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Solution 13

FiNiTE FIELDS, MODULES OVER A COMMUTATIVE RING

1. Let L be a fixed algebraic closure of I, and, for each n € Z,, let F,» C L the
unique subfield of cardinality p".

(a)
(b)
(c)

(d)

Show that L =, Fpn.
Show that Fy» C Fym if and only if n|m.

Let x € Fn for some n > 1. Prove that
r+aP .. 2P eF,

and

gt o F,.
Define the norm map N : F;. — F) by sending = PP Prove
that it is a surjective group homomorphism. [Hint: For surjectivity, take a
generator x of ). and find the order of N(z)]

Solution:

(a)

Each Fp» lies in L by definition, so that (J,., Fy» C L. Conversely, for every
a € L, the extension F,(a)/F, is finite of degree d := deg(irr(e, F,)). Hence
F,(c) is a subfield of cardinality p? which means that F,(a) = F,q, implying
that o € U@1 F,». As we have proven both inclusions, we can conclude that
L=,5 Fp.

Recall the characterization of F,» in terms of the Frobenius isomorphism
Fr: L — L (sending = +— z?):

Fpn = {a € Fpn : Fr'"(a) = a}.

If n|m, say m = nk, then Fr”™ = (Fr")*, so that by the above characterization
Fpn CFpm.

Conversely assume that F,» C F,» and write m = kn 4+ r for 0 < r < n.
Then Fr"(a) = Fr"(a) = « for all a € Fyn, which means that

a =Fr"(a) = Fr" ((Fr")*(a)) = Fr" ().

For r # 0, this implies that F,» C F,-, a contradiction. Hence » = 0 and
n|m.



(c) If z € Fpn, then z = Fr"(z) = 2*". In particular,

1

n— 2 n 2 n__
Fr(z +2P +...+27 V=2l +a" +.. . +a¥ =z+aP +a2" +... +27 1
Fr(gitrt ") = gp(tptetp™™) = gptpPetp” — gl

9

so that z + a2 4+ ...+ 27" " and 2P HP* 7" are fixed by Fr, which implies
that they lie in FF,,.

(d) By part (c), z — 2P+ """ defines a map Fyn — F,. Since Fpn is a field,
PP — () if and only if = 0, so that N : F. — F is a well-defined
map. It is a group homomorphism because [, is an abelian group, meaning
that (zy)* = z*y* for each 2,y € F}, and k € Z.

Let  be a generator of F.. Then z has order p" — 1. Since
Prel=(p =D +pt-4p"h,

the element N(z) = z'*P*+""" € FX has order p — 1, so that it is a
generator of F’, implying that NV is surjective.

2. Let F, be a finite field of cardinality ¢ = p" and f € K[X] an irreducible polyno-
mial of degree d > 1.

(a) Prove that f divides the polynomial X" — X if and only if d|m.

(b) Let x be a root of f in a fixed algebraic closure F,. Show that the roots of f
are

(c) Assume that p # 2 and let ¢ € F)* be such that ¢ is not a square in [F,. Let
a € F, be such that o> = ¢ and set L = F (a). For y = ¢ + az; € L,
compute y9.

(d) Prove that the norm map N : Fj. — F)* defined in Exercise 1(d) coincides
with the one defined in Assignment 12, Exercise 7.

Solution:

(a) Fix an algebraic closure F, = F, of F,. Let a € F, be a root of f, so
that f = Airr(a, Q) for some A € Fy. Then [F,(a) : F;] = d, so that
Fy(a) = Fpa = Fna, the unique subfield of F, with ¢" elements.

If d|m, then, by Exercise 1(b),
a € qu — Fpnd C Fpnm = qu’

so that ais a root of X?" — X and irr(a, Q)| X" — X by definition of minimal
polynomial, which implies that f|X?" — X.

Conversely, if f|X7" — X, then « is a root of X?" — X so that a € Fym.
Then F,a = Fy(a) C Fym, which by Exercise 1(b) implies that d|m.
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(b)

For each ¢ € {0,...,d — 1}, we see that

0= (f(x)" = f(a®),

where the second equality is due to the fact that a — a? is the (-th power of
the field automorphism Fr? of F, sending a — a?, which respects sums and
multiplication and is the identity on I, (hence on the coefficients of f). This

means that the elements z¢° are all root of f. We claim that those elements
are all distinct for d € {0,...,d — 1}. Then they are d distinct roots of f
which implies that there are no other roots, because deg(f) = d.

