
MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. Exercise. Let P be the set of primes. Prove that
∑

p∈P
1
p

= +∞.

1.2. Solution. Let s > 1. Then from the Euler product of the Zeta function,

log ζ(s) =
∑
p∈P

− log(1− p−s) =
∑
p∈P

∞∑
k=1

1

kpks

≤
∑
p∈P

1

ps
+
∑
p∈P

∑
k=2

1

pk
=
∑
p∈P

1

ps
+
∑
p∈P

1

p(p− 1)

=
∑
p∈P

1

ps
+O(1)

As we know that lims→1+ ζ(s) = +∞, letting s → 1+ in the above inequality we conclude
that

lim
s→1+

∑
p∈P

1

ps
= +∞,

hence the result.

1.3. Summation by Parts. Let a : N → C be an arithmetic function, let 0 < y < x and
let f : [y, x]→ C be a function with continuous derivative on [y, x]. Then∑

y<n≤x

anf(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where A(x) =
∑

n≤x an.

1.4. Exercise. Prove that for every δ > 0,

π(x) := |{p ∈ P | p ≤ x}|

is bigger than x
(log x)1+δ

for some sufficiently large x.
1



2 MODULAR FORMS EXERCISES AND SOLUTIONS

1.5. Solution. Let an be the prime indicator function, i.e.

an :=

{
1, if n is prime

0, if n is not a prime.
.

Using summation by parts we note that,∑
p≤x

1

p
=

∑
3/2<n≤x

an
n

=
π(x)

x
+

∫ x

3/2

π(t)

t2
dt.

If the claim is false i.e. for all sufficiently large x, π(x) ≤ x/(log x)1+δ then from the above,∑
p≤x

1

p
≤ 1

(log x)1+δ
+ C +

1

(log x)δ
,

for some constant C. The RHS of the above tends to C as x → ∞ contradicting Exercise
1.1, hence the result.

1.6. Exercise. Prove that for <(s) > 1,

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx,

where {x} is the fractional part of x. Using this show that ζ(s) has meromorphic continuation
to <(s) > 0 with a simple pole at s = 1.

1.7. Solution. Let <(s) > 1. Then using the summation by parts as following.∑
n≤x

1

ns
=

[x]

xs
+ s

∫ x

1

[t]

ts+1
dt =

1

xs−1
− {x}

xs
+ s

∫ x

1

t−sdt− s
∫ x

1

{t}
ts+1

dt

=
s

s− 1
− s

∫ x

1

{t}
ts+1

dt+O(x−<(s) + x−<(s)+1).

Letting x→∞, as <(s) > 1, we conclude that

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

We now note that the integral right hand side is well defined for <(s) > 0 and is holomorphic
in s. As s

s−1
is a meromorphic function with simple pole at s = 1 and residue 1, we conclude

the meromorphic continuation of ζ(s) to <(s) > 0.

1.8. Exercise. Prove that the Gamma function, which is defined for <(s) > 0 by

Γ(s) :=

∫ ∞
0

e−tts
dt

t

has analytic continuation to C \Z≤0 with simple pole at each non-positive integer. Find the
residues of the Gamma function at those poles.
Hint: First prove that Γ(s+ 1) = sΓ(s).



MODULAR FORMS EXERCISES AND SOLUTIONS 3

1.9. Solution. By integration by parts we see that

Γ(s+ 1) =

∫ ∞
0

e−tts+1dt

t
=

∫ ∞
0

e−tsts
dt

t
= sΓ(s),

for <(s) > 0. Thus Γ(s) = Γ(s+1)
s

extends definition of Γ(s) to <(s) > −1 meromorphically
with pole at s = 0 as

lim
s→0+

∫ ∞
0

e−tts
dt

t
= +∞.

The pole is simple, as lims→0 sΓ(s) = 1, and with residue 1. Similarly Γ(s) can be extended
to all C \ Z≤0 with simple poles at s = −n, n ∈ N with residue,

lim
s→−n

(s+ n)Γ(s) = lim
s→−n

Γ(s+ n+ 1)

(s+ n− 1) . . . s
=

(−1)n

n!
.

1.10. Exercise. Prove the Poisson summation formula: Let f ∈ S(R) be in the Schwartz
class. Prove that ∑

n∈Z

f(n+ u) =
∑
n∈Z

f̂(n)e(nu).

