MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. Exercise. Let \mathcal{P} be the set of primes. Prove that $\sum_{p \in \mathcal{P}} \frac{1}{p}=+\infty$.
1.2. Solution. Let $s>1$. Then from the Euler product of the Zeta function,

$$
\begin{aligned}
\log \zeta(s) & =\sum_{p \in \mathcal{P}}-\log \left(1-p^{-s}\right)=\sum_{p \in \mathcal{P}} \sum_{k=1}^{\infty} \frac{1}{k p^{k s}} \\
& \leq \sum_{p \in \mathcal{P}} \frac{1}{p^{s}}+\sum_{p \in \mathcal{P}} \sum_{k=2} \frac{1}{p^{k}}=\sum_{p \in \mathcal{P}} \frac{1}{p^{s}}+\sum_{p \in \mathcal{P}} \frac{1}{p(p-1)} \\
& =\sum_{p \in \mathcal{P}} \frac{1}{p^{s}}+O(1)
\end{aligned}
$$

As we know that $\lim _{s \rightarrow 1+} \zeta(s)=+\infty$, letting $s \rightarrow 1+$ in the above inequality we conclude that

$$
\lim _{s \rightarrow 1+} \sum_{p \in \mathcal{P}} \frac{1}{p^{s}}=+\infty
$$

hence the result.
1.3. Summation by Parts. Let $a: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function, let $0<y<x$ and let $f:[y, x] \rightarrow \mathbb{C}$ be a function with continuous derivative on $[y, x]$. Then

$$
\sum_{y<n \leq x} a_{n} f(n)=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
$$

where $A(x)=\sum_{n \leq x} a_{n}$.
1.4. Exercise. Prove that for every $\delta>0$,

$$
\pi(x):=|\{p \in \mathcal{P} \mid p \leq x\}|
$$

is bigger than $\frac{x}{(\log x)^{1+\delta}}$ for some sufficiently large x.
1.5. Solution. Let a_{n} be the prime indicator function, i.e.

$$
a_{n}:=\left\{\begin{array}{l}
1, \text { if } n \text { is prime } \\
0, \text { if } n \text { is not a prime } .
\end{array}\right.
$$

Using summation by parts we note that,

$$
\sum_{p \leq x} \frac{1}{p}=\sum_{3 / 2<n \leq x} \frac{a_{n}}{n}=\frac{\pi(x)}{x}+\int_{3 / 2}^{x} \frac{\pi(t)}{t^{2}} d t .
$$

If the claim is false i.e. for all sufficiently large $x, \pi(x) \leq x /(\log x)^{1+\delta}$ then from the above,

$$
\sum_{p \leq x} \frac{1}{p} \leq \frac{1}{(\log x)^{1+\delta}}+C+\frac{1}{(\log x)^{\delta}}
$$

for some constant C. The RHS of the above tends to C as $x \rightarrow \infty$ contradicting Exercise 1.1, hence the result.
1.6. Exercise. Prove that for $\Re(s)>1$,

$$
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

where $\{x\}$ is the fractional part of x. Using this show that $\zeta(s)$ has meromorphic continuation to $\Re(s)>0$ with a simple pole at $s=1$.
1.7. Solution. Let $\Re(s)>1$. Then using the summation by parts as following.

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n^{s}} & =\frac{[x]}{x^{s}}+s \int_{1}^{x} \frac{[t]}{t^{s+1}} d t=\frac{1}{x^{s-1}}-\frac{\{x\}}{x^{s}}+s \int_{1}^{x} t^{-s} d t-s \int_{1}^{x} \frac{\{t\}}{t^{s+1}} d t \\
& =\frac{s}{s-1}-s \int_{1}^{x} \frac{\{t\}}{t^{s+1}} d t+O\left(x^{-\Re(s)}+x^{-\Re(s)+1}\right)
\end{aligned}
$$

Letting $x \rightarrow \infty$, as $\Re(s)>1$, we conclude that

$$
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x .
$$

We now note that the integral right hand side is well defined for $\Re(s)>0$ and is holomorphic in s. As $\frac{s}{s-1}$ is a meromorphic function with simple pole at $s=1$ and residue 1 , we conclude the meromorphic continuation of $\zeta(s)$ to $\Re(s)>0$.
1.8. Exercise. Prove that the Gamma function, which is defined for $\Re(s)>0$ by

$$
\Gamma(s):=\int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}
$$

has analytic continuation to $\mathbb{C} \backslash \mathbb{Z}_{\leq 0}$ with simple pole at each non-positive integer. Find the residues of the Gamma function at those poles.
Hint: First prove that $\Gamma(s+1)=s \Gamma(s)$.
1.9. Solution. By integration by parts we see that

$$
\Gamma(s+1)=\int_{0}^{\infty} e^{-t} t^{s+1} \frac{d t}{t}=\int_{0}^{\infty} e^{-t} s t^{s} \frac{d t}{t}=s \Gamma(s)
$$

for $\Re(s)>0$. Thus $\Gamma(s)=\frac{\Gamma(s+1)}{s}$ extends definition of $\Gamma(s)$ to $\Re(s)>-1$ meromorphically with pole at $s=0$ as

$$
\lim _{s \rightarrow 0+} \int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}=+\infty
$$

