MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. **Exercise.** Let \mathcal{P} be the set of primes. Prove that $\sum_{p \in \mathcal{P}} \frac{1}{p} = +\infty$.

1.2. Solution. Let s > 1. Then from the Euler product of the Zeta function,

$$\log \zeta(s) = \sum_{p \in \mathcal{P}} -\log(1-p^{-s}) = \sum_{p \in \mathcal{P}} \sum_{k=1}^{\infty} \frac{1}{kp^{ks}}$$
$$\leq \sum_{p \in \mathcal{P}} \frac{1}{p^s} + \sum_{p \in \mathcal{P}} \sum_{k=2} \frac{1}{p^k} = \sum_{p \in \mathcal{P}} \frac{1}{p^s} + \sum_{p \in \mathcal{P}} \frac{1}{p(p-1)}$$
$$= \sum_{p \in \mathcal{P}} \frac{1}{p^s} + O(1)$$

As we know that $\lim_{s\to 1+} \zeta(s) = +\infty$, letting $s \to 1+$ in the above inequality we conclude that

$$\lim_{s \to 1+} \sum_{p \in \mathcal{P}} \frac{1}{p^s} = +\infty,$$

hence the result.

1.3. Summation by Parts. Let $a : \mathbb{N} \to \mathbb{C}$ be an arithmetic function, let 0 < y < x and let $f : [y, x] \to \mathbb{C}$ be a function with continuous derivative on [y, x]. Then

$$\sum_{y < n \le x} a_n f(n) = A(x)f(x) - A(y)f(y) - \int_y^x A(t)f'(t)dt,$$

where $A(x) = \sum_{n \le x} a_n$.

1.4. **Exercise.** Prove that for every $\delta > 0$,

$$\pi(x) := |\{p \in \mathcal{P} \mid p \le x\}|$$

is bigger than $\frac{x}{(\log x)^{1+\delta}}$ for some sufficiently large x.

1.5. Solution. Let a_n be the prime indicator function, i.e.

$$a_n := \begin{cases} 1, & \text{if } n \text{ is prime} \\ 0, & \text{if } n \text{ is not a prime.} \end{cases}$$

Using summation by parts we note that,

$$\sum_{p \le x} \frac{1}{p} = \sum_{3/2 < n \le x} \frac{a_n}{n} = \frac{\pi(x)}{x} + \int_{3/2}^x \frac{\pi(t)}{t^2} dt.$$

If the claim is false i.e. for all sufficiently large $x, \pi(x) \leq x/(\log x)^{1+\delta}$ then from the above,

$$\sum_{p \le x} \frac{1}{p} \le \frac{1}{(\log x)^{1+\delta}} + C + \frac{1}{(\log x)^{\delta}},$$

for some constant C. The RHS of the above tends to C as $x \to \infty$ contradicting Exercise 1.1, hence the result.

1.6. **Exercise.** Prove that for $\Re(s) > 1$,

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{x\}}{x^{s+1}} dx$$

where $\{x\}$ is the fractional part of x. Using this show that $\zeta(s)$ has meromorphic continuation to $\Re(s) > 0$ with a simple pole at s = 1.

1.7. Solution. Let $\Re(s) > 1$. Then using the summation by parts as following.

$$\sum_{n \le x} \frac{1}{n^s} = \frac{[x]}{x^s} + s \int_1^x \frac{[t]}{t^{s+1}} dt = \frac{1}{x^{s-1}} - \frac{\{x\}}{x^s} + s \int_1^x t^{-s} dt - s \int_1^x \frac{\{t\}}{t^{s+1}} dt$$
$$= \frac{s}{s-1} - s \int_1^x \frac{\{t\}}{t^{s+1}} dt + O(x^{-\Re(s)} + x^{-\Re(s)+1}).$$

Letting $x \to \infty$, as $\Re(s) > 1$, we conclude that

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{x\}}{x^{s+1}} dx.$$

We now note that the integral right hand side is well defined for $\Re(s) > 0$ and is holomorphic in s. As $\frac{s}{s-1}$ is a meromorphic function with simple pole at s = 1 and residue 1, we conclude the meromorphic continuation of $\zeta(s)$ to $\Re(s) > 0$.

