
D-MATH Algebra I HS17
Prof. Emmanuel Kowalski

Solution 13
Finite Fields, Modules over a commutative ring

1. Let L be a fixed algebraic closure of Fp and, for each n ∈ Z>0, let Fpn ⊆ L the
unique subfield of cardinality pn.

(a) Show that L =
⋃
n>1 Fpn .

(b) Show that Fpn ⊂ Fpm if and only if n|m.

(c) Let x ∈ Fpn for some n > 1. Prove that

x+ xp + . . .+ xp
n−1 ∈ Fp

and

x1+p+···+p
n−1 ∈ Fp.

(d) Define the norm map N : F×pn −→ F×p by sending x 7→ x1+p+···+p
n−1

. Prove
that it is a surjective group homomorphism. [Hint: For surjectivity, take a
generator x of F×pn and find the order of N(x)]

Solution:

(a) Each Fpn lies in L by definition, so that
⋃
n>1 Fpn ⊂ L. Conversely, for every

α ∈ L, the extension Fp(α)/Fp is finite of degree d := deg(irr(α,Fp)). Hence
Fp(α) is a subfield of cardinality pd which means that Fp(α) = Fpd , implying
that α ∈

⋃
n>1 Fpn . As we have proven both inclusions, we can conclude that

L =
⋃
n>1 Fpn .

(b) Recall the characterization of Fpn in terms of the Frobenius isomorphism
Fr : L −→ L (sending x 7→ xp):

Fpn = {α ∈ Fpn : Frn(α) = α}.

If n|m, say m = nk, then Frm = (Frn)k, so that by the above characterization
Fpn ⊂ Fpm .

Conversely assume that Fpn ⊂ Fpm and write m = kn + r for 0 6 r < n.
Then Frm(α) = Frn(α) = α for all α ∈ Fpn , which means that

α = Frm(α) = Frr((Frn)k(α)) = Frr(α).

For r 6= 0, this implies that Fpn ⊂ Fpr , a contradiction. Hence r = 0 and
n|m.
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(c) If x ∈ Fpn , then x = Frn(x) = xp
n
. In particular,

Fr(x+ xp + . . .+ xp
n−1

) = xp + xp
2

+ . . .+ xp
n

= x+ xp + xp
2

+ . . .+ xp
n−1,

Fr(x1+p+···+p
n−1

) = xp(1+p+···+p
n−1) = xp+p

2+···+pn = x1+p+p
2···+pn−1

,

so that x+ xp + . . .+ xp
n−1

and x1+p+p
2···+pn−1

are fixed by Fr, which implies
that they lie in Fp.

(d) By part (c), x 7→ x1+p+···+p
n−1

defines a map Fpn −→ Fp. Since Fpn is a field,
x1+p+···+p

n−1
= 0 if and only if x = 0, so that N : F×pn −→ F×p is a well-defined

map. It is a group homomorphism because F×pn is an abelian group, meaning
that (xy)k = xkyk for each x, y ∈ F×pn and k ∈ Z.

Let x be a generator of F×pn . Then x has order pn − 1. Since

pn − 1 = (p− 1)(1 + p+ · · ·+ pn−1),

the element N(x) = x1+p+···+p
n−1 ∈ F×pn has order p − 1, so that it is a

generator of F×p , implying that N is surjective.

2. Let Fq be a finite field of cardinality q = pn and f ∈ K[X] an irreducible polyno-
mial of degree d > 1.

(a) Prove that f divides the polynomial Xqm −X if and only if d|m.

(b) Let x be a root of f in a fixed algebraic closure Fq. Show that the roots of f
are

x, xq, . . . , xq
d−1

.

(c) Assume that p 6= 2 and let ε ∈ F×q be such that ε is not a square in Fq. Let

α ∈ Fq be such that α2 = ε and set L = Fq(α). For y = x0 + αx1 ∈ L,
compute yq.