The pole is simple, as $\lim _{s \rightarrow 0} s \Gamma(s)=1$, and with residue 1. Similarly $\Gamma(s)$ can be extended to all $\mathbb{C} \backslash \mathbb{Z}_{\leq 0}$ with simple poles at $s=-n, n \in \mathbb{N}$ with residue,

$$
\lim _{s \rightarrow-n}(s+n) \Gamma(s)=\lim _{s \rightarrow-n} \frac{\Gamma(s+n+1)}{(s+n-1) \ldots s}=\frac{(-1)^{n}}{n!}
$$

1.10. Exercise. Prove the Poisson summation formula: Let $f \in \mathcal{S}(\mathbb{R})$ be in the Schwartz class. Prove that

$$
\sum_{n \in \mathbb{Z}} f(n+u)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e(n u)
$$

Note: Putting $u=0$ we get the usual Poisson summation formula.
1.11. Solution. Let

$$
F(x): \sum_{n \in \mathbb{Z}} f(n+x)
$$

which is a function on $L^{1}(\mathbb{R} / \mathbb{Z})$ so has a Fourier expansion of the form

$$
F(x)=\sum_{n \in \mathbb{Z}} e(n x) \hat{F}(n)
$$

Here

$$
\begin{aligned}
\hat{F}(n) & =\int_{0}^{1} F(x) e(-n x) d x=\sum_{n \in \mathbb{Z}} \int_{0}^{1} \sum_{m \in \mathbb{Z}} f(m+x) e(-n x) d x \\
& =\sum_{m \in \mathbb{Z}} \int_{m}^{m+1} f(x) e(-n x)=\int_{-\infty}^{\infty} f(x) e(-n x) d x=\hat{f}(n)
\end{aligned}
$$

this provides the result.
1.12. Exercise. Recall that,

$$
G(1, N):=\sum_{n \bmod N} e\left(n^{2} / N\right)
$$

Prove that
(1) For any odd positive integer $N, G\left(1, N^{2}\right)=N$ and $G\left(1, N^{3}\right)=N G(1, N)$.
(2) For every positive integer $N, G(1, N)=\frac{1+i^{-N}}{1-i} \sqrt{N}$.
1.13. Solution. (1) is elementary. We can parametrize the residue class of N^{k} by

$$
\left\{a_{1} N^{k-1}+a_{2} N^{k-2}+\cdots+a_{k} \mid 0 \leq a_{i} \leq N-1\right\}
$$

Using this we have,

$$
\begin{aligned}
G\left(1, N^{2}\right) & =\sum_{a=0}^{N-1} \sum_{b=0}^{N-1} e\left(\frac{(a N+b)^{2}}{N^{2}}\right) \\
& =\sum_{b=0}^{N-1} e\left(b^{2} / N^{2}\right) \sum_{a=0}^{N-1} e\left(\frac{2 a b}{N}\right) \\
& =\sum_{b=0}^{N-1} e\left(b^{2} / N^{2}\right) \delta_{b=0} N=N
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
G\left(1, N^{3}\right) & =\sum_{a=0}^{N-1} \sum_{b=0}^{N-1} \sum_{c=0}^{N-1} e\left(\frac{\left(a N^{2}+b N+c\right)^{2}}{N^{3}}\right) \\
& =\sum_{c=0}^{N-1} \sum_{b=0}^{N-1} e\left(\frac{(b N+c)^{2}}{N^{3}}\right) \sum_{a=0}^{N-1} e(2 a c / N) \\
& =\sum_{c=0}^{N-1} \sum_{b=0}^{N-1} e\left(\frac{(b N+c)^{2}}{N^{3}}\right) N \delta_{c=0}=N G(1, N) .
\end{aligned}
$$