Note: Putting u = 0 we get the usual Poisson summation formula.

1.11. Solution. Let
F (x) :

∑
n∈Z

f(n+ x)

which is a function on L1(R/Z) so has a Fourier expansion of the form

F (x) =
∑
n∈Z

e(nx)F̂ (n).

Here

F̂ (n) =

∫ 1

0

F (x)e(−nx)dx =
∑
n∈Z

∫ 1

0

∑
m∈Z

f(m+ x)e(−nx)dx

=
∑
m∈Z

∫ m+1

m

f(x)e(−nx) =

∫ ∞
−∞

f(x)e(−nx)dx = f̂(n),

this provides the result.

1.12. Exercise. Recall that,

G(1, N) :=
∑

n mod N

e(n2/N).

Prove that

(1) For any odd positive integer N , G(1, N2) = N and G(1, N3) = NG(1, N).

(2) For every positive integer N , G(1, N) = 1+i−N

1−i

√
N.
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1.13. Solution. (1) is elementary. We can parametrize the residue class of Nk by

{a1N
k−1 + a2N

k−2 + · · ·+ ak | 0 ≤ ai ≤ N − 1}.

Using this we have,

G(1, N2) =
N−1∑
a=0

N−1∑
b=0

e

(
(aN + b)2

N2

)

=
N−1∑
b=0

e(b2/N2)
N−1∑
a=0

e

(
2ab

N

)

=
N−1∑
b=0

e(b2/N2)δb=0N = N.

Similarly,

G(1, N3) =
N−1∑
a=0

N−1∑
b=0

N−1∑
c=0

e

(
(aN2 + bN + c)2

N3

)

=
N−1∑
c=0

N−1∑
b=0

e

(
(bN + c)2

N3

)N−1∑
a=0

e(2ac/N)

=
N−1∑
c=0

N−1∑
b=0

e

(
(bN + c)2

N3

)
Nδc=0 = NG(1, N).

For the second part we use the Poisson summation formula. First we note the function

f(x) := 1[0,N ]e(x
2/N)

is a function which is continuous on (0, N) and has continuity only from one side at x = 0, N .
From the Fourier theory we know that the Fourier series of f at x = 0 would converge to
f(0+)+f(0−)

2
= f(0+)/2. and similarly, at x = N to f(N−)/2 Thus using the (modified)

Poisson summation formula and using that f(0+) = f(N−) we get that,

N∑
n=0

e(N2/N) =
f(0+)

2
+

N−1∑
n=1

f(n) +
f(N−)

2

=
∑
n∈Z

∫ ∞
−∞

f(x)e(nx)dx =
∑
n∈Z

∫ N

0

e(x2/N + nx)dx.

Thus,

G(1, N) = N
∑
n∈Z

∫ 1

0

e(Nx2 + nNx)dx = N
∑
n∈Z

e(−Nn2/4)

∫ 1

0

e(N(x+ n/2)2)
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Noting that

e(−Nn2/4) =

{
1, if n is even,

i−N , if n is odd.
,

and dividing the above sum into odd and even parts we get that,

G(1, N) = N
∑
n∈Z

∫ 1+n

n

e(Nx2)dx+Ni−N
∑
n∈Z

∫ n+1/2

n−1/2

e(nx2)dx

=
√
N(1 + i−N)

∫ ∞
−∞

e(y2)dy.

The last integral can be checked convergent and we call it C. Thus,

G(1, N) =
√
NC(1 + i−N).

Checking that, G(1, 1) = 1, we conclude the result.

1.14. Dirichlet Character. A Dirichlet character with modulus q is a character

χ : Z/qZ× → C×

extended to Z by making it q-periodic and defining χ(a) = 0 for (a, q) > 1. Associated to
each character χ, in addition to its modulus q, is a natural number q′, its conductor. The
conductor q′ is the smallest divisor of q such that χ can be written as χ = χ′χ0, where χ0 is
the trivial Dirichlet character mod q and χ′ is a character of modulus q′. If a character has
conductor equal to to its modulus then it is called a primitive Dirichlet character. Check
that, for a primitive Dirichlet character χ mod q one has

1

q

∑
a mod q

χ(ma+ b) =

{
χ(b), if q | m
0, if q - m.

