Prof. Emmanuel Kowalski

Algebra I
HS17

Solution 10

Group actions, the symmetric Group

1. Let p be a prime number and T the set of one-dimensional \mathbb{F}_{p}-subspaces in $\left(\mathbb{F}_{p}\right)^{n+1}$, i.e., of lines through the origin in $\left(\mathbb{F}_{p}\right)^{n+1}$.
(a) Show that $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$ acts transitively on T by $g \cdot L=g(L)$.
(b) Compute the stabilizer of the line $L_{0}:=\langle(1,0, \ldots, 0)\rangle \in T$.
(c) Compute $\operatorname{Card}(T)$. [Hint: T has the same number of elements of the set of orbits of \mathbb{F}_{p}^{\times}acting on $\left.\left(\mathbb{F}_{p}\right)^{n+1} \backslash\{0\}\right]$

Solution:

(a) In the following, all 'lines' are supposed to be line through the origin.

Under the identification $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right) \cong \operatorname{Aut}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{n+1}\right)$, in the statement $g \cdot L$ is defined as the image of the line L under g, which we know is again a line. The axioms of group action are trivially checked.
A line in $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$ can be determined by a non-zero vector. Since any nonzero vector v_{0} of \mathbb{F}_{p}^{n+1} can be completed to a basis, there exists for each $v_{0} \neq 0$ an automorphism of the \mathbb{F}_{p}-vector space \mathbb{F}_{p}^{n+1} sending $(1,0, \ldots, 0) \mapsto v_{0}$ (in other words, the action of $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$ on \mathbb{F}_{p}^{n+1} is transitive). Such an automorphism sends the line L_{0} generated by $(1,0, \ldots, 0)$ to the one generated by v_{0}, which is a arbitrary. Hence the $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$-orbit of L_{0} is T and the $\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)$-action on T is transitive.
(b) An automorphism of \mathbb{F}_{p}^{n+1} sends $L_{0} \mapsto L_{0}$ if and only if it sends $(1,0, \ldots, 0)$ to $(\lambda, 0, \ldots, 0)$ for $\lambda \in \mathbb{F}_{p}$. Hence

$$
\operatorname{Stab}\left(L_{0}\right)=\left\{\left(\begin{array}{cccc}
* & * & \ldots & * \\
0 & * & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \ldots & *
\end{array}\right) \in \mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)\right\}
$$

(c) One can use the hint to obtain that

$$
\operatorname{Card}(T)=\frac{p^{n+1}-1}{p-1}=1+p+\cdots+p^{n}
$$

Alternatively, one can use the orbit stabilizer theorem, which tells us that

$$
T \cong \mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right) / \operatorname{Stab}\left(L_{0}\right)
$$

We notice that $\operatorname{Card}\left(\operatorname{Stab}\left(L_{0}\right)\right)=(p-1) p^{n} \operatorname{Card}\left(\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right)$, since the upper left entry can be any element of \mathbb{F}_{p}^{\times}, the remaining n elements in the first row are arbitrary elements of \mathbb{F}_{p} and the remaining element for an invertible $n \times n$ matrix. For the cardinality of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$, one can generalize the counting of bases in Assignment 7, Exercise 3 and obtain

$$
\operatorname{Card}\left(\operatorname{GL}_{n}\left(\mathbb{F}_{p}\right)\right)=\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)
$$

Altogether, this lets us compute

$$
\begin{aligned}
\operatorname{Card}(T) & =\frac{\operatorname{Card}\left(\mathrm{GL}_{n+1}\left(\mathbb{F}_{p}\right)\right)}{(p-1) p^{n} \operatorname{Card}\left(\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right)} \\
& =\frac{\left(p^{n+1}-1\right)\left(p^{n+1}-p\right) \cdots\left(p^{n+1}-p^{n}\right)}{(p-1) p^{n}\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)}=\frac{p^{n+1}-1}{p-1} .
\end{aligned}
$$

2. Consider the standard action of $\mathrm{GL}_{2}(\mathbb{R})$ on \mathbb{R}^{2}. Determine the orbits of $(1,0)$ under each of the subgroups

$$
H_{1}:=\left\{\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\right\}, H_{2}:=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right)\right\}, H_{3}:=\left\{\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right)\right\}, H_{4}:=\mathrm{SO}_{2}(\mathbb{R}) .
$$

Solution: This is done by looking at the images of $(1,0)$ under the matrices of the given forms, which coincides with the first column of the matrix.