For the second part we use the Poisson summation formula. First we note the function

$$
f(x):=1_{[0, N]} e\left(x^{2} / N\right)
$$

is a function which is continuous on $(0, N)$ and has continuity only from one side at $x=0, N$. From the Fourier theory we know that the Fourier series of f at $x=0$ would converge to $\frac{f(0+)+f(0-)}{2}=f(0+) / 2$. and similarly, at $x=N$ to $f(N-) / 2$ Thus using the (modified) Poisson summation formula and using that $f(0+)=f(N-)$ we get that,

$$
\begin{aligned}
& \sum_{n=0}^{N} e\left(N^{2} / N\right)=\frac{f(0+)}{2}+\sum_{n=1}^{N-1} f(n)+\frac{f(N-)}{2} \\
& =\sum_{n \in \mathbb{Z}} \int_{-\infty}^{\infty} f(x) e(n x) d x=\sum_{n \in \mathbb{Z}} \int_{0}^{N} e\left(x^{2} / N+n x\right) d x
\end{aligned}
$$

Thus,

$$
G(1, N)=N \sum_{n \in \mathbb{Z}} \int_{0}^{1} e\left(N x^{2}+n N x\right) d x=N \sum_{n \in \mathbb{Z}} e\left(-N n^{2} / 4\right) \int_{0}^{1} e\left(N(x+n / 2)^{2}\right)
$$

Noting that

$$
e\left(-N n^{2} / 4\right)=\left\{\begin{array}{l}
1, \text { if } n \text { is even } \\
i^{-N}, \text { if } n \text { is odd. }
\end{array}\right.
$$

and dividing the above sum into odd and even parts we get that,

$$
\begin{aligned}
G(1, N) & =N \sum_{n \in \mathbb{Z}} \int_{n}^{1+n} e\left(N x^{2}\right) d x+N i^{-N} \sum_{n \in \mathbb{Z}} \int_{n-1 / 2}^{n+1 / 2} e\left(n x^{2}\right) d x \\
& =\sqrt{N}\left(1+i^{-N}\right) \int_{-\infty}^{\infty} e\left(y^{2}\right) d y
\end{aligned}
$$

The last integral can be checked convergent and we call it C. Thus,

$$
G(1, N)=\sqrt{N} C\left(1+i^{-N}\right) .
$$

Checking that, $G(1,1)=1$, we conclude the result.
1.14. Dirichlet Character. A Dirichlet character with modulus q is a character

$$
\chi: \mathbb{Z} / q \mathbb{Z}^{\times} \rightarrow \mathbb{C}^{\times}
$$

extended to \mathbb{Z} by making it q-periodic and defining $\chi(a)=0$ for $(a, q)>1$. Associated to each character χ, in addition to its modulus q, is a natural number q^{\prime}, its conductor. The conductor q^{\prime} is the smallest divisor of q such that χ can be written as $\chi=\chi^{\prime} \chi_{0}$, where χ_{0} is the trivial Dirichlet character $\bmod q$ and χ^{\prime} is a character of modulus q^{\prime}. If a character has conductor equal to to its modulus then it is called a primitive Dirichlet character. Check that, for a primitive Dirichlet character $\chi \bmod q$ one has

$$
\frac{1}{q} \sum_{a} \chi(m a+b)=\left\{\begin{array}{l}
\chi(b), \text { if } q \mid m \\
0, \text { if } q \nmid m
\end{array}\right.
$$

The above is not true for a non-primitive character.
1.15. Exercise. Let χ be a primitive Dirichlet character $\bmod q$ and $f \in L^{1}(\mathbb{R})$. Prove that

$$
\sum_{m \in \mathbb{Z}} f(m) \chi(m)=\frac{G(\chi)}{q} \sum_{n \in \mathbb{Z}} \hat{f}(n / q) \bar{\chi}(n)
$$

where $G(\chi)$ is the Gauss sum attached to χ defined by

$$
G(\chi):=\sum_{a \bmod q} \chi(a) e(a / q) .
$$

Hint: Use the Poisson summation formula.
1.16. Solution. First we prove the following. Let $v \in \mathbb{R}$ and $u \in \mathbb{R}^{+}$. Then using the Poisson summation formula,

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}} f(u m+v) & =\sum_{m \in \mathbb{Z}} \int_{\infty}^{\infty} f(u x+v) e(-m x) d x \\
& =\sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} f(x) e(-m(x-v) / u) \frac{d x}{u} \\
& =\frac{1}{u} \sum_{m \in \mathbb{Z}} \hat{f}(m) e(m v / u)
\end{aligned}
$$

Using the above we get that,

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}} f(m) \chi(m) & =\sum_{m \in \mathbb{Z} a} \sum_{\bmod q} \chi(a) f(m q+a) \\
& =\sum_{a \bmod q} \chi(a) \frac{1}{q} \sum_{m \in \mathbb{Z}} \hat{f}(m) e(m a / q) \\
& =\frac{G(\chi)}{q} \sum_{m \in \mathbb{Z}} \hat{f}(m) \bar{\chi}(m)
\end{aligned}
$$