1.8. Exercise. Prove that the Gamma function, which is defined for $\Re(s) > 0$ by

$$\Gamma(s) := \int_0^\infty e^{-t} t^s \frac{dt}{t}$$

has analytic continuation to $\mathbb{C} \setminus \mathbb{Z}_{\leq 0}$ with simple pole at each non-positive integer. Find the residues of the Gamma function at those poles.

Hint: First prove that $\Gamma(s+1) = s\Gamma(s)$.

1.9. Solution. By integration by parts we see that

$$\Gamma(s+1) = \int_0^\infty e^{-t} t^{s+1} \frac{dt}{t} = \int_0^\infty e^{-t} s t^s \frac{dt}{t} = s \Gamma(s),$$

for $\Re(s) > 0$. Thus $\Gamma(s) = \frac{\Gamma(s+1)}{s}$ extends definition of $\Gamma(s)$ to $\Re(s) > -1$ meromorphically with pole at s = 0 as

$$\lim_{s \to 0+} \int_0^\infty e^{-t} t^s \frac{dt}{t} = +\infty.$$

The pole is simple, as $\lim_{s\to 0} s\Gamma(s) = 1$, and with residue 1. Similarly $\Gamma(s)$ can be extended to all $\mathbb{C} \setminus \mathbb{Z}_{\leq 0}$ with simple poles at $s = -n, n \in \mathbb{N}$ with residue,

$$\lim_{s \to -n} (s+n)\Gamma(s) = \lim_{s \to -n} \frac{\Gamma(s+n+1)}{(s+n-1)\dots s} = \frac{(-1)^n}{n!}.$$

1.10. **Exercise.** Prove the Poisson summation formula: Let $f \in \mathcal{S}(\mathbb{R})$ be in the Schwartz class. Prove that

$$\sum_{n\in\mathbb{Z}}f(n+u)=\sum_{n\in\mathbb{Z}}\widehat{f}(n)e(nu)$$

Note: Putting u = 0 we get the usual Poisson summation formula.

1.11. Solution. Let

$$F(x): \sum_{n \in \mathbb{Z}} f(n+x)$$

which is a function on $L^1(\mathbb{R}/\mathbb{Z})$ so has a Fourier expansion of the form

$$F(x) = \sum_{n \in \mathbb{Z}} e(nx) \hat{F}(n)$$

Here

$$\hat{F}(n) = \int_{0}^{1} F(x)e(-nx)dx = \sum_{n \in \mathbb{Z}} \int_{0}^{1} \sum_{m \in \mathbb{Z}} f(m+x)e(-nx)dx$$
$$= \sum_{m \in \mathbb{Z}} \int_{m}^{m+1} f(x)e(-nx) = \int_{-\infty}^{\infty} f(x)e(-nx)dx = \hat{f}(n),$$

this provides the result.

1.12. Exercise. Recall that,

$$G(1,N) := \sum_{n \mod N} e(n^2/N).$$

Prove that

- (1) For any odd positive integer N, $G(1, N^2) = N$ and $G(1, N^3) = NG(1, N)$. (2) For every positive integer N, $G(1, N) = \frac{1+i^{-N}}{1-i}\sqrt{N}$.

