} \sum_{\substack{\sigma \in S_n \\ \sigma(x) = x \\ \sigma(y) = y}} \sum_{\substack{1 = \frac{1}{n!} \\ 1 = \frac{1}{n!}} \sum_{\substack{x,y \in \{1,\dots,n\} \\ \sigma(x) = x \\ \sigma(y) = y}} \sum_{\substack{\sigma \in S_n \\ \sigma(y) = y \\ 0 = y}} 1 + \sum_{\substack{x \in \{1,\dots,n\} \\ \sigma(x) = x \\ \sigma(y) = y}} \sum_{\substack{\sigma \in S_n \\ \sigma(x) = x \\ \sigma(y) = y}} 1 \right) = \frac{1}{n!} \left(n \cdot (n-1) \cdot (n-2)! + n \cdot (n-1)! \right) = 2$$

5. For each conjugacy class S_6 , write down a representative and the cardinality of the class.

Solution: As seen in class, the elements in a conjugacy class of S_6 are all those with a specific cyclic type, that is, a specific length of the cycles appearing in their unique decomposition into disjoint cycles, where we also include 1-cycles in order to obtain an unordered partition of n. Hence the conjugacy classes of S_6 are given by partitions of 6, which we list in an order for which their number of summands increases. In a single partition the order of the summands is irrelevand, so we sum them in decreasing order. This gives:

- 6 = 6, the trivial partition. We obtain the class of 6-cycles, [(123456)]. The number of elements is the number of 6-cycles in S_6 . Notice that such a 6-cycle can always be written as $(1 a_1 a_2 a_3 a_4 a_5)$, and that different choices of $(a_1, a_2, a_3, a_4, a_5)$ lead to different 6-cycles. Hence there are 5! = 120 elements in this class.
- 6 = 5 + 1. This corresponds to the class of 5-cycles, [(1 2 3 4 5)]. The number of 5-cycles in S_6 can be easily determined. There are 6 subsets of 5 elements in $\{1, \ldots, 6\}$. For each of those, we can write any 5-cycle with first element equal to the minimal one, and freely choose the remaining 4 elements. Hence there are $6 \cdot 4! = 144$ elements in this class.
- 6 = 4 + 2. This corresponds to the class [(12)(3456)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\binom{6}{2} = 15$ ways to choose 2 elements in $\{1, \ldots, 6\}$. For each of those, the 2-cycle is uniquely determined, while the 4-cycle can be chosen with first element equal to the minimum of the four elements involved, and the remaining 3 elements freely chosen, giving 3! possibilities. Hence this class contains $15 \cdot 3! = 90$ elements.
- 6 = 3 + 3. This corresponds to the class $[(1 \ 2 \ 3)(4 \ 5 \ 6)]$. In order to determine how many elements with this cycle type are there, we first notice that there are $\frac{1}{2!}\binom{6}{3} = 10$ ways to choose 2 disjoint triples of elements (without caring about the order of the two couples) in $\{1, \ldots, 6\}$. The two subsets of three elements can be independently put in one of the 2 distinct three cycles, so that we obtain $10 \cdot 2 \cdot 2 = 40$ elements in this conjugacy class.
- 6 = 4 + 1 + 1. This corresponds to the class of 4-cycles, $[(1\,2\,3\,4)]$. There are $\binom{6}{4} = 15$ subsets of 4 elements in $\{1,\ldots,6\}$. For each of those, as already seen above, there are 3! possible 4-cycles. Hence this class contains $15 \cdot 6 = 90$ elements.
- 6 = 3 + 2 + 1. This corresponds to the class [(123)(45)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\binom{6}{3}\binom{3}{2} = 60$ ways to choose disjoint subsets of 3 and 2 elements in $\{1,\ldots,6\}$. For each of those, the 2-cycle is determined, while for the 3-cycle there are 2 possibilities. Hence we have $60 \cdot 2 = 120$ elements in this conjugacy class.
- 6 = 2 + 2 + 2. This corresponds to the class [(12)(34)(56)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\frac{1}{3!}\binom{6}{2}\binom{4}{2} = 15$ ways to choose 3 disjoint couple of elements in $\{1,\ldots,6\}$ (without caring of the order of the couples). For each of those, the 2-cycles are uniquely determined, so that we have 15 elements in this conjugacy class.
- 6 = 3 + 1 + 1 + 1. This corresponds to the class of 3-cycles, [(1 2 3)]. There are $\binom{6}{3} = 20$ subsets of 3 elements in $\{1, \ldots, 6\}$. For each of those, as already

seen above, there are 2 possible 3-cycles. Hence this class contains $20 \cdot 2 = 40$ elements.