The above is not true for a non-primitive character.

1.15. Exercise. Let χ be a primitive Dirichlet character mod q and f ∈ L1(R). Prove that∑
m∈Z

f(m)χ(m) =
G(χ)

q

∑
n∈Z

f̂(n/q)χ̄(n),

where G(χ) is the Gauss sum attached to χ defined by

G(χ) :=
∑

a mod q

χ(a)e(a/q).

Hint: Use the Poisson summation formula.
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1.16. Solution. First we prove the following. Let v ∈ R and u ∈ R+. Then using the
Poisson summation formula,∑

m∈Z

f(um+ v) =
∑
m∈Z

∫ ∞
∞

f(ux+ v)e(−mx)dx

=
∑
m∈Z

∫ ∞
−∞

f(x)e(−m(x− v)/u)
dx

u

=
1

u

∑
m∈Z

f̂(m)e(mv/u).

Using the above we get that,∑
m∈Z

f(m)χ(m) =
∑
m∈Z

∑
a mod q

χ(a)f(mq + a)

=
∑

a mod q

χ(a)
1

q

∑
m∈Z

f̂(m)e(ma/q)

=
G(χ)

q

∑
m∈Z

f̂(m)χ̄(m).

Here in the last line we have used that for a primitive Dirichlet character χ,∑
a mod q

χ(a)e(am/q) = χ̄(m)G(χ).

This can be seen as follows. Let (m, q) = 1. Then,

χ̄(m)G(χ) =
∑

a∈(Z/qZ)×

χ(am−1)e(a/q) =
∑

a∈(Z/qZ)×

χ(a)e(am/q).

If (m, q) > 1 then it follows from the fact that χ(m) = 0 and∑
a mod q

χ(a)e(am/q) =
∑

y mod q/(q,m)

e(ym/q)
∑

x mod q

χ(xq/d+ y) = 0.
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2. Due on 10th October

2.1. Exercise. Prove that Γ(q) is a normal subgroup of SL2(Z) and has index in it q3
∏

p|q(1−
1
p2

).

2.2. Solution. We consider the mod q reduction map

SL2(Z)→ SL2(Z/qZ),

whose kernel is by definition Γ(q). Thus Γ(q) is normal. Hence, as the above map is surjective,
by the first isomorphism theorem

SL2(Z/qZ) ∼= SL2(Z)/Γ(q),

and so,
[SL2(Z) : Γ(q)] = |SL2(Z/qZ)|.

To compute the cardinality we first note that if

(
a b
c d

)
∈ SL2(Z/qZ) then (c, d, q) = 1. For

each such lower row (c, d) we have exactly q solutions for the congruence ad−bc ≡ 1 mod q.
Thus the cardinality is,

q|{(c, d) mod q | (c, d, q) = 1}|= q
∑
r|q

µ(r)(q/r)2 = q3
∏
p|q

(1− p−2).

2.3. Exercise. Recall the subgroups Γ0(q), Γ1(q) and Γd(q) of SL2(Z) from the lectures.
Compute indices of the subgroups in SL2(Z).

2.4. Solution. Consider the surjective map

Γ1(q)→ Z/qZ,
by (

a b
c d

)
7→ b mod q.

The kernel of this map is by definition Γ(q). Thus by the first isomorphism theorem,

Γ1(q)/Γ(q) ∼= Z/qZ.
Hence,

[SL2(Z) : Γ1(q)] = [SL2(Z) : Γ(q][Γ1(q) : Γ(q)]−1 = q2
∏
p|q

(1− p−2).

Similarly, considering the map
Γ0(q)→ (Z/qZ)×,

by (
a b
c d

)
7→ d mod q,

we conclude that
Γ0(q)/Γ1(q) ∼= (Z/qZ)×.
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Thus,

[SL2(Z) : Γ1(q)] =
1

φ(q)
q2
∏
p|q

(1− p−2) = q
∏
p|q

(1 + p−1).

Again similarly, considering the map

Γd(q)→ (Z/qZ)×,

by (
a b
c d

)
7→ d mod q,

we conclude that

Γd(q)/Γ(q) ∼= (Z/qZ)×.

