Übungsblatt 7

Abgabe am 14. November 17

Aufgabe 1. Berechne

$$\int_C \frac{e^{z^2}}{z^2 - 6z} dz$$

für

- (a) $C = \{z : |z 2| = 1\}$
- (b) $C = \{z : |z 2| = 3\}$
- (c) $C = \{z : |z 2| = 5\}$

Hinweis: Partialbruchzerlegung

Aufgabe 2. (a) Für R > 0 definiere man $D_R = \{z \in \mathbb{C} : \text{Im } z > 0, |z| < R\}$. Zeige

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^4 + 1} = \lim_{R \longrightarrow \infty} \int_{\partial D_R} \frac{\mathrm{d}z}{z^4 + 1}.$$

(b) Zeige, dass für R > 1 das Integral

$$\int_{\partial D_R} \frac{\mathrm{d}z}{z^4 + 1}$$

von R unabhängig ist.

(c) Verwende den Integralsatz und die Integralformel von Cauchy sowie Partialbruchzerlegung, um für grosse R

$$\int_{\partial D_R} \frac{\mathrm{d}z}{z^4 + 1}$$

zu berechnen.

Aufgabe 3. Sei $U \subset \mathbb{C}$ offen und der Kreisring $\{a \in \mathbb{C} : r \leq |z - a| \leq R\}$ in U. Sei $f : U \longrightarrow \mathbb{C}$ analytisch. Zeige, dass $\int_{\partial B(a,r)} f(z) dz = \int_{\partial B(a,R)} f(z) dz$.

* Aufgabe 4. Sei f analytisch auf $B(z_o, r)$ für r > 0, mit $f(z_0) = 0$ aber $f'(z_0) \neq 0$. Man zeige für genügend kleine ϵ , dass

$$\int_{\partial B(z_0,\epsilon)} \frac{dz}{f(z)} = \frac{2\pi i}{f'(z_0)}$$

gilt.

Hinweis: Betrachte noch einmal den Beweis der Cauchy-Integralformel.