1.13. Solution. (1) is elementary. We can parametrize the residue class of N^k by

$$\{a_1 N^{k-1} + a_2 N^{k-2} + \dots + a_k \mid 0 \le a_i \le N - 1\}.$$

Using this we have,

$$G(1, N^2) = \sum_{a=0}^{N-1} \sum_{b=0}^{N-1} e\left(\frac{(aN+b)^2}{N^2}\right)$$
$$= \sum_{b=0}^{N-1} e(b^2/N^2) \sum_{a=0}^{N-1} e\left(\frac{2ab}{N}\right)$$
$$= \sum_{b=0}^{N-1} e(b^2/N^2) \delta_{b=0} N = N.$$

Similarly,

$$G(1, N^{3}) = \sum_{a=0}^{N-1} \sum_{b=0}^{N-1} \sum_{c=0}^{N-1} e\left(\frac{(aN^{2} + bN + c)^{2}}{N^{3}}\right)$$
$$= \sum_{c=0}^{N-1} \sum_{b=0}^{N-1} e\left(\frac{(bN + c)^{2}}{N^{3}}\right) \sum_{a=0}^{N-1} e(2ac/N)$$
$$= \sum_{c=0}^{N-1} \sum_{b=0}^{N-1} e\left(\frac{(bN + c)^{2}}{N^{3}}\right) N\delta_{c=0} = NG(1, N).$$

For the second part we use the Poisson summation formula. First we note the function

$$f(x) := 1_{[0,N]} e(x^2/N)$$

is a function which is continuous on (0, N) and has continuity only from one side at x = 0, N. From the Fourier theory we know that the Fourier series of f at x = 0 would converge to $\frac{f(0+)+f(0-)}{2} = f(0+)/2$ and similarly, at x = N to f(N-)/2 Thus using the (modified) Poisson summation formula and using that f(0+) = f(N-) we get that,

$$\sum_{n=0}^{N} e(N^2/N) = \frac{f(0+)}{2} + \sum_{n=1}^{N-1} f(n) + \frac{f(N-)}{2}$$
$$= \sum_{n \in \mathbb{Z}} \int_{-\infty}^{\infty} f(x)e(nx)dx = \sum_{n \in \mathbb{Z}} \int_{0}^{N} e(x^2/N + nx)dx$$

Thus,

$$G(1,N) = N \sum_{n \in \mathbb{Z}} \int_0^1 e(Nx^2 + nNx) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(-Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(Nn^2/4) \int_0^1 e(N(x + n/2)^2) dx = N \sum_{n \in \mathbb{Z}} e(Nn^2/4) \int_0^1 e(Nn$$

Noting that

$$e(-Nn^2/4) = \begin{cases} 1, \text{ if } n \text{ is even,} \\ i^{-N}, \text{ if } n \text{ is odd.} \end{cases},$$

and dividing the above sum into odd and even parts we get that,

$$G(1,N) = N \sum_{n \in \mathbb{Z}} \int_{n}^{1+n} e(Nx^2) dx + Ni^{-N} \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} e(nx^2) dx$$
$$= \sqrt{N}(1+i^{-N}) \int_{-\infty}^{\infty} e(y^2) dy.$$

The last integral can be checked convergent and we call it C. Thus,

$$G(1, N) = \sqrt{N}C(1 + i^{-N}).$$

Checking that, G(1,1) = 1, we conclude the result.

1.14. Dirichlet Character. A Dirichlet character with modulus q is a character

$$\chi: \mathbb{Z}/q\mathbb{Z}^{\times} \to \mathbb{C}^{\times}$$

extended to \mathbb{Z} by making it q-periodic and defining $\chi(a) = 0$ for (a, q) > 1. Associated to each character χ , in addition to its modulus q, is a natural number q', its conductor. The conductor q' is the smallest divisor of q such that χ can be written as $\chi = \chi' \chi_0$, where χ_0 is the trivial Dirichlet character mod q and χ' is a character of modulus q'. If a character has conductor equal to to its modulus then it is called a *primitive Dirichlet character*. Check that, for a primitive Dirichlet character χ mod q one has

$$\frac{1}{q} \sum_{a \mod q} \chi(ma+b) = \begin{cases} \chi(b), \text{ if } q \mid m \\ 0, \text{ if } q \nmid m. \end{cases}$$

The above is not true for a non-primitive character.

