Solution 13

Finite Fields, Modules over a commutative ring

1. Let L be a fixed algebraic closure of \mathbb{F}_{p} and, for each $n \in \mathbb{Z}_{>0}$, let $\mathbb{F}_{p^{n}} \subseteq L$ the unique subfield of cardinality p^{n}.
(a) Show that $L=\bigcup_{n \geqslant 1} \mathbb{F}_{p^{n}}$.
(b) Show that $\mathbb{F}_{p^{n}} \subset \mathbb{F}_{p^{m}}$ if and only if $n \mid m$.
(c) Let $x \in \mathbb{F}_{p^{n}}$ for some $n \geqslant 1$. Prove that

$$
x+x^{p}+\ldots+x^{p^{n-1}} \in \mathbb{F}_{p}
$$

and

$$
x^{1+p+\cdots+p^{n-1}} \in \mathbb{F}_{p} .
$$

(d) Define the norm map $N: \mathbb{F}_{p^{n}}^{\times} \longrightarrow \mathbb{F}_{p}^{\times}$by sending $x \mapsto x^{1+p+\cdots+p^{n-1}}$. Prove that it is a surjective group homomorphism. [Hint: For surjectivity, take a generator x of $\mathbb{F}_{p^{n}}^{\times}$and find the order of $N(x)$]

Solution:

(a) Each $\mathbb{F}_{p^{n}}$ lies in L by definition, so that $\bigcup_{n \geqslant 1} \mathbb{F}_{p^{n}} \subset L$. Conversely, for every $\alpha \in L$, the extension $\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}$ is finite of degree $d:=\operatorname{deg}\left(\operatorname{irr}\left(\alpha, \mathbb{F}_{p}\right)\right)$. Hence $\mathbb{F}_{p}(\alpha)$ is a subfield of cardinality p^{d} which means that $\mathbb{F}_{p}(\alpha)=\mathbb{F}_{p^{d}}$, implying that $\alpha \in \bigcup_{n \geqslant 1} \mathbb{F}_{p^{n}}$. As we have proven both inclusions, we can conclude that $L=\bigcup_{n \geqslant 1} \mathbb{F}_{p^{n}}$.
(b) Recall the characterization of $\mathbb{F}_{p^{n}}$ in terms of the Frobenius isomorphism Fr : $L \longrightarrow L$ (sending $x \mapsto x^{p}$):

$$
\mathbb{F}_{p^{n}}=\left\{\alpha \in \mathbb{F}_{p^{n}}: \operatorname{Fr}^{n}(\alpha)=\alpha\right\} .
$$

If $n \mid m$, say $m=n k$, then $\mathrm{Fr}^{m}=\left(\mathrm{Fr}^{n}\right)^{k}$, so that by the above characterization $\mathbb{F}_{p^{n}} \subset \mathbb{F}_{p^{m}}$.
Conversely assume that $\mathbb{F}_{p^{n}} \subset \mathbb{F}_{p^{m}}$ and write $m=k n+r$ for $0 \leqslant r<n$. Then $\operatorname{Fr}^{m}(\alpha)=\operatorname{Fr}^{n}(\alpha)=\alpha$ for all $\alpha \in \mathbb{F}_{p^{n}}$, which means that

$$
\alpha=\operatorname{Fr}^{m}(\alpha)=\operatorname{Fr}^{r}\left(\left(\operatorname{Fr}^{n}\right)^{k}(\alpha)\right)=\operatorname{Fr}^{r}(\alpha) .
$$

