
MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. Exercise. Let P be the set of primes. Prove that
∑

p∈P
1
p

= +∞.

1.2. Solution. Let s > 1. Then from the Euler product of the Zeta function,

log ζ(s) =
∑
p∈P

− log(1− p−s) =
∑
p∈P

∞∑
k=1

1

kpks

≤
∑
p∈P

1

ps
+
∑
p∈P

∑
k=2

1

pk
=
∑
p∈P

1

ps
+
∑
p∈P

1

p(p− 1)

=
∑
p∈P

1

ps
+O(1)

As we know that lims→1+ ζ(s) = +∞, letting s → 1+ in the above inequality we conclude
that

lim
s→1+

∑
p∈P

1

ps
= +∞,

hence the result.

1.3. Summation by Parts. Let a : N → C be an arithmetic function, let 0 < y < x and
let f : [y, x]→ C be a function with continuous derivative on [y, x]. Then∑

y<n≤x

anf(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where A(x) =
∑

n≤x an.

1.4. Exercise. Prove that for every δ > 0,

π(x) := |{p ∈ P | p ≤ x}|

is bigger than x
(log x)1+δ

for some sufficiently large x.
1
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1.5. Solution. Let an be the prime indicator function, i.e.

an :=

{
1, if n is prime

0, if n is not a prime.
.

Using summation by parts we note that,∑
p≤x

1

p
=

∑
3/2<n≤x

an
n

=
π(x)

x
+

∫ x

3/2

π(t)

t2
dt.

If the claim is false i.e. for all sufficiently large x, π(x) ≤ x/(log x)1+δ then from the above,∑
p≤x

1

p
≤ 1

(log x)1+δ
+ C +

1

(log x)δ
,

for some constant C. The RHS of the above tends to C as x → ∞ contradicting Exercise
1.1, hence the result.

1.6. Exercise. Prove that for <(s) > 1,

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx,

where {x} is the fractional part of x. Using this show that ζ(s) has meromorphic continuation
to <(s) > 0 with a simple pole at s = 1.

1.7. Solution. Let <(s) > 1. Then using the summation by parts as following.∑
n≤x

1

ns
=

[x]

xs
+ s

∫ x

1

[t]

ts+1
dt =

1

xs−1
− {x}

xs
+ s

∫ x

1

t−sdt− s
∫ x

1

{t}
ts+1

dt

=
s

s− 1
− s

∫ x

1

{t}
ts+1

dt+O(x−<(s) + x−<(s)+1).

Letting x→∞, as <(s) > 1, we conclude that

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

We now note that the integral right hand side is well defined for <(s) > 0 and is holomorphic
in s. As s

s−1
is a meromorphic function with simple pole at s = 1 and residue 1, we conclude

the meromorphic continuation of ζ(s) to <(s) > 0.

1.8. Exercise. Prove that the Gamma function, which is defined for <(s) > 0 by

Γ(s) :=

∫ ∞
0

e−tts
dt

t

has analytic continuation to C \Z≤0 with simple pole at each non-positive integer. Find the
residues of the Gamma function at those poles.
Hint: First prove that Γ(s+ 1) = sΓ(s).
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1.9. Solution. By integration by parts we see that

Γ(s+ 1) =

∫ ∞
0

e−tts+1dt

t
=

∫ ∞
0

e−tsts
dt

t
= sΓ(s),

for <(s) > 0. Thus Γ(s) = Γ(s+1)
s

extends definition of Γ(s) to <(s) > −1 meromorphically
with pole at s = 0 as

lim
s→0+

∫ ∞
0

e−tts
dt

t
= +∞.

The pole is simple, as lims→0 sΓ(s) = 1, and with residue 1. Similarly Γ(s) can be extended
to all C \ Z≤0 with simple poles at s = −n, n ∈ N with residue,

lim
s→−n

(s+ n)Γ(s) = lim
s→−n

Γ(s+ n+ 1)

(s+ n− 1) . . . s
=

(−1)n

n!
.

1.10. Exercise. Prove the Poisson summation formula: Let f ∈ S(R) be in the Schwartz
class. Prove that ∑

n∈Z

f(n+ u) =
∑
n∈Z

f̂(n)e(nu).

Note: Putting u = 0 we get the usual Poisson summation formula.

1.11. Solution. Let
F (x) :

∑
n∈Z

f(n+ x)

which is a function on L1(R/Z) so has a Fourier expansion of the form

F (x) =
∑
n∈Z

e(nx)F̂ (n).