1.15. **Exercise.** Let χ be a primitive Dirichlet character mod q and $f \in L^1(\mathbb{R})$. Prove that

$$\sum_{m \in \mathbb{Z}} f(m)\chi(m) = \frac{G(\chi)}{q} \sum_{n \in \mathbb{Z}} \hat{f}(n/q)\bar{\chi}(n),$$

where $G(\chi)$ is the Gauss sum attached to χ defined by

$$G(\chi) := \sum_{a \mod q} \chi(a) e(a/q).$$

Hint: Use the Poisson summation formula.

1.16. Solution. First we prove the following. Let $v \in \mathbb{R}$ and $u \in \mathbb{R}^+$. Then using the Poisson summation formula,

$$\sum_{m \in \mathbb{Z}} f(um+v) = \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} f(ux+v)e(-mx)dx$$
$$= \sum_{m \in \mathbb{Z}} \int_{-\infty}^{\infty} f(x)e(-m(x-v)/u)\frac{dx}{u}$$
$$= \frac{1}{u} \sum_{m \in \mathbb{Z}} \hat{f}(m)e(mv/u).$$

Using the above we get that,

$$\sum_{m \in \mathbb{Z}} f(m)\chi(m) = \sum_{m \in \mathbb{Z}} \sum_{a \mod q} \chi(a)f(mq+a)$$
$$= \sum_{a \mod q} \chi(a)\frac{1}{q} \sum_{m \in \mathbb{Z}} \hat{f}(m)e(ma/q)$$
$$= \frac{G(\chi)}{q} \sum_{m \in \mathbb{Z}} \hat{f}(m)\bar{\chi}(m).$$

Here in the last line we have used that for a primitive Dirichlet character χ ,

$$\sum_{a \mod q} \chi(a)e(am/q) = \bar{\chi}(m)G(\chi).$$

This can be seen as follows. Let (m,q) = 1. Then,

$$\bar{\chi}(m)G(\chi) = \sum_{a \in (\mathbb{Z}/q\mathbb{Z})^{\times}} \chi(am^{-1})e(a/q) = \sum_{a \in (\mathbb{Z}/q\mathbb{Z})^{\times}} \chi(a)e(am/q).$$

If (m,q) > 1 then it follows from the fact that $\chi(m) = 0$ and

$$\sum_{a \mod q} \chi(a)e(am/q) = \sum_{y \mod q/(q,m)} e(ym/q) \sum_{x \mod q} \chi(xq/d+y) = 0.$$

2. Due on 10th October

2.1. **Exercise.** Prove that $\Gamma(q)$ is a normal subgroup of $SL_2(\mathbb{Z})$ and has index in it $q^3 \prod_{p|q} (1 - \frac{1}{p^2})$.

2.2. Solution. We consider the $\mod q$ reduction map

$$\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/q\mathbb{Z}),$$

whose kernel is by definition $\Gamma(q)$. Thus $\Gamma(q)$ is normal. Hence, as the above map is surjective, by the first isomorphism theorem

$$\operatorname{SL}_2(\mathbb{Z}/q\mathbb{Z}) \cong \operatorname{SL}_2(\mathbb{Z})/\Gamma(q),$$

and so,

$$[\operatorname{SL}_2(\mathbb{Z}):\Gamma(q)] = |\operatorname{SL}_2(\mathbb{Z}/q\mathbb{Z})|.$$

To compute the cardinality we first note that if $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}/q\mathbb{Z})$ then (c, d, q) = 1. For each such lower row (c, d) we have exactly q solutions for the congruence $ad - bc \equiv 1 \mod q$. Thus the cardinality is,

$$q|\{(c,d) \mod q \mid (c,d,q) = 1\}| = q \sum_{r|q} \mu(r)(q/r)^2 = q^3 \prod_{p|q} (1-p^{-2}).$$

2.3. **Exercise.** Recall the subgroups $\Gamma_0(q)$, $\Gamma_1(q)$ and $\Gamma_d(q)$ of $SL_2(\mathbb{Z})$ from the lectures. Compute indices of the subgroups in $SL_2(\mathbb{Z})$.