(d) Prove that the norm map N : F×pn −→ F×p defined in Exercise 1(d) coincides
with the one defined in Assignment 12, Exercise 7.

Solution:

(a) Fix an algebraic closure Fq = Fp of Fq. Let α ∈ Fq be a root of f , so
that f = λ irr(α,Q) for some λ ∈ F×q . Then [Fq(α) : Fq] = d, so that

Fq(α) = Fqd = Fpnd , the unique subfield of Fq with qn elements.

If d|m, then, by Exercise 1(b),

α ∈ Fqd = Fpnd ⊂ Fpnm = Fqm ,

so that α is a root of Xqm−X and irr(α,Q)|Xqm−X by definition of minimal
polynomial, which implies that f |Xqm −X.

Conversely, if f |Xqm − X, then α is a root of Xqm − X, so that α ∈ Fqm .
Then Fqd = Fq(α) ⊂ Fqm , which by Exercise 1(b) implies that d|m.
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(b) For each ` ∈ {0, . . . , d− 1}, we see that

0 = (f(x))q
`

= f(xq
`

),

where the second equality is due to the fact that a 7→ aq
`

is the `-th power of
the field automorphism Frq of Fq sending a 7→ aq, which respects sums and
multiplication and is the identity on Fq (hence on the coefficients of f). This

means that the elements xq
`

are all root of f . We claim that those elements
are all distinct for d ∈ {0, . . . , d − 1}. Then they are d distinct roots of f
which implies that there are no other roots, because deg(f) = d.

In order to prove our claim, suppose by contradiction that xq
j

= xq
k

for
0 6 j < k 6 d− 1 and let r = k − j. Then, raising both sides to the qd−k-th
power and recalling that xq

d
= x since Fq(x) = Fqd , we obtain

xq
d−(k−j)

= x,

so that f = λ irr(α,F) |Xqd−(k−j) − X, for some λ ∈ F×q , which by part (a)
implies that d|d− (k − j), a contradiction.

(c) Let x0, x1 ∈ Fq and y = x0 +αx1. If x1 = 0, then y ∈ Fq, so that yq = y = x0.

Now suppose that x1 6= 0. Clearly, [L : Fq] = deg(irr(α,Fq)) = 2, because α
is a root of X2 − ε and α 6∈ Fq since ε is not a square in Fq. We notice that

Fq(y) = Fq(x0 + αx1) = Fq(α) = L,

By part (b), yq is the other root of irr(y,Q) = (X − x0)2 − εx21, hence

yq = x0 − εx1.

(d) In this last part, q = p. Let x be a generator of F×pn . Since the norm map
N is a group homomorphism, it is uniquely determined by N(x). The norm
map N1 defined in Exercise 1(d) is determined by

N1(x) =
n−1∏
j=0

xp
j

. (1)

Let f = irr(x,Fp). Since Fp(x) = Fpn (because < x >= F×pn), we know
that deg(f) = n. Write f =

∑n
k=0 akX

k with an = 1. The norm map N2

defined in Assignment 12, Exercise 7, is determined by N2(x) = (−1)na0,
because of part (e) of that exercise. But, by part (b), f has n distinct roots
x, xp, . . . , xp

n−1
, so that

f =
n−1∏
j=0

(X − xpj)
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and a0 = (−1)n
∏n−1

j=0 x
pj . Hence

N2(x) = (−1)na0 =
n−1∏
j=0

xp
j

= N1(x)

and the two norms coincide on the generator x and hence on the whole F×pn .

3. (a) Show that 2 is not a square in F13 and let ε be a square root of 2 in F132 .

(b) Find all non-squares in F13.

(c) Express the square roots of all non squares in F13 as elements of F132 using
the F13-basis (1, ε).

Solution:

(a) Let S := {x2 : x ∈ F×13} be the set of squares in F×13. It is the image of the
group automorphism ϕ of F×13 sending x 7→ x2. Since ker(ϕ) = {1, 12 = −1}
(as there are at most two roots of the polynomial X2 − 1), we know that
|S| = 12/2 = 6 by the First Isomorphism of groups.