- Since the first column of $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ is $\binom{1}{0}$ for all t, the H_{1}-orbit of $(1,0)$ is $\{(1,0)\}$.
- The matrices in H_{2} and H_{3} have all first column equal to $\binom{a}{0}$ for $a \in \mathbb{R}^{\times}$. Hence the H_{2}-orbit and the H_{3}-orbit of $(1,0)$ coincide and they are given by $\{(a, 0):\}$, the horizontal line through the origin, removed of the origin.
- Since a generic element of $\mathrm{SO}_{2}(\mathbb{R})$ is a matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ with $\theta \in \mathbb{R}$, we can conclude that the H_{4}-orbit of $(1,0)$ is $\left\{(\cos \theta, \sin \theta) \in \mathbb{R}^{2}\right\}=\{(a, b) \in$ $\left.\mathbb{R}^{2}: a^{2}+b^{2}=1\right\}$.

3. Let G be a group acting on a set T. Fix $x_{0} \in T$. Let $H \subset G$ be a subgroup and define X to be the H-orbit of x_{0}. Show that, for $g \in G$,

$$
g \cdot X=\{g \cdot x: x \in X\}
$$

is the $g H^{-1}$-orbit of $g \cdot x_{0}$.
Solution: The $g H^{-1}$-orbit of $g \cdot x_{0}$ is

$$
\left(g H g^{-1}\right) \cdot\left(g \cdot x_{0}\right)=\left\{\left(g h g^{-1}\right) \cdot\left(g \cdot x_{0}\right): h \in H\right\}=\left\{g \cdot\left(h \cdot x_{0}\right): h \in H\right\}=g \cdot X,
$$

where the last equality is due to the fact that the H-orbit of x_{0} is, by definition, the set of elements $h \cdot x_{0}$ with $h \in H$.
4. Let $\sigma \in S_{n}$. Denote by $F(\sigma)$ the number of points fixed by σ. Prove that the following formulas hold:

$$
\begin{aligned}
& \frac{1}{n!} \sum_{\sigma \in S_{n}} F(\sigma)=1 \\
& \frac{1}{n!} \sum_{\sigma \in S_{n}} F(\sigma)^{2}=2
\end{aligned}
$$

[Hint: Notice that $F(\sigma)=\sum_{x: \sigma(x)=x} 1$. Invert the order of summation.]
Solution: As suggested by the hint, we see that $F(\sigma)=\sum_{x: \sigma(x)=x} 1$. Then
$\frac{1}{n!} \sum_{\sigma \in S_{n}} F(\sigma)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sum_{x: \sigma(x)=x} 1=\frac{1}{n!} \sum_{x=1}^{n} \sum_{\sigma \in S_{n}: \sigma(x)=x} 1=\frac{1}{n!} \sum_{x=1}^{n}(n-1)!=\frac{1}{n} \cdot n=1$.
We have used the fact that $\operatorname{Card}\left(\operatorname{Stab}_{S_{n}}(x)\right)=(n-1)$!, since a permutation $\sigma \in S_{n}$ fixing x is given an arbitrary partition of $\{1, \ldots, n\} \backslash\{x\}$. For the average of $(F(\sigma))^{2}$, we first look at the product of sums

$$
(F(\sigma))^{2}=\left(\sum_{x: \sigma(x)=x} 1\right)\left(\sum_{y: \sigma(x)=x} 1\right)=\sum_{\substack{x, y \in\{1, \ldots, n\} \\ \sigma(x)=x \\ \sigma(y)=y}} 1 .
$$