2.4. Solution. Consider the surjective map

$$\Gamma_1(q) \to \mathbb{Z}/q\mathbb{Z},$$

by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto b \mod q.$$

The kernel of this map is by definition $\Gamma(q)$. Thus by the first isomorphism theorem,

$$\Gamma_1(q)/\Gamma(q) \cong \mathbb{Z}/q\mathbb{Z}.$$

Hence,

$$[\mathrm{SL}_2(Z):\Gamma_1(q)] = [\mathrm{SL}_2(\mathbb{Z}):\Gamma(q)][\Gamma_1(q):\Gamma(q)]^{-1} = q^2 \prod_{p|q} (1-p^{-2}).$$

Similarly, considering the map

$$\Gamma_0(q) \to (\mathbb{Z}/q\mathbb{Z})^{\times},$$

by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto d \mod q,$$

we conclude that

$$\Gamma_0(q)/\Gamma_1(q) \cong (\mathbb{Z}/q\mathbb{Z})^{\times}.$$

Thus,

$$[\operatorname{SL}_2(Z):\Gamma_1(q)] = \frac{1}{\phi(q)} q^2 \prod_{p|q} (1-p^{-2}) = q \prod_{p|q} (1+p^{-1})$$

Again similarly, considering the map

$$\Gamma_d(q) \to (\mathbb{Z}/q\mathbb{Z})^{\times},$$

by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto d \mod q,$$

we conclude that

$$\Gamma_d(q)/\Gamma(q) \cong (\mathbb{Z}/q\mathbb{Z})^{\times}.$$

Thus,

$$[\operatorname{SL}_2(Z):\Gamma_d(q)]\frac{1}{\phi(q)}q^3\prod_{p|q}(1-p^{-2})=q^2\prod_{p|q}(1+p^{-1}).$$

2.5. **Exercise.** Prove that for any finite abelian group G one has $G \cong \hat{G}$. **Hint:** First try to show for finite abelian groups G_1 and G_2 that $\hat{G}_1 \times \hat{G}_2 \cong \widehat{G_1 \times G_2}$. Then use the structure theory of the finite abelian groups.

2.6. Solution. We define a map

$$\widehat{G}_1 \times \widehat{G}_2 \to \overbrace{G_1 \times G_2}$$
 by $(\chi_1, \chi_2) \mapsto \{\chi : (g_1, g_2) \mapsto \chi_1(g_1)\chi_2(g_2)\}$

This map is clearly well-defined homomorphism. To see injectivity if χ is the trivial character then

$$\chi_1(g_1) = \chi_2^{-1}(g_2) \forall (g_1, g_2) \in G_1 \times G_2,$$

which implies that χ_i are the trivial character. From the lecture we recall that $|G| = |\hat{G}|$, which proves the isomorphism. Now from the structure theory of the finite abelian groups we know that every finite abelian group is isomorphic to direct product of $\mathbb{Z}/_n\mathbb{Z}$. hence it is enough to show that

$$\widehat{\mathbb{Z}}/n\overline{\mathbb{Z}} = \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, S^1) \cong \mu_n \cong \mathbb{Z}/n\mathbb{Z},$$

where μ_n is the group of n'th roots of unity. To See this isomorphism we consider that map

$$\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, S^1) \to \mu_n \text{ by } \chi \mapsto \chi(1).$$

This map is clearly a well-defined homomorphism, as $\chi(1)^n = \chi(n) = \chi(0) = 1$, i.e. $\chi(1) \in \mu_n$. If $\chi(1) = 1$ then $\chi(m) = \chi^m(1) = 1$, which proves the injectivity. Equality of the cardinalities concludes the proof.

8

2.7. Exercise. Recall the product expansion

$$\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

(1) Use the above formula to prove that,

$$\frac{1}{z} + \sum_{d=1}^{\infty} \left[\frac{1}{z-d} + \frac{1}{z+d} \right] = \pi \cot(\pi z) = \pi i - 2\pi i \sum_{d=0}^{\infty} e(dz).$$

(2) Prove that for even natural number k

$$\zeta(k) = -\frac{(2\pi i)^k}{2k!} B_k,$$

where B_k are the Bernoulli numbers.