Here

F̂ (n) =

∫ 1

0

F (x)e(−nx)dx =
∑
n∈Z

∫ 1

0

∑
m∈Z

f(m+ x)e(−nx)dx

=
∑
m∈Z

∫ m+1

m

f(x)e(−nx) =

∫ ∞
−∞

f(x)e(−nx)dx = f̂(n),

this provides the result.

1.12. Exercise. Recall that,

G(1, N) :=
∑

n mod N

e(n2/N).

Prove that

(1) For any odd positive integer N , G(1, N2) = N and G(1, N3) = NG(1, N).

(2) For every positive integer N , G(1, N) = 1+i−N

1−i

√
N.
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1.13. Solution. (1) is elementary. We can parametrize the residue class of Nk by

{a1N
k−1 + a2N

k−2 + · · ·+ ak | 0 ≤ ai ≤ N − 1}.

Using this we have,

G(1, N2) =
N−1∑
a=0

N−1∑
b=0

e

(
(aN + b)2

N2

)

=
N−1∑
b=0

e(b2/N2)
N−1∑
a=0

e

(
2ab

N

)

=
N−1∑
b=0

e(b2/N2)δb=0N = N.

Similarly,

G(1, N3) =
N−1∑
a=0

N−1∑
b=0

N−1∑
c=0

e

(
(aN2 + bN + c)2

N3

)

=
N−1∑
c=0

N−1∑
b=0

e

(
(bN + c)2

N3

)N−1∑
a=0

e(2ac/N)

=
N−1∑
c=0

N−1∑
b=0

e

(
(bN + c)2

N3

)
Nδc=0 = NG(1, N).

For the second part we use the Poisson summation formula. First we note the function

f(x) := 1[0,N ]e(x
2/N)

is a function which is continuous on (0, N) and has continuity only from one side at x = 0, N .
From the Fourier theory we know that the Fourier series of f at x = 0 would converge to
f(0+)+f(0−)

2
= f(0+)/2. and similarly, at x = N to f(N−)/2 Thus using the (modified)

Poisson summation formula and using that f(0+) = f(N−) we get that,

N∑
n=0

e(N2/N) =
f(0+)

2
+

N−1∑
n=1

f(n) +
f(N−)

2

=
∑
n∈Z

∫ ∞
−∞

f(x)e(nx)dx =
∑
n∈Z

∫ N

0

e(x2/N + nx)dx.

Thus,

G(1, N) = N
∑
n∈Z

∫ 1

0

e(Nx2 + nNx)dx = N
∑
n∈Z

e(−Nn2/4)

∫ 1

0

e(N(x+ n/2)2)
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Noting that

e(−Nn2/4) =

{
1, if n is even,

i−N , if n is odd.
,

and dividing the above sum into odd and even parts we get that,

G(1, N) = N
∑
n∈Z

∫ 1+n

n

e(Nx2)dx+Ni−N
∑
n∈Z

∫ n+1/2

n−1/2

e(nx2)dx

=
√
N(1 + i−N)

∫ ∞
−∞

e(y2)dy.

The last integral can be checked convergent and we call it C. Thus,

G(1, N) =
√
NC(1 + i−N).

Checking that, G(1, 1) = 1, we conclude the result.

1.14. Dirichlet Character. A Dirichlet character with modulus q is a character

χ : Z/qZ× → C×

extended to Z by making it q-periodic and defining χ(a) = 0 for (a, q) > 1. Associated to
each character χ, in addition to its modulus q, is a natural number q′, its conductor. The
conductor q′ is the smallest divisor of q such that χ can be written as χ = χ′χ0, where χ0 is
the trivial Dirichlet character mod q and χ′ is a character of modulus q′. If a character has
conductor equal to to its modulus then it is called a primitive Dirichlet character. Check
that, for a primitive Dirichlet character χ mod q one has

1

q

∑
a mod q

χ(ma+ b) =

{
χ(b), if q | m
0, if q - m.

The above is not true for a non-primitive character.

1.15. Exercise. Let χ be a primitive Dirichlet character mod q and f ∈ L1(R). Prove that∑
m∈Z

f(m)χ(m) =
G(χ)

q

∑
n∈Z

f̂(n/q)χ̄(n),

where G(χ) is the Gauss sum attached to χ defined by

G(χ) :=
∑

a mod q

χ(a)e(a/q).

Hint: Use the Poisson summation formula.
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1.16. Solution. First we prove the following. Let v ∈ R and u ∈ R+. Then using the
Poisson summation formula,∑

m∈Z

f(um+ v) =
∑
m∈Z

∫ ∞
∞

f(ux+ v)e(−mx)dx

=
∑
m∈Z

∫ ∞
−∞

f(x)e(−m(x− v)/u)
dx

u

=
1

u

∑
m∈Z

f̂(m)e(mv/u).