For $r \neq 0$, this implies that $\mathbb{F}_{p^{n}} \subset \mathbb{F}_{p^{r}}$, a contradiction. Hence $r=0$ and $n \mid m$.
(c) If $x \in \mathbb{F}_{p^{n}}$, then $x=\operatorname{Fr}^{n}(x)=x^{p^{n}}$. In particular,

$$
\begin{aligned}
\operatorname{Fr}\left(x+x^{p}+\ldots+x^{p^{n-1}}\right) & =x^{p}+x^{p^{2}}+\ldots+x^{p^{n}}=x+x^{p}+x^{p^{2}}+\ldots+x^{p^{n}-1}, \\
\operatorname{Fr}\left(x^{1+p+\cdots+p^{n-1}}\right) & =x^{p\left(1+p+\cdots+p^{n-1}\right)}=x^{p+p^{2}+\cdots+p^{n}}=x^{1+p+p^{2} \cdots+p^{n-1}},
\end{aligned}
$$

so that $x+x^{p}+\ldots+x^{p^{n-1}}$ and $x^{1+p+p^{2} \ldots+p^{n-1}}$ are fixed by Fr, which implies that they lie in \mathbb{F}_{p}.
(d) By part (c), $x \mapsto x^{1+p+\cdots+p^{n-1}}$ defines a map $\mathbb{F}_{p^{n}} \longrightarrow \mathbb{F}_{p}$. Since $\mathbb{F}_{p^{n}}$ is a field, $x^{1+p+\cdots+p^{n-1}}=0$ if and only if $x=0$, so that $N: \mathbb{F}_{p^{n}}^{\times} \longrightarrow \mathbb{F}_{p}^{\times}$is a well-defined map. It is a group homomorphism because $\mathbb{F}_{p^{n}}^{\times}$is an abelian group, meaning that $(x y)^{k}=x^{k} y^{k}$ for each $x, y \in \mathbb{F}_{p^{n}}^{\times}$and $k \in \mathbb{Z}$.
Let x be a generator of $\mathbb{F}_{p^{n}}^{\times}$. Then x has order $p^{n}-1$. Since

$$
p^{n}-1=(p-1)\left(1+p+\cdots+p^{n-1}\right)
$$

the element $N(x)=x^{1+p+\cdots+p^{n-1}} \in \mathbb{F}_{p^{n}}^{\times}$has order $p-1$, so that it is a generator of \mathbb{F}_{p}^{\times}, implying that N is surjective.
2. Let \mathbb{F}_{q} be a finite field of cardinality $q=p^{n}$ and $f \in K[X]$ an irreducible polynomial of degree $d \geqslant 1$.
(a) Prove that f divides the polynomial $X^{q^{m}}-X$ if and only if $d \mid m$.
(b) Let x be a root of f in a fixed algebraic closure $\overline{\mathbb{F}_{q}}$. Show that the roots of f are

$$
x, x^{q}, \ldots, x^{q^{d-1}}
$$

(c) Assume that $p \neq 2$ and let $\varepsilon \in \mathbb{F}_{q}^{\times}$be such that ε is not a square in \mathbb{F}_{q}. Let $\alpha \in \overline{\mathbb{F}_{q}}$ be such that $\alpha^{2}=\varepsilon$ and set $L=\mathbb{F}_{q}(\alpha)$. For $y=x_{0}+\alpha x_{1} \in L$, compute y^{q}.
(d) Prove that the norm map $N: \mathbb{F}_{p^{n}}^{\times} \longrightarrow \mathbb{F}_{p}^{\times}$defined in Exercise 1(d) coincides with the one defined in Assignment 12, Exercise 7.

Solution:

(a) Fix an algebraic closure $\overline{\mathbb{F}_{q}}=\overline{\mathbb{F}_{p}}$ of \mathbb{F}_{q}. Let $\alpha \in \overline{\mathbb{F}_{q}}$ be a root of f, so that $f=\lambda \operatorname{irr}(\alpha, \mathbb{Q})$ for some $\lambda \in \mathbb{F}_{q}^{\times}$. Then $\left[\mathbb{F}_{q}(\alpha): \mathbb{F}_{q}\right]=d$, so that $\mathbb{F}_{q}(\alpha)=\mathbb{F}_{q^{d}}=\mathbb{F}_{p^{n d}}$, the unique subfield of $\overline{\mathbb{F}_{q}}$ with q^{n} elements. If $d \mid m$, then, by Exercise 1(b),

$$
\alpha \in \mathbb{F}_{q^{d}}=\mathbb{F}_{p^{n d}} \subset \mathbb{F}_{p^{n m}}=\mathbb{F}_{q^{m}},
$$