- 6 = 2 + 2 + 1 + 1. This corresponds to the class [(12)(34)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\frac{1}{2!}\binom{6}{2}\binom{4}{2} = 45$ ways to choose two disjoint couple of elements in $\{1,\ldots,6\}$ (without caring of the order of the couples). For each of those, the 2-cycles are uniquely determined, so that we have 45 elements in this conjugacy class.
- 6 = 2 + 1 + 1 + 1 + 1. This corresponds to the class of 2-cycles, [(12)]. There are $\binom{6}{2} = 15$ subsets of 2 elements in $\{1, \ldots, 6\}$. For each of those, the 2-cycle is already determined. Hence this class contains 15 elements.
- 6 = 1 + 1 + 1 + 1 + 1 + 1 + 1. This correspond to the class [id], which consist of 1 element.

We hence found the following conjugacy classes:

partition	representative	cardinality
6 = 6	(123456)	120
6 = 5 + 1	(12345)	144
6 = 4 + 2	(12)(3456)	90
6 = 3 + 3	(123)(456)	40
6 = 4 + 1 + 1	(1234)	90
6 = 3 + 2 + 1	(123)(45)	120
6 = 2 + 2 + 2	(12)(34)(56)	15
6 = 3 + 1 + 1 + 1	(123)	40
6 = 2 + 2 + 1 + 1	(12)(34)	45
6 = 2 + 1 + 1 + 1 + 1	(12)	15
6 = 1 + 1 + 1 + 1 + 1 + 1	id	1

Aliter: In order to compute the cardinalities, one could use the general formula obtained in Exercise 8d), which says that the cardinality of the conjugacy class associated to the partition $6 = k_1 \cdot 1 + k_2 \cdot 2 + \cdots + k_6 \cdot 6$ is $6!/(\prod_{i=1}^6 k_i! i^{k_i})$. For instance,

Card[(123)(456)] =
$$\frac{6!}{2!3^2}$$
 = 4 · 5 · 2 = 40, since $k_i = \begin{cases} 2 & i = 3\\ 0 & i \neq 3 \end{cases}$

6. Let $n \ge 3$. Prove that $[S_n, S_n] = A_n$. [Recall: for a group G, the commutator [G, G] is defined as the subgroup of G generated by $\{aba^{-1}b^{-1} : a, b \in G\}$. See Assignment 8, Exercise 6]

Solution: Consider the signature morphism $\varepsilon: S_n \longrightarrow \{\pm 1\}$. Since $\{\pm 1\}$ is an abelian group, we have $[S_n, S_n] \subset \ker(\varepsilon) = A_n$ as seen in Assignment 8, Exercise 6(d).

Conversely, in order to prove that $A_n \subset [S_n, S_n]$, it is enough to check that $[S_n, S_n]$ contains all 3-cycles, as those are generators of A_n . This is indeed the case, because, as Exercise 6 suggests,

$$(ab)(bc) = (abc),$$

and by the conjugation rules seen in class

$$(bc) = (ac)(ba)(ac)^{-1},$$

so that

$$(abc) = (ab)(ac)(ba)(ac) = (ab)(bc)(ab)(bc) = [(ab), (bc)] \in [S_n, S_n].$$

Aliter: The second inclusion can be proven in another way for $n \ge 5$. Indeed, in this case A_n is simple, so on can observe that $1 \ne [(12), (23)] \in [S_n, S_n] \triangleleft S_n$, so that $\{1\} \ne [S_n, S_n] \triangleleft A_n$ and hence $[S_n, S_n] = A_n$.

7. (a) Prove that S_n is generated by $\{\sigma_i := (i \ i+1), 1 \leq i \leq n-1\}$, and that those generators satisfy the relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
, if $|i - j| \ge 2$
 $(\sigma_i \sigma_{i+1})^3 = \text{id}$, for $1 \le i \le n - 2$.

(b) Let $\tau := (1 \ 2 \dots n)$. Show that S_n is generated by $\{\sigma_1, \tau\}$. [Hint: Express σ_i in terms of σ_1 and τ]

Solution:

(a) First, notice that S_n is generated by $\{(1 \ i) : 2 \le i \le n-1\}$. Indeed, for each $i, j \in \{1, \ldots, j\} \setminus \{1\}$, there is an equality

$$(1 i)(1 j)(1 i) = (i j),$$

so that $\{(1\ i): 2 \leqslant i \leqslant n-1\}$ generates all transpositions, which is enough to generate S_n as seen in class. In order to conclude, it is enough to check for each $2 \leqslant i \leqslant n-1$ that $(1\ i) \in \langle \{\sigma_k: 1 \leqslant k \leqslant n-1\} \rangle$. We do it by induction on i. This is clear for i=2, since $(1\ 2)=\sigma_1$. Suppose that $(1\ i-1) \in \langle \{\sigma_k: 1 \leqslant k \leqslant n-1\} \rangle$. Then

$$(1 i) = \sigma_{i-1}(1 i - 1)\sigma_{i-1}^{-1} \in \langle \{\sigma_k : 1 \leqslant k \leqslant n - 1\} \rangle,$$

which concludes the proof that the elements σ_i generate S_3 .

We observe that σ_i and σ_j are disjoint when |i-j| > 2, so that they commute, while $\sigma_i \sigma_{i+1} = (i \ i+1 \ i+2)$ is a 3-cycle and, as such, it has order 3.