Since (−x)2 = x2, we see that indeed S = {12, 22, 32, 42, 52, 62}, which can be
easily computed as

S = {1, 4, 9, 3, 12, 10} = {±1,±3,±4}.

In particular, 2 is not a square in F13.

(b) Let T = F×13 r S be the set of non-squares. Then, by part (a),

T = {±2,±5,±6}.

(c) Since T is the coset of the index-2 subgroup S in F×13, the inverse of t ∈ T is
in T , while the product of two elements in T is in S. This means that for any
elements t ∈ T we have t · (2)−1 ∈ S, so that we can write the square root of
t has a multiple of ε. More precisely:

• (−2)/2 = −1 = 52 implies that −2 = (±5ε)2;

• 6/2 = 3 = 42 gives 6 = (±4ε)2. Moreover, −6 = (52) · 6 gives −6 =
(±20ε)2 = (±6ε)2;

• Finally, 5/2 = 9 = 32 gives 5 = (±3ε)2 and −5 = (±15 · ε)2 = (±2 · ε)2.

4. Let R be a commutative ring and n > 1.

(a) Construct an isomorphism of R-modules

Hom(R-Mod)(R
n, Rn) ∼= Rn2

.
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(b) For A = (ai,j)16i6n
16j6n

∈ Rn2
, define

det(A) =
∑
σ∈Sn

ε(σ)a1,σ(1) · · · an,σ(n).

Prove that, for each A,B ∈ Rn2
, det(AB) = det(A) det(B). Prove moreover

that det(A) ∈ R× if and only if A is invertible. [Here, the matrix product is
defined with the same formulas as for the usual matrix product over fields]

Solution:

(a) For j = 1, . . . , n, consider the element ej = (δij)16i6n ∈ Rn, where δij = 1R
if i = j and δij = 0R otherwise. The elements ej form a free R-basis of Rn,
so that a morphism f ∈ Hom(R-Mod(Rn, Rn) is uniquely determined by the
images f(ej). Those can be written uniquely as linear combinations

f(ej) =
n∑
i=1

aijei.

In this way, we have defined a bijection

ϕ : Hom(R-Mod(Rn, Rn) −→ Rn2

f 7−→ (aij)ij, aij = πi(f(ej)),

Since for each f, g ∈ Hom(R-Mod(Rn, Rn) and r ∈ R we have equalities

πi((f + rg)(ej)) = πi(f(ej) + r(g(ej))) = πi(f(ej)) + rπi(g(ej)

for all i and j, we know that ϕ is also an isomorphism of R-modules.

(b) Let M = Rn and define Mn ∼= Rn2
by looking at the n vectors as columns of

a matrix. We say that a map ϕ : Mn −→ R is a multilinear form if for each
j = 1, . . . , n, rj ∈ R and A1, . . . , An, A

′
j ∈M one gets

ϕ(A1, . . . , rAj + A′j, . . . , An) = rjϕ(A1, . . . , An) + ϕ(A1, . . . , A
′
j, . . . , An).

We say that ϕ is alternating if for every ϕ(A1, . . . , An) = 0 when Ai = Aj for
i 6= j.

If ϕ : Mn −→ R is a multilinear alternating form then the following property
holds:

(*) For each σ ∈ Sn, ϕ(Aσ(1), . . . , Aσ(n)) = ε(σ)ϕ(A1, . . . , An).

Since Sn is generated by transpositions, it is enough to prove (*) for a trans-
position. For simplicity, we just prove it for σ = (1 2), the proof for other
transpositions being analogous. Since ϕ is linear we have that:

ϕ(A1 + A2, A1 + A2, A3, . . . , An) = ϕ(A1, A1, A3, . . . , An)

+ ϕ(A1, A2, A3, . . . , An) + ϕ(A2, A1, A3, . . . , An) + ϕ(A2, A2, A3, . . . , An).
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Using the fact that ϕ is alternating, we are left with

0 = ϕ(A1, A2, A3, . . . , An) + ϕ(A2, A1, A3, . . . , An),

which proves that a switch of the first two coordinates results in a change of
sign (which is what we expected as sgn((1 2)) = −1).