so that α is a root of $X^{q^{m}}-X$ and $\operatorname{irr}(\alpha, \mathbb{Q}) \mid X^{q^{m}}-X$ by definition of minimal polynomial, which implies that $f \mid X^{q^{m}}-X$.
Conversely, if $f \mid X^{q^{m}}-X$, then α is a root of $X^{q^{m}}-X$, so that $\alpha \in \mathbb{F}_{q^{m}}$. Then $\mathbb{F}_{q^{d}}=\mathbb{F}_{q}(\alpha) \subset \mathbb{F}_{q^{m}}$, which by Exercise $1(\mathrm{~b})$ implies that $d \mid m$.
(b) For each $\ell \in\{0, \ldots, d-1\}$, we see that

$$
0=(f(x))^{q^{\ell}}=f\left(x^{q^{\ell}}\right),
$$

where the second equality is due to the fact that $a \mapsto a^{q^{\ell}}$ is the ℓ-th power of the field automorphism Fr^{q} of $\overline{\mathbb{F}_{q}}$ sending $a \mapsto a^{q}$, which respects sums and multiplication and is the identity on \mathbb{F}_{q} (hence on the coefficients of f). This means that the elements $x^{q^{\ell}}$ are all root of f. We claim that those elements are all distinct for $d \in\{0, \ldots, d-1\}$. Then they are d distinct roots of f which implies that there are no other roots, because $\operatorname{deg}(f)=d$.
In order to prove our claim, suppose by contradiction that $x^{q^{j}}=x^{q^{k}}$ for $0 \leqslant j<k \leqslant d-1$ and let $r=k-j$. Then, raising both sides to the q^{d-k}-th power and recalling that $x^{q^{d}}=x$ since $\mathbb{F}_{q}(x)=\mathbb{F}_{q^{d}}$, we obtain

$$
x^{q^{d-(k-j)}}=x,
$$

so that $f=\lambda \operatorname{irr}(\alpha, \mathbb{F}) \mid X^{q^{d-(k-j)}}-X$, for some $\lambda \in \mathbb{F}_{q}^{\times}$, which by part (a) implies that $d \mid d-(k-j)$, a contradiction.
(c) Let $x_{0}, x_{1} \in \mathbb{F}_{q}$ and $y=x_{0}+\alpha x_{1}$. If $x_{1}=0$, then $y \in \mathbb{F}_{q}$, so that $y^{q}=y=x_{0}$. Now suppose that $x_{1} \neq 0$. Clearly, $\left[L: \mathbb{F}_{q}\right]=\operatorname{deg}\left(\operatorname{irr}\left(\alpha, \mathbb{F}_{q}\right)\right)=2$, because α is a root of $X^{2}-\varepsilon$ and $\alpha \notin \mathbb{F}_{q}$ since ε is not a square in \mathbb{F}_{q}. We notice that

$$
\mathbb{F}_{q}(y)=\mathbb{F}_{q}\left(x_{0}+\alpha x_{1}\right)=\mathbb{F}_{q}(\alpha)=L
$$

By part $(\mathrm{b}), y^{q}$ is the other root of $\operatorname{irr}(y, \mathbb{Q})=\left(X-x_{0}\right)^{2}-\varepsilon x_{1}^{2}$, hence

$$
y^{q}=x_{0}-\varepsilon x_{1} .
$$

(d) In this last part, $q=p$. Let x be a generator of $\mathbb{F}_{p^{n}}^{\times}$. Since the norm map N is a group homomorphism, it is uniquely determined by $N(x)$. The norm map N_{1} defined in Exercise 1(d) is determined by

$$
\begin{equation*}
N_{1}(x)=\prod_{j=0}^{n-1} x^{p^{j}} \tag{1}
\end{equation*}
$$