In order to prove our claim, suppose by contradiction that 27 = 729" for
0<j<k<d—1andletr=Fk—j. Then, raising both sides to the ¢ *-th
power and recalling that 7" = 2 since Fy(x) = Fya, we obtain

LD ’
so that f = Nirr(a, F) | X" — X, for some \ € Fx, which by part (a)
implies that d|d — (k — j), a contradiction.
Let 9,21 € Fyand y = xo+ax;. If x; =0, then y € Fy, so that y? = y = .
Now suppose that x; # 0. Clearly, [L : F ] = deg(irr(e, F,)) = 2, because «
is a root of X? — ¢ and a € FF,, since ¢ is not a square in F,. We notice that

Fy(y) = Fy(zo + azy) = Fy(a) = L,
By part (b), y? is the other root of irr(y, Q) = (X — z¢)? — ez?, hence
y! =y — exy.

In this last part, ¢ = p. Let z be a generator of .. Since the norm map
N is a group homomorphism, it is uniquely determined by N(x). The norm
map N defined in Exercise 1(d) is determined by

Ni(z) =[] ="' (1)

Let f = irr(x,F,). Since Fy(r) = Fyn (because < x >= F.), we know
that deg(f) = n. Write f = Y ;_, @, X" with a, = 1. The norm map N,
defined in Assignment 12, Exercise 7, is determined by Ny(z) = (—1)"ay,
because of part (e) of that exercise. But, by part (b), f has n distinct roots
z, 2P, ..., 2”""", so that

n—1

f=1Jx -2

=0

w



and ag = (—1)" H;L:_& 2”’ . Hence
n—1 _
No(x) = (=1)"ao = [ [+ = Mi(2)
=0

and the two norms coincide on the generator x and hence on the whole F ..

3. (a) Show that 2 is not a square in [F13 and let € be a square root of 2 in Fy32.
(b) Find all non-squares in Fy3.

(c) Express the square roots of all non squares in Fi3 as elements of Fy32 using
the Fy3-basis (1,¢).

Solution:

(a) Let S := {a? : x € F;3} be the set of squares in Fy. It is the image of the
group automorphism ¢ of F;; sending = — x?. Since ker(p) = {1,12 = —1}
(as there are at most two roots of the polynomial X? — 1), we know that
|S| = 12/2 = 6 by the First Isomorphism of groups.
Since (—)? = 22, we see that indeed S = {1222 3% 4% 5% 62}, which can be
easily computed as

S ={1,4,9,3,12,10} = {1, +3, +4}.

In particular, 2 is not a square in Fys.

(b) Let T'=Tj5 ~ S be the set of non-squares. Then, by part (a),

T = {+2, 45, +6}.

(c) Since T is the coset of the index-2 subgroup S in Fjj, the inverse of ¢t € T is
in T, while the product of two elements in 7" is in .S. This means that for any
elements t € T we have ¢ - (2)7! € S, so that we can write the square root of
t has a multiple of €. More precisely:

e (—2)/2 = —1 = 5% implies that —2 = (45¢)?;

e 6/2 = 3 = 4% gives 6 = (+4¢)?. Moreover, —6 = (5%) - 6 gives —6 =
(£20¢)? = (£6¢)?;

e Finally, 5/2 =9 = 3? gives 5 = (£3¢)? and —5 = (£15-¢)? = (£2-¢)%

4. Let R be a commutative ring and n > 1.

(a) Construct an isomorphism of R-modules

HOIH(R_MOd) (Rn, Rn) = Rn2 .



(b)

For A = (a;;)1<i<n € R™. define

1<j<n

det(A) = Y e(0)aro()* Anofm.

gESy

Prove that, for each A, B € R, det(AB) = det(A) det(B). Prove moreover
that det(A) € R* if and only if A is invertible. [Here, the matrix product is
defined with the same formulas as for the usual matrix product over fields]

Solution:

(a)

For j = 1,...,n, consider the element e; = (0;;)1<i<n € R", where §;; = 1p
if i = j and d;; = O otherwise. The elements e; form a free R-basis of R",
so that a morphism f € Homgmoa(R", R") is uniquely determined by the
images f(e;). Those can be written uniquely as linear combinations

f(€j) = Z aijei.
i=1
In this way, we have defined a bijection
¢ : Homgmoa(R", R") — R"
[ (aij)ij, ai; = mi(f(e;)),
Since for each f, g € Homgoa(R", R") and 7 € R we have equalities

mi((f +rg)(e;)) = mi(f(e;) +7(g9(e;))) = mi(f(e;)) + rmi(g(e;)
for all + and j, we know that ¢ is also an isomorphism of R-modules.