(3) Prove that $\zeta(s)$ has zeros at negative even integers. **Hint:** Use the functional equation of $\zeta(s)$.

2.8. Solution.

(1) We do a logarithmic differentiation of the given expression.

$$\pi \cot(\pi z) = \frac{d}{dz} \log \sin(\pi z)$$
$$= \frac{d}{dz} \log(\pi z) + \frac{d}{dz} \sum_{n=1}^{\infty} \log(1 - z^2/n^2)$$
$$= \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{n^2 - z^2},$$

hence the first equality. For the second equality we see that,

$$\pi \cot(\pi z) = \pi i \frac{e(z) + 1}{e(z) - 1} = \pi i - 2\pi i \frac{1}{1 - e(z)} = \pi i - 2\pi i \sum_{n=0}^{\infty} e(nz),$$

completing the proof.

(2) Recall that the Bernoulli numbers are defined by the coefficient of the series expansion of $\frac{x}{e^x-1}$, i.e.

$$\sum_{k=0}^{\infty} B_k \frac{x^k}{k!} = \frac{x}{e^x - 1}.$$

Consider the generating series of $\zeta(2k)$

$$1 + 2\sum_{k=1}^{\infty} \zeta(2k) z^{2k}.$$

For |z| < 1 the above sum is absolutely convergent, so plugging in the definition of $\zeta(s)$ for s > 1 and changing the order of the summation we get that above sum is

$$1 + 2\sum_{n=1}^{\infty}\sum_{k=1}^{\infty} (z/n)^{2k} = 1 + \sum_{n=1}^{\infty} \frac{2z^2}{n^2 - z^2} = \pi z \cot(\pi z),$$

where the last equality is from (1). But from (2)

$$\pi z \cot(\pi z) = \pi i z - \frac{2\pi i z}{1 - e^{2\pi i z}} = \pi i z - \sum_{k=0}^{\infty} B_k \frac{(2\pi i z)^k}{k!}.$$

Equating two power series we conclude that

$$2\zeta(2k) = -B_{2k} \frac{(2\pi i)^{2k}}{(2k)!},$$

concluding the result.

(3) We recall the functional equation of $\zeta(s)$

$$\zeta(s)\pi^{-s/2}\Gamma(s/2) = \zeta(1-s)\pi^{(1-s)/2}\Gamma((1-s)/2).$$

We also recall the duplication formula,

$$\Gamma(s) = \frac{2^{s-1}}{\sqrt{\pi}} \Gamma(s/2) \Gamma((1+s)/2),$$

and

$$\Gamma(1/2 - s/2)\Gamma(1/2 + s/2) = \frac{\pi}{\cos(\pi s/2)}.$$

Combining all of them we get that,

$$\zeta(1-s) = 2(2\pi)^{-s} \cos(\pi s/2) \Gamma(s) \zeta(s)$$

Plugging in s = 2n + 1 for $n \ge 1$ and checking that $\cos(n\pi + \pi/2) = 0$ we conclude that

$$\zeta(-2n) = 0.$$

2.9. Eisenstein Series of weight 2. In the lecture we have defined Eisenstein series E_k of weight k for k > 2. In this exercise we will define *Eisenstein series* E_2 of weight 2 and will show that it satisfies an "almost modularity" relation.