Let $f=\operatorname{irr}\left(x, \mathbb{F}_{p}\right)$. Since $\mathbb{F}_{p}(x)=\mathbb{F}_{p^{n}}$ (because $<x>=\mathbb{F}_{p^{n}}^{\times}$), we know that $\operatorname{deg}(f)=n$. Write $f=\sum_{k=0}^{n} a_{k} X^{k}$ with $a_{n}=1$. The norm map N_{2} defined in Assignment 12, Exercise 7, is determined by $N_{2}(x)=(-1)^{n} a_{0}$, because of part (e) of that exercise. But, by part (b), f has n distinct roots $x, x^{p}, \ldots, x^{p^{n-1}}$, so that

$$
f=\prod_{j=0}^{n-1}\left(X-x^{p^{j}}\right)
$$

and $a_{0}=(-1)^{n} \prod_{j=0}^{n-1} x^{p^{j}}$. Hence

$$
N_{2}(x)=(-1)^{n} a_{0}=\prod_{j=0}^{n-1} x^{p^{j}}=N_{1}(x)
$$

and the two norms coincide on the generator x and hence on the whole $\mathbb{F}_{p^{n}}^{\times}$.
3. (a) Show that 2 is not a square in \mathbb{F}_{13} and let ε be a square root of 2 in $\mathbb{F}_{13^{2}}$.
(b) Find all non-squares in \mathbb{F}_{13}.
(c) Express the square roots of all non squares in \mathbb{F}_{13} as elements of $\mathbb{F}_{13^{2}}$ using the \mathbb{F}_{13}-basis $(1, \varepsilon)$.

Solution:

(a) Let $S:=\left\{x^{2}: x \in \mathbb{F}_{13}^{\times}\right\}$be the set of squares in \mathbb{F}_{13}^{\times}. It is the image of the group automorphism φ of \mathbb{F}_{13}^{\times}sending $x \mapsto x^{2}$. Since $\operatorname{ker}(\varphi)=\{1,12=-1\}$ (as there are at most two roots of the polynomial $X^{2}-1$), we know that $|S|=12 / 2=6$ by the First Isomorphism of groups.
Since $(-x)^{2}=x^{2}$, we see that indeed $S=\left\{1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}\right\}$, which can be easily computed as

$$
S=\{1,4,9,3,12,10\}=\{ \pm 1, \pm 3, \pm 4\}
$$

In particular, 2 is not a square in \mathbb{F}_{13}.
(b) Let $T=\mathbb{F}_{13}^{\times} \backslash S$ be the set of non-squares. Then, by part (a),

$$
T=\{ \pm 2, \pm 5, \pm 6\} .
$$

(c) Since T is the coset of the index-2 subgroup S in \mathbb{F}_{13}^{\times}, the inverse of $t \in T$ is in T, while the product of two elements in T is in S. This means that for any elements $t \in T$ we have $t \cdot(2)^{-1} \in S$, so that we can write the square root of t has a multiple of ε. More precisely:

- $(-2) / 2=-1=5^{2}$ implies that $-2=(\pm 5 \varepsilon)^{2}$;
- $6 / 2=3=4^{2}$ gives $6=(\pm 4 \varepsilon)^{2}$. Moreover, $-6=\left(5^{2}\right) \cdot 6$ gives $-6=$ $(\pm 20 \varepsilon)^{2}=(\pm 6 \varepsilon)^{2}$;
- Finally, $5 / 2=9=3^{2}$ gives $5=(\pm 3 \varepsilon)^{2}$ and $-5=(\pm 15 \cdot \varepsilon)^{2}=(\pm 2 \cdot \varepsilon)^{2}$.

4. Let R be a commutative ring and $n \geqslant 1$.
(a) Construct an isomorphism of R-modules

$$
\operatorname{Hom}_{(R-\mathrm{Mod})}\left(R^{n}, R^{n}\right) \cong R^{n^{2}} .
$$

(b) For $A=\left(a_{i, j}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} \in R^{n^{2}}$, define

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \varepsilon(\sigma) a_{1, \sigma(1)} \cdots a_{n, \sigma(n)} .
$$

Prove that, for each $A, B \in R^{n^{2}}, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Prove moreover that $\operatorname{det}(A) \in R^{\times}$if and only if A is invertible. [Here, the matrix product is defined with the same formulas as for the usual matrix product over fields]