It can be checked in the same way as done over fields that the function det
is alternating and multilinear, and that it satisfies the Lagrangian expansion
in the first column: for A = (aij),

(∗∗) det(A) =
n∑
i=1

(−1)i+1ai1 det(A′(i, 1))

where A′(i, j) is the matrix obtained by deleting the i-th column and the j-th
row from A.

Now we prove the following statement by induction on n

(***) If ϕ : Mn −→ R is alternating multilinear, then ϕ(A) = ϕ(Idn) det(A).

The statement is clear for n = 1, because ϕ(a) = aϕ(1). Now suppose that
(***) holds for n− 1 and let us prove it holds for n. Let E1, . . . , En ∈M be
the columns defined by Ej = (δij)16i6n. For B = (bi) ∈M , we can write

B =
n∑
i=0

biEi.

For A = (A1, A2, . . . , An), with Aj = (aij)i, we can write by multilinearity:

ϕ(A) =
n∑
i=1

ai1ϕ(Ei, A2, . . . , An) (2)

One can prove with a simple recursion that

ϕ(Ei, A2, . . . , An) = ϕ(Ei, A2 − ai2Ei, . . . , An − ainEi), (3)

because ϕ is alternating multilinear so that we can add to any column a
multiple of another column without changing the value of ϕ. Consider the
map θi : R(n−1)2 −→ Rn2

sending B to the unique matrix θi(B) = (cλ,µ) ∈Mn

such that

• (θi(B))′(i, 1) = B;

• the first column of θi(B) is Ei;

• the i-th row of θi(B) is (1, 0, . . . , 0).
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One can easily check that the function ϕ◦θi : R(n−1)2 −→ R is an alternating
multilinear form, so that by inductive hypothesis ϕ ◦ θi = ϕ(θi(Idn)) det.
Since the matrix (Ei, A2−ai2Ei, . . . , An−ainEi) in the argument of ϕ on the
right hand side of (3) is θi(A

′(i, 1)), (3) gives

ϕ(Ei, A2, . . . , An) = ϕ(θi(Idn−1)) det(A′(i, 1)) =

= ϕ(Ei, E1, . . . , Ei−1, Ej+1, . . . , En) det(A′(i, 1))

(∗)
= (−1)i−1ϕ(E1, . . . , Ei−1, Ei, Ej+1, . . . , En) det(A′(i, 1))

=(−1)i+1ϕ(Idn) det(A′(i, 1)).

By (2), we deduce that

ϕ(A) =
n∑
i=1

(−1)i+1ai1ϕ(Idn) det(A′(i, 1))
(∗∗)
= ϕ(Idn) det(A),

proving (***).

We now make the following claim:

(****) B 7→ det(AB) is an alternaring multilinear form on Mn for all A ∈Mn.

If the claim holds, then for each A,B ∈Mn we know by (***) that

det(AB) = det(A · Idn) det(B) = det(A) det(B),

proving the multiplicativity of the determinant.

In order to prove (****) let fA : Mn −→ R be the map fA(B) = det(AB).
For B ∈ Mn, write B = (B1, . . . , Bn). Then AB = (AB1, . . . , ABn). An
equality Bi = Bj implies ABi = ABj. Moreover, the map M −→M sending
X 7→ AX is linear. Since det is an alternating multilinear form, it easily
follows that fA is an alternating linear form, too, proving (****), the last
remaining claim to prove for the multiplicativity of the determinant.