Let M = R™ and define M™ =~ R" by looking at the n vectors as columns of
a matrix. We say that a map ¢ : M™ — R is a multilinear form if for each
j=1,...,n,1; € Rand Ay,..., Ay, A> € M one gets

QD(Al,...,TAj—FA;,...,An) :Tjg[?(Al,...,An) —I—QO(Al,,A;,,An)
We say that ¢ is alternating if for every p(Ay,..., A,) = 0 when A; = A; for
i 7.

If o : M™ — R is a multilinear alternating form then the following property
holds:

(*) For each 0 € Sy, (As1)s - -5 Aom)) = (0)p(Ar, ..., Ap).

Since S, is generated by transpositions, it is enough to prove (*) for a trans-
position. For simplicity, we just prove it for ¢ = (12), the proof for other
transpositions being analogous. Since ¢ is linear we have that:
(AL + Ag, Ay + Ag, Az, Ay) = 0(Ar, Ar, As, o Ay)
+ SO(Ala A?a A37 s 7An) + (p(A% Ala A3a s 7An) + SO(A% A27 A37 s 7An)



Using the fact that ¢ is alternating, we are left with
0= 90<A17 A27 A37 s 7An) + SO(A% Ah A37 s 7An>7

which proves that a switch of the first two coordinates results in a change of
sign (which is what we expected as sgn((12)) = —1).

It can be checked in the same way as done over fields that the function det
is alternating and multilinear, and that it satisfies the Lagrangian expansion
in the first column: for A = (a;;),

n

(#) det(A) = (=1)"a det(A'(i, 1))

i=1

where A’(7, j) is the matrix obtained by deleting the i-th column and the j-th
row from A.

Now we prove the following statement by induction on n
(***) If o : M™ — R is alternating multilinear, then ¢(A) = ¢(Id,,) det(A).

The statement is clear for n = 1, because ¢(a) = ap(1). Now suppose that
(***) holds for n — 1 and let us prove it holds for n. Let Ei,..., E, € M be
the columns defined by E; = (d;j)1<i<n- For B = (b;) € M, we can write

=0

For A= (A1, Ay, ..., Ay), with A; = (a;;);, we can write by multilinearity:

P(A) = anp(Ei, As, ..., Ay) (2)

i=1
One can prove with a simple recursion that
QO(EZ, AQ, e ,An) = ()O(EZ, A2 — aizE,-, N ,An - amEi), (3)

because ¢ is alternating multilinear so that we can add to any column a
multiple of another column without changing the value of ¢. Consider the
map 6; : R" D" — R™ sending B to the unique matrix 6;(B) = (cy,) € M"
such that

* (6:(B))(i,1) = B;

e the first column of 0;(B) is E;

e the i-th row of 6,(B) is (1,0,...,0).



One can easily check that the function o6, : R"Y* 5 Risan alternating

multilinear form, so that by inductive hypothesis ¢ o §; = ¢(0;(1d,)) det.
Since the matrix (E;, Ay — apF;, . .., A, — ay F;) in the argument of ¢ on the
right hand side of (3) is 6,(A’(i,1)), (3) gives

@(Ei, Ag, ..., An) = (0i(Idy, 1)) det(A'(i, 1)) =
(ID(EZ, El, e ,El',l, EjJrl, . 7En) det(A/(Z, 1))

Y (1) (B, ..., Eiy, By, Ejp, ..., By) det(A'(i, 1))

(1) (1d,) det(A'(i, 1)).
By (2), we deduce that

p(A) = D (1) aunp(Ida) det(A/(i, 1)) = p(Td,) det(4),

proving (%),

We now make the following claim:
(****) B+ det(AB) is an alternaring multilinear form on M™ for all A € M".
If the claim holds, then for each A, B € M"™ we know by (***) that

det(AB) = det(A - 1d,) det(B) = det(A) det(B),

proving the multiplicativity of the determinant.