Then, switching the summation order,

$$
\begin{aligned}
\frac{1}{n!} \sum_{\sigma \in S_{n}}(F(\sigma))^{2} & =\frac{1}{n!} \sum_{\sigma \in S_{n}} \sum_{x, y \in\{1, \ldots, n\}}^{\sigma(x)=x} \begin{array}{l}
\sigma(y)=y \\
\end{array} 1=\frac{1}{n!} \sum_{x, y \in\{1, \ldots, n\}} \sum_{\substack{\left.\sigma \in S_{n} \\
\sigma x\right)=x \\
\sigma(y)=y}} 1 \\
& =\frac{1}{n!}\left(\sum_{\substack{x, y \in\{1, \ldots, n\} \\
x \neq y}} \sum_{\substack{\sigma \in S_{n} \\
\sigma(x)=x \\
\sigma(y)=y}} 1+\sum_{x \in\{1, \ldots, n\}} \sum_{\substack{\sigma \in S_{n} \\
\sigma(x)=x}} 1\right)= \\
& =\frac{1}{n!}(n \cdot(n-1) \cdot(n-2)!+n \cdot(n-1)!)=2
\end{aligned}
$$

5. For each conjugacy class S_{6}, write down a representative and the cardinality of the class.
Solution: As seen in class, the elements in a conjugacy class of S_{6} are all those with a specific cyclic type, that is, a specific length of the cycles appearing in their unique decomposition into disjoint cycles, where we also include 1-cycles in order to obtain an unordered partition of n. Hence the conjugacy classes of S_{6} are given by partitions of 6 , which we list in an order for which their number of summands increases. In a single partition the order of the summands is irrelevand, so we sum them in decreasing order. This gives:

- $6=6$, the trivial partition. We obtain the class of 6 -cycles, [(123456)]. The number of elements is the number of 6 -cycles in S_{6}. Notice that such a 6 -cycle can always be written as ($1 a_{1} a_{2} a_{3} a_{4} a_{5}$), and that different choices of $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ lead to different 6 -cycles. Hence there are $5!=120$ elements in this class.
- $6=5+1$. This corresponds to the class of 5 -cycles, [(12345)]. The number of 5-cycles in S_{6} can be easily determined. There are 6 subsets of 5 elements in $\{1, \ldots, 6\}$. For each of those, we can write any 5 -cycle with first element equal to the minimal one, and freely choose the remaining 4 elements. Hence there are $6 \cdot 4!=144$ elements in this class.
- $6=4+2$. This corresponds to the class [(12)(3456)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\binom{6}{2}=15$ ways to choose 2 elements in $\{1, \ldots, 6\}$. For each of those, the 2 -cycle is uniquely determined, while the 4 -cycle can be chosen with first element equal to the minimum of the four elements involved, and the remaining 3 elements freely chosen, giving 3 ! possibilities. Hence this class contains $15 \cdot 3$! = 90 elements.
- $6=3+3$. This corresponds to the class [(123)(456)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\frac{1}{2!}\binom{6}{3}=10$ ways to choose 2 disjoint triples of elements (without caring about the order of the two couples) in $\{1, \ldots, 6\}$. The two subsets of three elements can be independently put in one of the 2 distinct three cycles, so that we obtain $10 \cdot 2 \cdot 2=40$ elements in this conjugacy class.
- $6=4+1+1$. This corresponds to the class of 4-cycles, [(1234)]. There are $\binom{6}{4}=15$ subsets of 4 elements in $\{1, \ldots, 6\}$. For each of those, as already seen above, there are 3 ! possible 4 -cycles. Hence this class contains $15 \cdot 6=90$ elements.
- $6=3+2+1$. This corresponds to the class [(123)(45)]. In order to determine how many elements with this cycle type are there, we first notice that there are $\binom{6}{3}\binom{3}{2}=60$ ways to choose disjoint subsets of 3 and 2 elements in $\{1, \ldots, 6\}$. For each of those, the 2 -cycle is determined, while for the 3cycle there are 2 possibilities. Hence we have $60 \cdot 2=120$ elements in this conjugacy class.
- $6=2+2+2$. This corresponds to the class $[(12)(34)(56)]$. In order to determine how many elements with this cycle type are there, we first notice that there are $\frac{1}{3!}\binom{6}{2}\binom{4}{2}=15$ ways to choose 3 disjoint couple of elements in $\{1, \ldots, 6\}$ (without caring of the order of the couples). For each of those, the 2 -cycles are uniquely determined, so that we have 15 elements in this conjugacy class.
- $6=3+1+1+1$. This corresponds to the class of 3 -cycles, [(123)]. There are $\binom{6}{3}=20$ subsets of 3 elements in $\{1, \ldots, 6\}$. For each of those, as already
seen above, there are 2 possible 3 -cycles. Hence this class contains $20 \cdot 2=40$ elements.
- $6=2+2+1+1$. This corresponds to the class $[(12)(34)]$. In order to determine how many elements with this cycle type are there, we first notice that there are $\frac{1}{2!}\binom{6}{2}\binom{4}{2}=45$ ways to choose two disjoint couple of elements in $\{1, \ldots, 6\}$ (without caring of the order of the couples). For each of those, the 2 -cycles are uniquely determined, so that we have 45 elements in this conjugacy class.
- $6=2+1+1+1+1$. This corresponds to the class of 2-cycles, $[(12)]$. There are $\binom{6}{2}=15$ subsets of 2 elements in $\{1, \ldots, 6\}$. For each of those, the 2 -cycle is already determined. Hence this class contains 15 elements.
- $6=1+1+1+1+1+1$. This correspond to the class [id], which consist of 1 element.