Solution:

(a) For $j=1, \ldots, n$, consider the element $e_{j}=\left(\delta_{i j}\right)_{1 \leqslant i \leqslant n} \in R^{n}$, where $\delta_{i j}=1_{R}$ if $i=j$ and $\delta_{i j}=0_{R}$ otherwise. The elements e_{j} form a free R-basis of R^{n}, so that a morphism $f \in \operatorname{Hom}_{(R-\operatorname{Mod}}\left(R^{n}, R^{n}\right)$ is uniquely determined by the images $f\left(e_{j}\right)$. Those can be written uniquely as linear combinations

$$
f\left(e_{j}\right)=\sum_{i=1}^{n} a_{i j} e_{i} .
$$

In this way, we have defined a bijection

$$
\begin{aligned}
\varphi: \operatorname{Hom}_{(R-\operatorname{Mod}}\left(R^{n}, R^{n}\right) & \longrightarrow R^{n^{2}} \\
f & \longmapsto\left(a_{i j}\right)_{i j}, a_{i j}=\pi_{i}\left(f\left(e_{j}\right)\right),
\end{aligned}
$$

Since for each $f, g \in \operatorname{Hom}_{(R-\operatorname{Mod}}\left(R^{n}, R^{n}\right)$ and $r \in R$ we have equalities

$$
\pi_{i}\left((f+r g)\left(e_{j}\right)\right)=\pi_{i}\left(f\left(e_{j}\right)+r\left(g\left(e_{j}\right)\right)\right)=\pi_{i}\left(f\left(e_{j}\right)\right)+r \pi_{i}\left(g\left(e_{j}\right)\right.
$$

for all i and j, we know that φ is also an isomorphism of R-modules.
(b) Let $M=R^{n}$ and define $M^{n} \cong R^{n^{2}}$ by looking at the n vectors as columns of a matrix. We say that a map $\varphi: M^{n} \longrightarrow R$ is a multilinear form if for each $j=1, \ldots, n, r_{j} \in R$ and $A_{1}, \ldots, A_{n}, A_{j}^{\prime} \in M$ one gets

$$
\varphi\left(A_{1}, \ldots, r A_{j}+A_{j}^{\prime}, \ldots, A_{n}\right)=r_{j} \varphi\left(A_{1}, \ldots, A_{n}\right)+\varphi\left(A_{1}, \ldots, A_{j}^{\prime}, \ldots, A_{n}\right)
$$

We say that φ is alternating if for every $\varphi\left(A_{1}, \ldots, A_{n}\right)=0$ when $A_{i}=A_{j}$ for $i \neq j$.
If $\varphi: M^{n} \longrightarrow R$ is a multilinear alternating form then the following property holds:

$$
\left(^{*}\right) \text { For each } \sigma \in S_{n}, \varphi\left(A_{\sigma(1)}, \ldots, A_{\sigma(n)}\right)=\varepsilon(\sigma) \varphi\left(A_{1}, \ldots, A_{n}\right) \text {. }
$$

Since S_{n} is generated by transpositions, it is enough to prove $\left({ }^{*}\right)$ for a transposition. For simplicity, we just prove it for $\sigma=(12)$, the proof for other transpositions being analogous. Since φ is linear we have that:

$$
\begin{aligned}
& \varphi\left(A_{1}+A_{2}, A_{1}+A_{2}, A_{3}, \ldots, A_{n}\right)=\varphi\left(A_{1}, A_{1}, A_{3}, \ldots, A_{n}\right) \\
& \quad+\varphi\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)+\varphi\left(A_{2}, A_{1}, A_{3}, \ldots, A_{n}\right)+\varphi\left(A_{2}, A_{2}, A_{3}, \ldots, A_{n}\right) .
\end{aligned}
$$