(b) By the conjugation formula seen in class, for each $1 \le k \le n-1$,

$$\tau^{k-1}(12)\tau^{-k+1} = (k k + 1) = \sigma_k,$$

so that $\langle \{\sigma_1, \tau\} \rangle$ contains all the elements σ_k and by part (a) it coincides with S_3 .

8. Let $n \ge 2$ be an integer and $k_i \in \mathbb{Z}_{>0}$ for i = 1, ..., n be such that

$$k_1 \cdot 1 + k_2 \cdot 2 + \ldots + k_n \cdot n = n.$$

Let X be the conjugacy class of X determined by (k_1, \ldots, k_n) . Tautologically, S_n acts on X by conjugation and the action is transitive.

(a) Fix $\sigma_0 \in X$ and let $H = \operatorname{Stab}_{S_n}(\sigma_0)$. Prove that

$$\operatorname{Card}(H) = \prod_{i=1}^{n} i^{k_i} \cdot k_i!$$

- (b) Use the above to write down an expression for Card(X).
- (c) Show that $Card(\{n cycles in S_n\}) = (n 1)!$

Solution:

(a) As seen in class, a conjugation class in S_n is uniquely determined by an unordered partition of n, that is, a way of writing n as a sum of positive integers, which gives the cycle type of any elements in the considered conjugation class in S_n [For instance, 3+2=5 corresponds to the conjugation class consisting of all permutations $(a_1 \ a_2 \ a_3)(a_4 \ a_5) \in S_5$ for distinct a_j]. In the notation of the exercise, k_i is the number of times that the number $i \in \{1, \ldots, n\}$ appears in the partition of n. Hence the class X consist of the permutations of the form

$$(a_{1,1,1})\cdots(a_{1,1,k_1})(a_{2,1,1}\ a_{2,2,1})\cdots(a_{2,1,k_2}\ a_{2,2,k_2})\cdots(a_{n,1,1}\ \cdots\ a_{n,n,1})\cdots(a_{n,1,1}\ \cdots\ a_{n,n,1})$$

where the $a_{\lambda,\mu,\nu}$ all distinct and $\{a_{\lambda,\mu,\nu}\}=\{1,\ldots,n\}$. As visible in the above expression, λ stands for the length of the cycle, μ stands for the position in the cycle expression and ν for the position of the cycle among those of same length.

Call σ_0 the element written in the above expression in terms of $a_{\lambda,\mu,\nu}$. As seen in class, for $\sigma \in S_n$, the conjugate $\sigma \sigma_0 \sigma^{-1}$ can be written with the same expression, by replacing each $a_{\lambda,\mu,\nu}$ with $\sigma(a_{\lambda,\mu,\nu})$.

Since the $a_{\lambda,\mu,\nu}$ are distinct, so are the $\sigma(a_{\lambda,\mu,\nu})$ and, as the decomposition into disjoint cycles is unique up to order, we obtain that $\sigma\sigma_0\sigma^{-1} = \sigma_0$ if and only if the cycles of the same length are permuted, and the elements appearing in the

same cycle are permuted in a cyclic way (since $(a_1 a_2 \cdots a_m) = (b_1 b_2 \cdots b_m)$ if and only if there exists $t \in \mathbb{Z}$ such that $b_j \equiv a_j + t \pmod{m}$). In terms of the indices, this means that

$$\sigma(a_{\lambda,\mu,\nu}) = a_{\lambda,\mu+t_{\lambda,\nu},\nu_{\lambda}'},\tag{1}$$

where for each λ the index ν' is independent on μ (which gives k_{λ} ! choices) and $t_{\lambda,\nu} \in \{0,\ldots,\lambda-1\}$ for independently for each ν (which gives $\lambda^{k_{\lambda}}$ choices). [Notice that the index $\mu + t_{\lambda,\nu}$ in (1) needs to be interpreted modulo λ .] Hence, for each λ , we have $k_{\lambda}! \cdot \lambda^{k_{\lambda}}$ choices, so that

$$\operatorname{Card}(H) = \prod_{\lambda=1}^{n} k_{\lambda}! \cdot \lambda^{k_{\lambda}}$$

as desired.

(b) By the orbit stabilizer theorem, since the action on S_n is transitive, we obtain

$$\operatorname{Card}(X) = \frac{\operatorname{Card}(S_n)}{\operatorname{Card}(H)} = \frac{n!}{\prod_{\lambda=1}^n k_{\lambda}! \cdot \lambda^{k_{\lambda}}}.$$

(c) The *n*-cycles in S_n form the conjugacy class corresponding to the trivial partition n = n, i.e., $k_n = 1$ and $k_j = 0$ for j < n. We can apply the previous part in this special case to obtain:

Card(
$$\{n - \text{cycles in } S_n\}$$
) = $\frac{n!}{\sum_{\lambda=1}^n k_{\lambda}! \cdot \lambda^{k_{\lambda}}} = \frac{n!}{0 + \dots + 0 + 1! \cdot n^1} = (n-1)!$