We hence found the following conjugacy classes:

partition	representative	cardinality
$6=6$	(123456)	120
$6=5+1$	(12345)	144
$6=4+2$	$(12)(3456)$	90
$6=3+3$	$(123)(456)$	40
$6=4+1+1$	(1234)	90
$6=3+2+1$	$(123)(45)$	120
$6=2+2+2$	$(12)(34)(56)$	15
$6=3+1+1+1$	(123)	40
$6=2+2+1+1$	$(12)(34)$	45
$6=2+1+1+1+1$	(12)	15
$6=1+1+1+1+1+1$	id	1

Aliter: In order to compute the cardinalities, one could use the general formula obtained in Exercise 8d), which says that the cardinality of the conjugacy class associated to the partition $6=k_{1} \cdot 1+k_{2} \cdot 2+\cdots+k_{6} \cdot 6$ is $6!/\left(\prod_{i=1}^{6} k_{i}!i^{k i}\right)$. For instance,

$$
\operatorname{Card}[(123)(456)]=\frac{6!}{2!3^{2}}=4 \cdot 5 \cdot 2=40, \text { since } k_{i}= \begin{cases}2 & i=3 \\ 0 & i \neq 3\end{cases}
$$

6. Let $n \geqslant 3$. Prove that $\left[S_{n}, S_{n}\right]=A_{n}$. [Recall: for a group G, the commutator $[G, G]$ is defined as the subgroup of G generated by $\left\{a b a^{-1} b^{-1}: a, b \in G\right\}$. See Assignment 8, Exercise 6]
Solution: Consider the signature morphism $\varepsilon: S_{n} \longrightarrow\{ \pm 1\}$. Since $\{ \pm 1\}$ is an abelian group, we have $\left[S_{n}, S_{n}\right] \subset \operatorname{ker}(\varepsilon)=A_{n}$ as seen in Assignment 8, Exercise 6(d).

Conversely, in order to prove that $A_{n} \subset\left[S_{n}, S_{n}\right]$, it is enough to check that $\left[S_{n}, S_{n}\right]$ contains all 3 -cycles, as those are generators of A_{n}. This is indeed the case, because, as Exercise 6 suggests,

$$
(a b)(b c)=(a b c),
$$

and by the conjugation rules seen in class

$$
(b c)=(a c)(b a)(a c)^{-1}
$$

so that

$$
(a b c)=(a b)(a c)(b a)(a c)=(a b)(b c)(a b)(b c)=[(a b),(b c)] \in\left[S_{n}, S_{n}\right] .
$$