2.10. **Exercise.** Define the following functions for $z \in \mathbb{H}$:

$$\begin{split} G_2(z) &:= \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2}, \\ G_2^*(z) &:= G_2(z) - \frac{\pi}{2\Im(z)}, \\ G_{2,\epsilon} &:= \frac{1}{2} \sum_{(m,n) \neq (0,0)} \frac{1}{(mz+n)^2} \frac{1}{|mz+n|^{2\epsilon}}, \text{ for } \epsilon > 0. \end{split}$$

(1) Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Prove that $G_{2,\epsilon}$ converges absolutely and locally uniformly. Also show that,

$$G_{2,\epsilon}(\gamma z) = (cz+d)^2 |cz+d|^{2\epsilon} G_{2,\epsilon}(z).$$

(2) For $\epsilon > -1/2$ define:

$$I_{\epsilon}(z) := \int_{\mathbb{R}} \frac{dt}{(z+t)^2 |z+t|^{2\epsilon}} \text{ and } I(\epsilon) := \int_{\mathbb{R}} \frac{dt}{(i+t)^2 (1+t^2)^{\epsilon}}.$$

Consider

$$G_{2,\epsilon}(z) - \sum_{m=1}^{\infty} I_{\epsilon}(mz)$$

Use the mean value theorem to prove that it converges absolutely and locally uniformly for $\epsilon > -1/2$ and the limit as $\epsilon \to 0$ is $G_2(z)$.

(3) Show that

$$I_{\epsilon}(z) = rac{I(\epsilon)}{\Im(z)^{1+2\epsilon}} ext{ and } I'(0) = -\pi.$$

Use this to show that the limit of $G_{2,\epsilon}(z)$ as $\epsilon \to 0$ is $G_2^*(z)$. Hence G_2^* transforms like a modular form of weight 2.

(4) Conclude that

$$G_2(\gamma z) = (cz+d)^2 G_2(z) - \pi i c (cz+d).$$

 E_2 is defined to be, as usual, $\frac{G_2}{\zeta(2)}$.

2.11. Solution.

(1) Note that, for k > 2 and $z \in \mathbb{H}$

$$\sum_{N=1}^{\infty} \sum_{N < |mz+n| \le N+1} \frac{1}{|mz+n|^k} \le \sum_{N=1}^{\infty} \frac{\#\{(m,n) \in \mathbb{Z}^2 \mid N \le |mz+n| \le N+1\}}{N^k}$$

It is easy to check that

$$\#\{(m,n) \mid N \le |mz+n| \le N+1\} \ll \pi (N+1)^2 - \pi N^2 \ll N.$$

Thus the above sum is, as k > 2

$$\ll \sum_{N=1}^{\infty} N^{1-k} < \infty.$$

Now we see that,

$$G_{2,\epsilon} \le \sum_{0 \le |mz+n| \le 1} |mz+n|^{-2-2\epsilon} + \sum_{1 \le |mz+n|} |mz+n|^{-2-2\epsilon}.$$

The first sum has finite number of summands and second sum is absolutely and locally uniformly convergent by the previous argument. Thus the sum of $G_{2,\epsilon}$ are

convergent abolustely and locally uniformly, thus defines a holomorphic function on \mathbb{H} . To see the transformation law we first note that every $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ induces a bijection from $\mathbb{Z}^2 \setminus \{(0,0)\}$ to itself by right multiplication. Also one checks that,

$$m\gamma z + n = \frac{(ma+nc)z + (mb+nd)}{cz+d} = \frac{m'z+n'}{cz+d}.$$

Combining these two facts, we conclude that

$$G_{2,\epsilon}(\gamma z) = \sum_{(m',n')\neq(0,0)} \frac{(cz+d)^{2}|cz+d|^{2\epsilon}}{(m'z+n')|m'z+n'|^{2\epsilon}} = (cz+d)^{2}|cz+d|^{2\epsilon}G_{2,\epsilon}(z).$$

(2) Let

$$f(t) := (mz+t)^2 |mz+t|^{-2\epsilon},$$

with implicit dependence on mz. Now as we have proved the absolute convergence of the $\sum f(n)$ we will freely change the order of summation and order of integration and summation, as follows.

$$\tilde{G}_{2,\epsilon}(z) = G_{2,\epsilon}(z) - \sum_{m=0}^{\infty} I_{\epsilon}(mz)$$

= $\sum_{n=1}^{\infty} \frac{1}{n^{2+2\epsilon}} + \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} (f(n) - \int_{n}^{n+1} f(t)dt)$
= $\sum_{n=1}^{\infty} \frac{1}{n^{2+2\epsilon}} + \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} (f(n) - f(t))dt.$