In order to prove (****) let fa : M™ — R be the map fa(B) = det(AB).
For B € M", write B = (By,...,B,). Then AB = (ABy,...,AB,). An
equality B; = B; implies AB; = AB,. Moreover, the map M — M sending
X — AX is linear. Since det is an alternating multilinear form, it easily
follows that f4 is an alternating linear form, too, proving (****), the last
remaining claim to prove for the multiplicativity of the determinant.

In order to conclude, we prove the characterization of invertible matrices in
terms of the determinant. Suppose that A € R™ is invertible and let B € R™
be such that AB = 1d,,. Then 1 = det(Id,,) = det(AB) = det(A) det(B), so
that det(A) € R*—it has inverse B. Conversely, it can be proven as done over
fields in Linear Algebra that, denoting by C'(A) the matrix of cofactors of A,
there is an equality C(A)TA = AC(A)T = det(A)Id,, so that if det(A) € R*
the matrix det(A4)~'C(A)7 is an inverse of A.

5. Show that Q is a Z-module without torsion, that it is not finitely generated and
not free.

Solution: The Z-module Q has no torsion, because the ring QQ is an integral
domain, so that for m € Z ~ {0} and ¢ € Q \ {0} we know that m - ¢ # 0. This
means that Q has no Z-torsion.



Given a finite set of rational numbers F' = {3+, ..., Z—Z} for a; € Z and b; € Z-,
for every ¢ € (F), we notice that Ng € Z for N = [[}", b;. Hence (F) C ~Z,
which is strictly smaller than Q (for example, it does not contain # This implies
that Q is not finitely generated.

Given q1,q2 € Q ~\ {0}, there exist A\;, Ay € Z ~ {0} such that A\;q; = A2go. This
implies that each two non-zero elements of Q are not linear independent. If Q were
free, the free generating set of Q over Q would necessarily contain only 1 element,
contradicting the fact that Q is not finitely generated. Hence Q is not free.

. Let K be a finite field of cardinality ¢ = p™ for some prime p # 2. Suppose that
¢ € K* is not a square in K. Define

T:{(gg 2>}CGL2(K).

(a) Show that 7" is an abelian subgroup of GLy(K).

(b) Show that T is isomorphic to L* where L is the unique extension of K of
degree 2.

a b
(c) Forx-(b8

a ) e T, prove that

g a b
x_(—bs a)'

(a) Notice that T' contains the identity matrix so it is non-empty. For z =

/ /
<ba€ Z>€Tandq;’:<bc}€ Z,)ET,Weseethat

a b a b\ aa' +bb'e  ab' 4+ a'b cT

be a Ve o )\ (al +d'b)e ad +bbe
and that switching a <> o’ and b <> V' the result does not change, so that
multiplication in T is closed and commutative. Moreover, the inverse of x is

1 a b
71_
v az—ebz(bE G>ET

and we can conclude that 7" is an abelian subgroup of GLy(K).

(b) Let Ty, = T U {0} C K?*2. Tt is clear that Tj is closed under sum and
multiplication of matrices, and that both operations are commutative in Ty,
It contains the matrices 0 and 1 and it is closed under taking the opposite
of a matrix. Hence it is a commutative subring of the (non-commutative)

Solution:
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ring K?*2. By part (a), T, = T, so that Ty is a field. Notice that for each
(a,b) € K2~{(0,0)}, the matrix z = ( li 2 ) has determinant a®—eb? # 0,

because the equality a® = £b? cannot hold since ¢ is not a square in K. Hence
Card(Ty) = 1+ Card(T) =1 + (¢* — 1) = ¢*.

This implies that T} is a field of ¢? elements and as such it is isomorphic to
L, the unique subfield of K with cardinality ¢?. This isomorphism restricts
to an isomorphism of the multiplicative groups T = L*.

The field K identifies with the subfield of Tj consisting of scalar matrices. Un-
der this identification, for v = ( 01 ), we can write r = 27 = ( a b ) _
e 0 be a

a + ba. Then z is a root of irr(z, K) = (X — a)? — eb® and by Exercise 2(b)
27 is the other root of this polynomial, that is, 9 = a — ba. Hence

g a b
x_(—be a)'