Using the above we get that,∑
m∈Z

f(m)χ(m) =
∑
m∈Z

∑
a mod q

χ(a)f(mq + a)

=
∑

a mod q

χ(a)
1

q

∑
m∈Z

f̂(m)e(ma/q)

=
G(χ)

q

∑
m∈Z

f̂(m)χ̄(m).

Here in the last line we have used that for a primitive Dirichlet character χ,∑
a mod q

χ(a)e(am/q) = χ̄(m)G(χ).

This can be seen as follows. Let (m, q) = 1. Then,

χ̄(m)G(χ) =
∑

a∈(Z/qZ)×

χ(am−1)e(a/q) =
∑

a∈(Z/qZ)×

χ(a)e(am/q).

If (m, q) > 1 then it follows from the fact that χ(m) = 0 and∑
a mod q

χ(a)e(am/q) =
∑

y mod q/(q,m)

e(ym/q)
∑

x mod q

χ(xq/d+ y) = 0.
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2. Due on 10th October

2.1. Exercise. Prove that Γ(q) is a normal subgroup of SL2(Z) and has index in it q3
∏

p|q(1−
1
p2

).

2.2. Solution. We consider the mod q reduction map

SL2(Z)→ SL2(Z/qZ),

whose kernel is by definition Γ(q). Thus Γ(q) is normal. Hence, as the above map is surjective,
by the first isomorphism theorem

SL2(Z/qZ) ∼= SL2(Z)/Γ(q),

and so,
[SL2(Z) : Γ(q)] = |SL2(Z/qZ)|.

To compute the cardinality we first note that if

(
a b
c d

)
∈ SL2(Z/qZ) then (c, d, q) = 1. For

each such lower row (c, d) we have exactly q solutions for the congruence ad−bc ≡ 1 mod q.
Thus the cardinality is,

q|{(c, d) mod q | (c, d, q) = 1}|= q
∑
r|q

µ(r)(q/r)2 = q3
∏
p|q

(1− p−2).

2.3. Exercise. Recall the subgroups Γ0(q), Γ1(q) and Γd(q) of SL2(Z) from the lectures.
Compute indices of the subgroups in SL2(Z).

2.4. Solution. Consider the surjective map

Γ1(q)→ Z/qZ,
by (

a b
c d

)
7→ b mod q.

The kernel of this map is by definition Γ(q). Thus by the first isomorphism theorem,

Γ1(q)/Γ(q) ∼= Z/qZ.
Hence,

[SL2(Z) : Γ1(q)] = [SL2(Z) : Γ(q][Γ1(q) : Γ(q)]−1 = q2
∏
p|q

(1− p−2).

Similarly, considering the map
Γ0(q)→ (Z/qZ)×,

by (
a b
c d

)
7→ d mod q,

we conclude that
Γ0(q)/Γ1(q) ∼= (Z/qZ)×.
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Thus,

[SL2(Z) : Γ1(q)] =
1

φ(q)
q2
∏
p|q

(1− p−2) = q
∏
p|q

(1 + p−1).

Again similarly, considering the map

Γd(q)→ (Z/qZ)×,

by (
a b
c d

)
7→ d mod q,

we conclude that

Γd(q)/Γ(q) ∼= (Z/qZ)×.

Thus,

[SL2(Z) : Γd(q)]
1

φ(q)
q3
∏
p|q

(1− p−2) = q2
∏
p|q

(1 + p−1).

2.5. Exercise. Prove that for any finite abelian group G one has G ∼= Ĝ.

Hint: First try to show for finite abelian groups G1 and G2 that Ĝ1× Ĝ2
∼= Ĝ1 ×G2. Then

use the structure theory of the finite abelian groups.

2.6. Solution. We define a map

Ĝ1 × Ĝ2 → Ĝ1 ×G2 by (χ1, χ2) 7→ {χ : (g1, g2) 7→ χ1(g1)χ2(g2)}.

This map is clearly well-defined homomorphism. To see injectivity if χ is the trivial character
then

χ1(g1) = χ−1
2 (g2)∀(g1, g2) ∈ G1 ×G2,

which implies that χi are the trivial character. From the lecture we recall that |G|= |Ĝ|,
which proves the isomorphism. Now from the structure theory of the finite abelian groups
we know that every finite abelian group is isomorphic to direct product of Z/nZ. hence it is
enough to show that

Ẑ/nZ = Hom(Z/nZ, S1) ∼= µn ∼= Z/nZ,
where µn is the group of n’th roots of unity. To See this isomorphism we consider that map

Hom(Z/nZ, S1)→ µn by χ 7→ χ(1).