By the mean value theorem on $n \leq t \leq n+1$ we get that

$$|f(n) - f(t)| \le \sup_{n \le u \le n+1} |f'(u)| \ll |mz + n|^{-3-2\epsilon}.$$

Hence, the sum is absolutely convergent for $\epsilon > -1/2$ and thus $\lim_{\epsilon \to 0} \tilde{G}_{2,\epsilon}$ exists and defines a holomorphic function. We calculate,

$$\begin{split} \lim_{\epsilon \to 0} \tilde{G}_{2,\epsilon}(z) \\ &= \frac{1}{2} \sum_{n \neq 0} \frac{1}{n^2} + \sum_{m=1}^{\infty} \left[\sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2} + \sum_{n \in \mathbb{Z}} \left(\frac{1}{mz+n+1} - \frac{1}{mz+n} \right) \right] \\ &= \frac{1}{2} \sum_{n \neq 0} \frac{1}{n^2} + \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^2} \\ &= G_2(z) \end{split}$$

(3) Let z = x + iy. Then changing variable $t \mapsto yt - x$ we get that,

$$\begin{split} I_{\epsilon}(x+iy) &= \int_{\mathbb{R}} \frac{dt}{(x+t+iy)^2 |x+t+iy|^{2\epsilon}} \\ &= \frac{1}{y^{1+2\epsilon}} \int_{\mathbb{R}} \frac{dt}{(t+i)^2 |t+i|^{2\epsilon}} = \frac{I(\epsilon)}{y^{1+2\epsilon}}. \end{split}$$

Differentiating under the integration sign and then integrating by parts we get that,

$$I'(0) = -\int_{\mathbb{R}} \frac{\log(1+t^2)}{(t+i)^2} dt = \frac{\log(1+t^2)}{t+i} \bigg|_{-\infty}^{\infty} - \int_{\mathbb{R}} \frac{2tdt}{(t+i)(1+t^2)}$$
$$= -\int_{\mathbb{R}} \frac{1}{(t+i)^2} + \frac{1}{1+t^2} = -\int_{\mathbb{R}} \frac{dt}{t^2+1} = -\pi.$$

Using the above two results we compute that,

$$\lim_{\epsilon \to 0} \sum_{m=1}^{\infty} I_{\epsilon}(mz) = \lim_{\epsilon \to 0} \sum_{m=1}^{\infty} \frac{I(\epsilon)}{(my)^{1+2\epsilon}} = \lim_{\epsilon \to 0} \frac{I(\epsilon)\zeta(1+2\epsilon)}{\Im(z)^{1+2\epsilon}}$$

From the exercise 1.6 we know that

$$\zeta(1+2\epsilon) = \frac{1}{2\epsilon} + O(1).$$

Using that I(0) = 0 we have that above limit equals to

$$\lim_{\epsilon \to 0} \frac{I(\epsilon)}{2\epsilon \Im(z)^{1+2\epsilon}} = \frac{I'(0)}{2\Im(z)}.$$

Thus,

$$\lim_{\epsilon \to 0} G_{2,\epsilon}(Z) = \lim_{\epsilon \to 0} \left(\tilde{G}_{2,\epsilon}(z) + \sum_{m=1}^{\infty} I_{\epsilon}(mz) \right) = G_2(z) - \frac{\pi}{2\Im(z)} = G_2^*(z).$$

(4) From part (1) and (3) letting $\epsilon \to 0$ we see that $G_2^*(z)$ transforms as a modular form of weight 2. So,

$$G_{2}(\gamma z) - (cz+d)^{2}G_{2}(z) = \frac{\pi}{2\Im(\gamma z)} - (cz+d)^{2}\frac{\pi}{2\Im(z)}$$
$$= \frac{\pi}{2\Im(z)}(|cz+d|^{2} - (cz+d)^{2})$$
$$= \pi i c(cz+d),$$

concluding the result.