In order to conclude, we prove the characterization of invertible matrices in
terms of the determinant. Suppose that A ∈ Rn2

is invertible and let B ∈ Rn2

be such that AB = Idn. Then 1 = det(Idn) = det(AB) = det(A) det(B), so
that det(A) ∈ R×—it has inverse B. Conversely, it can be proven as done over
fields in Linear Algebra that, denoting by C(A) the matrix of cofactors of A,
there is an equality C(A)TA = AC(A)T = det(A)Idn, so that if det(A) ∈ R×
the matrix det(A)−1C(A)T is an inverse of A.

5. Show that Q is a Z-module without torsion, that it is not finitely generated and
not free.

Solution: The Z-module Q has no torsion, because the ring Q is an integral
domain, so that for m ∈ Z r {0} and q ∈ Qr {0} we know that m · q 6= 0. This
means that Q has no Z-torsion.
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Given a finite set of rational numbers F = {a1
b1
, . . . , am

bm
} for aj ∈ Z and bj ∈ Z>0,

for every q ∈ 〈F 〉, we notice that Nq ∈ Z for N =
∏m

j=1 bj. Hence 〈F 〉 ⊂ 1
N
Z,

which is strictly smaller than Q (for example, it does not contain 1
N2 . This implies

that Q is not finitely generated.

Given q1, q2 ∈ Q r {0}, there exist λ1, λ2 ∈ Z r {0} such that λ1q1 = λ2q2. This
implies that each two non-zero elements of Q are not linear independent. If Q were
free, the free generating set of Q over Q would necessarily contain only 1 element,
contradicting the fact that Q is not finitely generated. Hence Q is not free.

6. Let K be a finite field of cardinality q = pn for some prime p 6= 2. Suppose that
ε ∈ K× is not a square in K. Define

T =

{(
a b
bε a

)}
⊂ GL2(K).

(a) Show that T is an abelian subgroup of GL2(K).

(b) Show that T is isomorphic to L× where L is the unique extension of K of
degree 2.

(c) For x =

(
a b
bε a

)
∈ T , prove that

xq =

(
a −b
−bε a

)
.

Solution:

(a) Notice that T contains the identity matrix so it is non-empty. For x =(
a b
bε a

)
∈ T and x′ =

(
a′ b′

b′ε a′

)
∈ T , we see that

(
a b
bε a

)(
a′ b′

b′ε a′

)
=

(
aa′ + bb′ε ab′ + a′b

(ab′ + a′b)ε aa′ + bb′ε

)
∈ T

and that switching a ↔ a′ and b ↔ b′ the result does not change, so that
multiplication in T is closed and commutative. Moreover, the inverse of x is

x−1 =
1

a2 − εb2

(
a b
bε a

)
∈ T

and we can conclude that T is an abelian subgroup of GL2(K).

(b) Let T0 = T ∪ {0} ⊂ K2×2. It is clear that T0 is closed under sum and
multiplication of matrices, and that both operations are commutative in T0.
It contains the matrices 0 and 1 and it is closed under taking the opposite
of a matrix. Hence it is a commutative subring of the (non-commutative)
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ring K2×2. By part (a), T×0 = T , so that T0 is a field. Notice that for each

(a, b) ∈ K2r{(0, 0)}, the matrix x =

(
a b
bε a

)
has determinant a2−εb2 6= 0,

because the equality a2 = εb2 cannot hold since ε is not a square in K. Hence

Card(T0) = 1 + Card(T ) = 1 + (q2 − 1) = q2.

This implies that T0 is a field of q2 elements and as such it is isomorphic to
L, the unique subfield of K with cardinality q2. This isomorphism restricts
to an isomorphism of the multiplicative groups T ∼= L×.

(c) The field K identifies with the subfield of T0 consisting of scalar matrices. Un-

der this identification, for α =

(
0 1
ε 0

)
, we can write x = xq =

(
a b
bε a

)
=

a + bα. Then x is a root of irr(x,K) = (X − a)2 − εb2 and by Exercise 2(b)
xq is the other root of this polynomial, that is, xq = a− bα. Hence

xq =

(
a −b
−bε a

)
.
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