Using the fact that φ is alternating, we are left with

$$
0=\varphi\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)+\varphi\left(A_{2}, A_{1}, A_{3}, \ldots, A_{n}\right),
$$

which proves that a switch of the first two coordinates results in a change of sign (which is what we expected as $\operatorname{sgn}((12))=-1$).
It can be checked in the same way as done over fields that the function det is alternating and multilinear, and that it satisfies the Lagrangian expansion in the first column: for $A=\left(a_{i j}\right)$,

$$
(* *) \quad \operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \operatorname{det}\left(A^{\prime}(i, 1)\right)
$$

where $A^{\prime}(i, j)$ is the matrix obtained by deleting the i-th column and the j-th row from A.
Now we prove the following statement by induction on n
$\left(^{* * *}\right)$ If $\varphi: M^{n} \longrightarrow R$ is alternating multilinear, then $\varphi(A)=\varphi\left(\operatorname{Id}_{n}\right) \operatorname{det}(A)$.
The statement is clear for $n=1$, because $\varphi(a)=a \varphi(1)$. Now suppose that $\left(^{* * *}\right)$ holds for $n-1$ and let us prove it holds for n. Let $E_{1}, \ldots, E_{n} \in M$ be the columns defined by $E_{j}=\left(\delta_{i j}\right)_{1 \leqslant i \leqslant n}$. For $B=\left(b_{i}\right) \in M$, we can write

$$
B=\sum_{i=0}^{n} b_{i} E_{i} .
$$

For $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, with $A_{j}=\left(a_{i j}\right)_{i}$, we can write by multilinearity:

$$
\begin{equation*}
\varphi(A)=\sum_{i=1}^{n} a_{i 1} \varphi\left(E_{i}, A_{2}, \ldots, A_{n}\right) \tag{2}
\end{equation*}
$$

One can prove with a simple recursion that

$$
\begin{equation*}
\varphi\left(E_{i}, A_{2}, \ldots, A_{n}\right)=\varphi\left(E_{i}, A_{2}-a_{i 2} E_{i}, \ldots, A_{n}-a_{i n} E_{i}\right) \tag{3}
\end{equation*}
$$

because φ is alternating multilinear so that we can add to any column a multiple of another column without changing the value of φ. Consider the map $\theta_{i}: R^{(n-1)^{2}} \longrightarrow R^{n^{2}}$ sending B to the unique matrix $\theta_{i}(B)=\left(c_{\lambda, \mu}\right) \in M^{n}$ such that

- $\left(\theta_{i}(B)\right)^{\prime}(i, 1)=B$;
- the first column of $\theta_{i}(B)$ is E_{i};
- the i-th row of $\theta_{i}(B)$ is $(1,0, \ldots, 0)$.

One can easily check that the function $\varphi \circ \theta_{i}: R^{(n-1)^{2}} \longrightarrow R$ is an alternating multilinear form, so that by inductive hypothesis $\varphi \circ \theta_{i}=\varphi\left(\theta_{i}\left(\operatorname{Id}_{n}\right)\right)$ det. Since the matrix ($E_{i}, A_{2}-a_{i 2} E_{i}, \ldots, A_{n}-a_{i n} E_{i}$) in the argument of φ on the right hand side of (3) is $\theta_{i}\left(A^{\prime}(i, 1)\right),(3)$ gives

$$
\begin{aligned}
\varphi\left(E_{i}, A_{2}, \ldots, A_{n}\right) & =\varphi\left(\theta_{i}\left(\operatorname{Id}_{n-1}\right)\right) \operatorname{det}\left(A^{\prime}(i, 1)\right)= \\
& =\varphi\left(E_{i}, E_{1}, \ldots, E_{i-1}, E_{j+1}, \ldots, E_{n}\right) \operatorname{det}\left(A^{\prime}(i, 1)\right) \\
& \stackrel{(*)}{=}(-1)^{i-1} \varphi\left(E_{1}, \ldots, E_{i-1}, E_{i}, E_{j+1}, \ldots, E_{n}\right) \operatorname{det}\left(A^{\prime}(i, 1)\right) \\
& =(-1)^{i+1} \varphi\left(\operatorname{Id}_{n}\right) \operatorname{det}\left(A^{\prime}(i, 1)\right) .
\end{aligned}
$$