This map is clearly a well-defined homomorphism, as χ(1)n = χ(n) = χ(0) = 1, i.e. χ(1) ∈
µn. If χ(1) = 1 then χ(m) = χm(1) = 1, which proves the injectivity. Equality of the
cardinalities concludes the proof.
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2.7. Exercise. Recall the the product expansion

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
.

(1) Use the above formula to prove that,

1

z
+
∞∑
d=1

[
1

z − d
+

1

z + d

]
= π cot(πz) = πi− 2πi

∞∑
d=0

e(dz).

(2) Prove that for even natural number k

ζ(k) = −(2πi)k

2k!
Bk,

where Bk are the Bernoulli numbers.
(3) Prove that ζ(s) has zeros at negative even integers.

Hint: Use the functional equation of ζ(s).

2.8. Solution.

(1) We do a logarithmic differentiation of the given expression.

π cot(πz) =
d

dz
log sin(πz)

=
d

dz
log(πz) +

d

dz

∞∑
n=1

log(1− z2/n2)

=
1

z
+
∞∑
n=1

2z

n2 − z2
,

hence the first equality. For the second equality we see that,

π cot(πz) = πi
e(z) + 1

e(z)− 1
= πi− 2πi

1

1− e(z)
= πi− 2πi

∞∑
n=0

e(nz),

completing the proof.
(2) Recall that the Bernoulli numbers are defined by the coefficient of the series expansion

of x
ex−1

, i.e.
∞∑
k=0

Bk
xk

k!
=

x

ex − 1
.

Consider the generating series of ζ(2k)

1 + 2
∞∑
k=1

ζ(2k)z2k.



10 MODULAR FORMS EXERCISES AND SOLUTIONS

For |z|< 1 the above sum is absolutely convergent, so plugging in the definition of
ζ(s) for s > 1 and changing the order of the summation we get that above sum is

1 + 2
∞∑
n=1

∞∑
k=1

(z/n)2k = 1 +
∞∑
n=1

2z2

n2 − z2
= πz cot(πz),

where the last equality is from (1). But from (2)

πz cot(πz) = πiz − 2πiz

1− e2πiz
= πiz −

∞∑
k=0

Bk
(2πiz)k

k!
.

Equating two power series we conclude that

2ζ(2k) = −B2k
(2πi)2k

(2k)!
,

concluding the result.
(3) We recall the functional equation of ζ(s)

ζ(s)π−s/2Γ(s/2) = ζ(1− s)π(1−s)/2Γ((1− s)/2).

We also recall the duplication formula,

Γ(s) =
2s−1

√
π

Γ(s/2)Γ((1 + s)/2),

and
Γ(1/2− s/2)Γ(1/2 + s/2) =

π

cos(πs/2)
.

Combining all of them we get that,

ζ(1− s) = 2(2π)−s cos(πs/2)Γ(s)ζ(s).

Plugging in s = 2n + 1 for n ≥ 1 and checking that cos(nπ + π/2) = 0 we conclude
that

ζ(−2n) = 0.

2.9. Eisenstein Series of weight 2. In the lecture we have defined Eisenstein series Ek of
weight k for k > 2. In this exercise we will define Eisenstein series E2 of weight 2 and will
show that it satisfies an “almost modularity” relation.

2.10. Exercise. Define the following functions for z ∈ H:

G2(z) :=
∞∑
n=1

1

n2
+
∞∑
m=1

∑
n∈Z

1

(mz + n)2
,

G∗2(z) := G2(z)− π

2=(z)
,

G2,ε :=
1

2

∑
(m,n)6=(0,0)

1

(mz + n)2

1

|mz + n|2ε
, for ε > 0.
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(1) Let γ =

(
a b
c d

)
. Prove that G2,ε converges absolutely and locally uniformly. Also

show that,
G2,ε(γz) = (cz + d)2|cz + d|2εG2,ε(z).

(2) For ε > −1/2 define:

Iε(z) :=

∫
R

dt

(z + t)2|z + t|2ε
and I(ε) :=

∫
R

dt

(i+ t)2(1 + t2)ε
.

Consider

G2,ε(z)−
∞∑
m=1

Iε(mz).

Use the mean value theorem to prove that it converges absolutely and locally uni-
formly for ε > −1/2 and the limit as ε→ 0 is G2(z).

(3) Show that

Iε(z) =
I(ε)

=(z)1+2ε
and I ′(0) = −π.

Use this to show that the limit of G2,ε(z) as ε → 0 is G∗2(z). Hence G∗2 transforms
like a modular form of weight 2.

(4) Conclude that

G2(γz) = (cz + d)2G2(z)− πic(cz + d).