Aliter: The second inclusion can be proven in another way for $n \geqslant 5$. Indeed, in this case A_{n} is simple, so on can observe that $1 \neq[(12),(23)] \in\left[S_{n}, S_{n}\right] \triangleleft S_{n}$, so that $\{1\} \neq\left[S_{n}, S_{n}\right] \triangleleft A_{n}$ and hence $\left[S_{n}, S_{n}\right]=A_{n}$.
7. (a) Prove that S_{n} is generated by $\left\{\sigma_{i}:=\left(\begin{array}{ll}i & i+1\end{array}\right), 1 \leqslant i \leqslant n-1\right\}$, and that those generators satisfy the relations

$$
\begin{gathered}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \text { if }|i-j| \geqslant 2 \\
\left(\sigma_{i} \sigma_{i+1}\right)^{3}=\text { id, for } 1 \leqslant i \leqslant n-2 .
\end{gathered}
$$

(b) Let $\tau:=(12 \ldots n)$. Show that S_{n} is generated by $\left\{\sigma_{1}, \tau\right\}$. [Hint: Express σ_{i} in terms of σ_{1} and τ]

Solution:

(a) First, notice that S_{n} is generated by $\{(1 i): 2 \leqslant i \leqslant n-1\}$. Indeed, for each $i, j \in\{1, \ldots, j\} \backslash\{1\}$, there is an equality

$$
(1 i)(1 j)(1 i)=(i j),
$$

so that $\{(1 i): 2 \leqslant i \leqslant n-1\}$ generates all transpositions, which is enough to generate S_{n} as seen in class. In order to conclude, it is enough to check for each $2 \leqslant i \leqslant n-1$ that $(1 i) \in\left\langle\left\{\sigma_{k}: 1 \leqslant k \leqslant n-1\right\}\right\rangle$. We do it by induction on i. This is clear for $i=2$, since (12) $=\sigma_{1}$. Suppose that $(1 i-1) \in\left\langle\left\{\sigma_{k}: 1 \leqslant k \leqslant n-1\right\}\right\rangle$. Then

$$
(1 i)=\sigma_{i-1}(1 i-1) \sigma_{i-1}^{-1} \in\left\langle\left\{\sigma_{k}: 1 \leqslant k \leqslant n-1\right\}\right\rangle,
$$

which concludes the proof that the elements σ_{i} generate S_{3}.
We observe that σ_{i} and σ_{j} are disjoint when $|i-j|>2$, so that they commute, while $\sigma_{i} \sigma_{i+1}=(i i+1 i+2)$ is a 3 -cycle and, as such, it has order 3 .
(b) By the conjugation formula seen in class, for each $1 \leqslant k \leqslant n-1$,

$$
\tau^{k-1}(12) \tau^{-k+1}=(k k+1)=\sigma_{k}
$$

so that $\left\langle\left\{\sigma_{1}, \tau\right\}\right\rangle$ contains all the elements σ_{k} and by part (a) it coincides with S_{3}.
8. Let $n \geqslant 2$ be an integer and $k_{i} \in \mathbb{Z}_{>0}$ for $i=1, \ldots, n$ be such that

$$
k_{1} \cdot 1+k_{2} \cdot 2+\ldots+k_{n} \cdot n=n
$$

Let X be the conjugacy class of X determined by $\left(k_{1}, \ldots, k_{n}\right)$. Tautologically, S_{n} acts on X by conjugation and the action is transitive.
(a) Fix $\sigma_{0} \in X$ and let $H=\operatorname{Stab}_{S_{n}}\left(\sigma_{0}\right)$. Prove that

$$
\operatorname{Card}(H)=\prod_{i=1}^{n} i^{k_{i}} \cdot k_{i}!
$$

(b) Use the above to write down an expression for $\operatorname{Card}(X)$.
(c) Show that $\operatorname{Card}\left(\left\{n-\right.\right.$ cycles in $\left.\left.S_{n}\right\}\right)=(n-1)$!