By (2), we deduce that

$$
\varphi(A)=\sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \varphi\left(\operatorname{Id}_{n}\right) \operatorname{det}\left(A^{\prime}(i, 1)\right) \stackrel{(* *)}{=} \varphi\left(\operatorname{Id}_{n}\right) \operatorname{det}(A),
$$

proving (${ }^{* * *)}$.
We now make the following claim:
$\left.{ }^{(* * * *}\right) B \mapsto \operatorname{det}(A B)$ is an alternaring multilinear form on M^{n} for all $A \in M^{n}$.
If the claim holds, then for each $A, B \in M^{n}$ we know by (${ }^{* * *}$) that

$$
\operatorname{det}(A B)=\operatorname{det}\left(A \cdot \operatorname{Id}_{n}\right) \operatorname{det}(B)=\operatorname{det}(A) \operatorname{det}(B)
$$

proving the multiplicativity of the determinant.
In order to prove $\left({ }^{* * * *}\right)$ let $f_{A}: M^{n} \longrightarrow R$ be the map $f_{A}(B)=\operatorname{det}(A B)$. For $B \in M^{n}$, write $B=\left(B_{1}, \ldots, B_{n}\right)$. Then $A B=\left(A B_{1}, \ldots, A B_{n}\right)$. An equality $B_{i}=B_{j}$ implies $A B_{i}=A B_{j}$. Moreover, the map $M \longrightarrow M$ sending $X \mapsto A X$ is linear. Since det is an alternating multilinear form, it easily
 remaining claim to prove for the multiplicativity of the determinant.
In order to conclude, we prove the characterization of invertible matrices in terms of the determinant. Suppose that $A \in R^{n^{2}}$ is invertible and let $B \in R^{n^{2}}$ be such that $A B=\operatorname{Id}_{n}$. Then $1=\operatorname{det}\left(\operatorname{Id}_{n}\right)=\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, so that $\operatorname{det}(A) \in R^{\times}$-it has inverse B. Conversely, it can be proven as done over fields in Linear Algebra that, denoting by $C(A)$ the matrix of cofactors of A, there is an equality $C(A)^{T} A=A C(A)^{T}=\operatorname{det}(A) \operatorname{Id}_{n}$, so that if $\operatorname{det}(A) \in R^{\times}$ the matrix $\operatorname{det}(A)^{-1} C(A)^{T}$ is an inverse of A.
5. Show that \mathbb{Q} is a \mathbb{Z}-module without torsion, that it is not finitely generated and not free.

Solution: The \mathbb{Z}-module \mathbb{Q} has no torsion, because the ring \mathbb{Q} is an integral domain, so that for $m \in \mathbb{Z} \backslash\{0\}$ and $q \in \mathbb{Q} \backslash\{0\}$ we know that $m \cdot q \neq 0$. This means that \mathbb{Q} has no \mathbb{Z}-torsion.

Given a finite set of rational numbers $F=\left\{\frac{a_{1}}{b_{1}}, \ldots, \frac{a_{m}}{b_{m}}\right\}$ for $a_{j} \in \mathbb{Z}$ and $b_{j} \in \mathbb{Z}_{>0}$, for every $q \in\langle F\rangle$, we notice that $N q \in \mathbb{Z}$ for $N=\prod_{j=1}^{m} b_{j}$. Hence $\langle F\rangle \subset \frac{1}{N} \mathbb{Z}$, which is strictly smaller than \mathbb{Q} (for example, it does not contain $\frac{1}{N^{2}}$. This implies that \mathbb{Q} is not finitely generated.
Given $q_{1}, q_{2} \in \mathbb{Q} \backslash\{0\}$, there exist $\lambda_{1}, \lambda_{2} \in \mathbb{Z} \backslash\{0\}$ such that $\lambda_{1} q_{1}=\lambda_{2} q_{2}$. This implies that each two non-zero elements of \mathbb{Q} are not linear independent. If \mathbb{Q} were free, the free generating set of \mathbb{Q} over \mathbb{Q} would necessarily contain only 1 element, contradicting the fact that \mathbb{Q} is not finitely generated. Hence \mathbb{Q} is not free.
6. Let K be a finite field of cardinality $q=p^{n}$ for some prime $p \neq 2$. Suppose that $\varepsilon \in K^{\times}$is not a square in K. Define

$$
T=\left\{\left(\begin{array}{cc}
a & b \\
b \varepsilon & a
\end{array}\right)\right\} \subset \mathrm{GL}_{2}(K)
$$