E2 is defined to be, as usual, G2

ζ(2)
.

2.11. Solution.

(1) Note that, for k > 2 and z ∈ H
∞∑
N=1

∑
N<|mz+n|≤N+1

1

|mz + n|k
≤

∞∑
N=1

#{(m,n) ∈ Z2 | N ≤ |mz + n|≤ N + 1}
Nk

.

It is easy to check that

#{(m,n) | N ≤ |mz + n|≤ N + 1} � π(N + 1)2 − πN2 � N.

Thus the above sum is, as k > 2

�
∞∑
N=1

N1−k <∞.

Now we see that,

G2,ε ≤
∑

0≤|mz+n|≤1

|mz + n|−2−2ε+
∑

1≤|mz+n|

|mz + n|−2−2ε.

The first sum has finite number of summands and second sum is absolutely and
locally uniformly convergent by the previous argument. Thus the sum of G2,ε are
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convergent abolustely and locally uniformly, thus defines a holomorphic function on
H. To see the transformation law we first note that every γ ∈ SL2(Z) induces a
bijection from Z2 \ {(0, 0)} to itself by right multiplication. Also one checks that,

mγz + n =
(ma+ nc)z + (mb+ nd)

cz + d
=
m′z + n′

cz + d
.

Combining these two facts, we conclude that

G2, ε(γz) =
∑

(m′,n′)6=(0,0)

(cz + d)2|cz + d|2ε

(m′z + n′)|m′z + n′|2ε
= (cz + d)2|cz + d|2εG2,ε(z).

(2) Let

f(t) := (mz + t)2|mz + t|−2ε,

with implicit dependence on mz. Now as we have proved the absolute convergence
of the

∑
f(n) we will freely change the order of summation and order of integration

and summation, as follows.

G̃2,ε(z) = G2,ε(z)−
∞∑
m=0

Iε(mz)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∑
n∈Z

(f(n)−
∫ n+1

n

f(t)dt)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∑
n∈Z

∫ n+1

n

(f(n)− f(t))dt.

By the mean value theorem on n ≤ t ≤ n+ 1 we get that

|f(n)− f(t)|≤ sup
n≤u≤n+1

|f ′(u)|� |mz + n|−3−2ε.

Hence, the sum is absolutely convergent for ε > −1/2 and thus limε→0 G̃2,ε exists and
defines a holomorphic function. We calculate,

lim
ε→0

G̃2,ε(z)

=
1

2

∑
n 6=0

1

n2
+
∞∑
m=1

[∑
n∈Z

1

(mz + n)2
+
∑
n∈Z

(
1

mz + n+ 1
− 1

mz + n

)]

=
1

2

∑
n 6=0

1

n2
+
∞∑
m=1

∑
n∈Z

1

(mz + n)2

= G2(z)
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(3) Let z = x+ iy. Then changing variable t 7→ yt− x we get that,

Iε(x+ iy) =

∫
R

dt

(x+ t+ iy)2|x+ t+ iy|2ε

=
1

y1+2ε

∫
R

dt

(t+ i)2|t+ i|2ε
=

I(ε)

y1+2ε
.

Differentiating under the integration sign and then integrating by parts we get that,

I ′(0) = −
∫
R

log(1 + t2)

(t+ i)2
dt =

log(1 + t2)

t+ i

∣∣∣∣∣
∞

−∞

−
∫
R

2tdt

(t+ i)(1 + t2)

= −
∫
R

1

(t+ i)2
+

1

1 + t2
= −

∫
R

dt

t2 + 1
= −π.

Using the above two results we compute that,

lim
ε→0

∞∑
m=1

Iε(mz) = lim
ε→0

∞∑
m=1

I(ε)

(my)1+2ε
= lim

ε→0

I(ε)ζ(1 + 2ε)

=(z)1+2ε
.

From the exercise 1.6 we know that

ζ(1 + 2ε) =
1

2ε
+O(1).

Using that I(0) = 0 we have that above limit equals to

lim
ε→0

I(ε)

2ε=(z)1+2ε
=

I ′(0)

2=(z)
.

Thus,

lim
ε→0

G2,ε(Z) = lim
ε→0

(
G̃2,ε(z) +

∞∑
m=1

Iε(mz)

)
= G2(z)− π

2=(z)
= G∗2(z).

(4) From part (1) and (3) letting ε→ 0 we see that G∗2(z) transforms as a modular form
of weight 2. So,

G2(γz)− (cz + d)2G2(z) =
π

2=(γz)
− (cz + d)2 π

2=(z)

=
π

2=(z)
(|cz + d|2−(cz + d)2)

= πic(cz + d),

concluding the result.
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