Solution:

(a) As seen in class, a conjugation class in S_{n} is uniquely determined by an unordered partition of n, that is, a way of writing n as a sum of positive integers, which gives the cycle type of any elements in the considered conjugation class in S_{n} [For instance, $3+2=5$ corresponds to the conjugation class consisting of all permutations $\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5}\right) \in S_{5}$ for distinct $\left.a_{j}\right]$. In the notation of the exercise, k_{i} is the number of times that the number $i \in\{1, \ldots, n\}$ appears in the partition of n. Hence the class X consist of the permutations of the form

$$
\left(a_{1,1,1}\right) \cdots\left(a_{1,1, k_{1}}\right)\left(a_{2,1,1} a_{2,2,1}\right) \cdots\left(a_{2,1, k_{2}} a_{2,2, k_{2}}\right) \cdots\left(a_{n, 1,1} \cdots a_{n, n, 1}\right) \cdots\left(a_{n, 1,1} \cdots a_{n, n, 1}\right)
$$

where the $a_{\lambda, \mu, \nu}$ all distinct and $\left\{a_{\lambda, \mu, \nu}\right\}=\{1, \ldots, n\}$. As visible in the above expression, λ stands for the length of the cycle, μ stands for the position in the cycle expression and ν for the position of the cycle among those of same length.
Call σ_{0} the element written in the above expression in terms of $a_{\lambda, \mu, \nu}$. As seen in class, for $\sigma \in S_{n}$, the conjugate $\sigma \sigma_{0} \sigma^{-1}$ can be written with the same expression, by replacing each $a_{\lambda, \mu, \nu}$ with $\sigma\left(a_{\lambda, \mu, \nu}\right)$.
Since the $a_{\lambda, \mu, \nu}$ are distinct, so are the $\sigma\left(a_{\lambda, \mu, \nu}\right)$ and, as the decomposition into disjoint cycles is unique up to order, we obtain that $\sigma \sigma_{0} \sigma^{-1}=\sigma_{0}$ if and only if the cycles of the same length are permuted, and the elements appearing in the
same cycle are permuted in a cyclic way (since $\left(a_{1} a_{2} \cdots a_{m}\right)=\left(b_{1} b_{2} \cdots b_{m}\right)$ if and only if there exists $t \in \mathbb{Z}$ such that $\left.b_{j} \equiv a_{j}+t(\bmod m)\right)$. In terms of the indices, this means that

$$
\begin{equation*}
\sigma\left(a_{\lambda, \mu, \nu}\right)=a_{\lambda, \mu+t_{\lambda, \nu}, \nu_{\lambda}^{\prime}} \tag{1}
\end{equation*}
$$

where for each λ the index ν^{\prime} is independent on μ (which gives k_{λ} ! choices) and $t_{\lambda, \nu} \in\{0, \ldots, \lambda-1\}$ for independently for each ν (which gives $\lambda^{k_{\lambda}}$ choices). [Notice that the index $\mu+t_{\lambda, \nu}$ in (1) needs to be interpreted modulo λ.] Hence, for each λ, we have $k_{\lambda}!\cdot \lambda^{k_{\lambda}}$ choices, so that

$$
\operatorname{Card}(H)=\prod_{\lambda=1}^{n} k_{\lambda}!\cdot \lambda^{k_{\lambda}}
$$

as desired.
(b) By the orbit stabilizer theorem, since the action on S_{n} is transitive, we obtain

$$
\operatorname{Card}(X)=\frac{\operatorname{Card}\left(S_{n}\right)}{\operatorname{Card}(H)}=\frac{n!}{\prod_{\lambda=1}^{n} k_{\lambda}!\cdot \lambda^{k_{\lambda}}} .
$$

(c) The n-cycles in S_{n} form the conjugacy class corresponding to the trivial partition $n=n$, i.e., $k_{n}=1$ and $k_{j}=0$ for $j<n$. We can apply the previous part in this special case to obtain:
$\operatorname{Card}\left(\left\{n-\operatorname{cycles}\right.\right.$ in $\left.\left.S_{n}\right\}\right)=\frac{n!}{\sum_{\lambda=1}^{n} k_{\lambda}!\cdot \lambda^{k_{\lambda}}}=\frac{n!}{0+\ldots+0+1!\cdot n^{1}}=(n-1)!$