(a) Show that T is an abelian subgroup of $\mathrm{GL}_{2}(K)$.
(b) Show that T is isomorphic to L^{\times}where L is the unique extension of K of degree 2.
(c) For $x=\left(\begin{array}{cc}a & b \\ b \varepsilon & a\end{array}\right) \in T$, prove that

$$
x^{q}=\left(\begin{array}{cc}
a & -b \\
-b \varepsilon & a
\end{array}\right) .
$$

Solution:

(a) Notice that T contains the identity matrix so it is non-empty. For $x=$

$$
\begin{aligned}
& \left(\begin{array}{cc}
a & b \\
b \varepsilon & a
\end{array}\right) \in T \text { and } x^{\prime}=\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
b^{\prime} \varepsilon & a^{\prime}
\end{array}\right) \in T \text {, we see that } \\
& \left(\begin{array}{cc}
a & b \\
b \varepsilon & a
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
b^{\prime} \varepsilon & a^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime}+b b^{\prime} \varepsilon & a b^{\prime}+a^{\prime} b \\
\left(a b^{\prime}+a^{\prime} b\right) \varepsilon & a a^{\prime}+b b^{\prime} \varepsilon
\end{array}\right) \in T
\end{aligned}
$$

and that switching $a \leftrightarrow a^{\prime}$ and $b \leftrightarrow b^{\prime}$ the result does not change, so that multiplication in T is closed and commutative. Moreover, the inverse of x is

$$
x^{-1}=\frac{1}{a^{2}-\varepsilon b^{2}}\left(\begin{array}{cc}
a & b \\
b \varepsilon & a
\end{array}\right) \in T
$$

and we can conclude that T is an abelian subgroup of $\mathrm{GL}_{2}(K)$.
(b) Let $T_{0}=T \cup\{0\} \subset K^{2 \times 2}$. It is clear that T_{0} is closed under sum and multiplication of matrices, and that both operations are commutative in T_{0}. It contains the matrices 0 and 1 and it is closed under taking the opposite of a matrix. Hence it is a commutative subring of the (non-commutative)
ring $K^{2 \times 2}$. By part (a), $T_{0}^{\times}=T$, so that T_{0} is a field. Notice that for each $(a, b) \in K^{2} \backslash\{(0,0)\}$, the matrix $x=\left(\begin{array}{cc}a & b \\ b \varepsilon & a\end{array}\right)$ has determinant $a^{2}-\varepsilon b^{2} \neq 0$, because the equality $a^{2}=\varepsilon b^{2}$ cannot hold since ε is not a square in K. Hence

$$
\operatorname{Card}\left(T_{0}\right)=1+\operatorname{Card}(T)=1+\left(q^{2}-1\right)=q^{2} .
$$

This implies that T_{0} is a field of q^{2} elements and as such it is isomorphic to L, the unique subfield of \bar{K} with cardinality q^{2}. This isomorphism restricts to an isomorphism of the multiplicative groups $T \cong L^{\times}$.
(c) The field K identifies with the subfield of T_{0} consisting of scalar matrices. Under this identification, for $\alpha=\left(\begin{array}{cc}0 & 1 \\ \varepsilon & 0\end{array}\right)$, we can write $x=x^{q}=\left(\begin{array}{cc}a & b \\ b \varepsilon & a\end{array}\right)=$ $a+b \alpha$. Then x is a root of $\operatorname{irr}(x, K)=(X-a)^{2}-\varepsilon b^{2}$ and by Exercise 2(b) x^{q} is the other root of this polynomial, that is, $x^{q}=a-b \alpha$. Hence

$$
x^{q}=\left(\begin{array}{cc}
a & -b \\
-b \varepsilon & a
\end{array}\right) .
$$