Here in the last line we have used that for a primitive Dirichlet character χ,

$$
\sum_{a}^{\bmod q} \not{\chi(a) e(a m / q)=\bar{\chi}(m) G(\chi) . . . ~ . ~}
$$

This can be seen as follows. Let $(m, q)=1$. Then,

$$
\bar{\chi}(m) G(\chi)=\sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{\times}} \chi\left(a m^{-1}\right) e(a / q)=\sum_{a \in(\mathbb{Z} / q \mathbb{Z})^{\times}} \chi(a) e(a m / q) .
$$

If $(m, q)>1$ then it follows from the fact that $\chi(m)=0$ and

2. Due on 10th October

2.1. Exercise. Prove that $\Gamma(q)$ is a normal subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ and has index in it $q^{3} \prod_{p \mid q}(1-$ $\frac{1}{p^{2}}$).
2.2. Exercise. Recall the subgroups $\Gamma_{0}(q), \Gamma_{1}(q)$ and $\Gamma_{d}(q)$ of $\mathrm{SL}_{2}(\mathbb{Z})$ from the lectures. Compute indices of the subgroups in $\mathrm{SL}_{2}(\mathbb{Z})$.
2.3. Exercise. Prove that for any finite abelian group G one has $G \cong \hat{G}$.

Hint: First try to show for finite abelian groups G_{1} and G_{2} that $\hat{G}_{1} \times \hat{G}_{2} \cong \widehat{G_{1} \times G_{2}}$. Then use the structure theory of the finite abelian groups.
2.4. Exercise. Recall the the product expansion

$$
\sin (\pi z)=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)
$$

(1) Use the above formula to prove that,

$$
\frac{1}{z} \sum_{d=1}^{\infty}\left[\frac{1}{z-d}+\frac{1}{z+d}\right]=\pi \cot (\pi z)=\pi i-2 \pi i \sum_{d=0}^{\infty} e(d z) .
$$

(2) Prove that for even natural number k

$$
\zeta(k)=-\frac{(2 \pi i)^{k}}{2 k!} B_{k}
$$

where B_{k} are the Bernoulli numbers.
(3) Prove that $\zeta(s)$ has zeros at negative even integers.

Hint: Use the functional equation of $\zeta(s)$.
2.5. Eisenstein Series of weight 2. In the lecture we have defined Eisenstein series E_{k} of weight k for $k>2$. In this exercise we will define Eisenstein series E_{2} of weight 2 and will show that it satisfies an "almost modularity" relation.
2.6. Exercise. Define the following functions for $z \in \mathbb{H}$:

$$
\begin{gathered}
G_{2}(z):=\frac{1}{2} \sum_{n \neq 0} \frac{1}{n^{2}}+\sum_{(m, n) \mid m \neq 0} \frac{1}{(m z+n)^{2}}, \\
G_{2}^{*}(z):=E_{2}(z)-\frac{\pi}{2 \Im(z)}, \\
G_{2, \epsilon}:=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{2}} \frac{1}{|m z+n|^{2 \epsilon}}, \text { for } \epsilon>0 .
\end{gathered}
$$

(1) Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Prove that $G_{2, \epsilon}$ converges absolutely and locally uniformly. Also show that,

$$
G_{2, \epsilon}(\gamma z)=(c z+d)^{2}|c z+d|^{2 \epsilon} G_{2, \epsilon}(z) .
$$

(2) For $\epsilon>-1 / 2$ define:

$$
I_{\epsilon}(z):=\int_{\mathbb{R}} \frac{d t}{(z+t)^{2}|z+t|^{2 \epsilon}} \text { and } I(\epsilon):=\int_{\mathbb{R}} \frac{d t}{(i+t)^{2}\left(1+t^{2}\right)^{\epsilon}}
$$

Consider

$$
G_{2, \epsilon}(z)-\sum_{m=0}^{\infty} I_{\epsilon}(m z)
$$

Use the mean value theorem to prove that it converges absolutely and locally uniformly for $\epsilon>-1 / 2$ and the limit as $\epsilon \rightarrow 0$ is $G_{2}(z)$.
(3) Show that

$$
I_{\epsilon}(z)=\frac{I(\epsilon)}{\Im(z)^{1+2 \epsilon}} \text { and } I^{\prime}(0)=-\pi
$$

Use this to show that the limit of $G_{2, \epsilon}(z)$ as $\epsilon \rightarrow 0$ is $G_{2}^{*}(z)$. Hence G_{2}^{*} transforms like a modular form of weight 2 .
(4) Conclude that

$$
G_{2}(\gamma z)=(c z+d)^{2} G_{2}(z)-\pi i c(c z+d) .
$$

E_{2} is defined to be, as usual, $\frac{G_{2}}{\zeta(2)}$.