Thus,

[SL2(Z) : Γd(q)]
1

φ(q)
q3
∏
p|q

(1− p−2) = q2
∏
p|q

(1 + p−1).

2.5. Exercise. Prove that for any finite abelian group G one has G ∼= Ĝ.

Hint: First try to show for finite abelian groups G1 and G2 that Ĝ1× Ĝ2
∼= Ĝ1 ×G2. Then

use the structure theory of the finite abelian groups.

2.6. Solution. We define a map

Ĝ1 × Ĝ2 → Ĝ1 ×G2 by (χ1, χ2) 7→ {χ : (g1, g2) 7→ χ1(g1)χ2(g2)}.

This map is clearly well-defined homomorphism. To see injectivity if χ is the trivial character
then

χ1(g1) = χ−1
2 (g2)∀(g1, g2) ∈ G1 ×G2,

which implies that χi are the trivial character. From the lecture we recall that |G|= |Ĝ|,
which proves the isomorphism. Now from the structure theory of the finite abelian groups
we know that every finite abelian group is isomorphic to direct product of Z/nZ. hence it is
enough to show that

Ẑ/nZ = Hom(Z/nZ, S1) ∼= µn ∼= Z/nZ,
where µn is the group of n’th roots of unity. To See this isomorphism we consider that map

Hom(Z/nZ, S1)→ µn by χ 7→ χ(1).

This map is clearly a well-defined homomorphism, as χ(1)n = χ(n) = χ(0) = 1, i.e. χ(1) ∈
µn. If χ(1) = 1 then χ(m) = χm(1) = 1, which proves the injectivity. Equality of the
cardinalities concludes the proof.
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2.7. Exercise. Recall the the product expansion

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
.

(1) Use the above formula to prove that,

1

z
+
∞∑
d=1

[
1

z − d
+

1

z + d

]
= π cot(πz) = πi− 2πi

∞∑
d=0

e(dz).

(2) Prove that for even natural number k

ζ(k) = −(2πi)k

2k!
Bk,

where Bk are the Bernoulli numbers.
(3) Prove that ζ(s) has zeros at negative even integers.

Hint: Use the functional equation of ζ(s).

2.8. Solution.

(1) We do a logarithmic differentiation of the given expression.

π cot(πz) =
d

dz
log sin(πz)

=
d

dz
log(πz) +

d

dz

∞∑
n=1

log(1− z2/n2)

=
1

z
+
∞∑
n=1

2z

n2 − z2
,

hence the first equality. For the second equality we see that,

π cot(πz) = πi
e(z) + 1

e(z)− 1
= πi− 2πi

1

1− e(z)
= πi− 2πi

∞∑
n=0

e(nz),

completing the proof.
(2) Recall that the Bernoulli numbers are defined by the coefficient of the series expansion

of x
ex−1

, i.e.
∞∑
k=0

Bk
xk

k!
=

x

ex − 1
.

Consider the generating series of ζ(2k)

1 + 2
∞∑
k=1

ζ(2k)z2k.
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For |z|< 1 the above sum is absolutely convergent, so plugging in the definition of
ζ(s) for s > 1 and changing the order of the summation we get that above sum is

1 + 2
∞∑
n=1

∞∑
k=1

(z/n)2k = 1 +
∞∑
n=1

2z2

n2 − z2
= πz cot(πz),

where the last equality is from (1). But from (2)

πz cot(πz) = πiz − 2πiz

1− e2πiz
= πiz −

∞∑
k=0

Bk
(2πiz)k

k!
.

Equating two power series we conclude that

2ζ(2k) = −B2k
(2πi)2k

(2k)!
,

concluding the result.
(3) We recall the functional equation of ζ(s)

ζ(s)π−s/2Γ(s/2) = ζ(1− s)π(1−s)/2Γ((1− s)/2).

We also recall the duplication formula,

Γ(s) =
2s−1

√
π

Γ(s/2)Γ((1 + s)/2),

and
Γ(1/2− s/2)Γ(1/2 + s/2) =

π

cos(πs/2)
.

Combining all of them we get that,

ζ(1− s) = 2(2π)−s cos(πs/2)Γ(s)ζ(s).

Plugging in s = 2n + 1 for n ≥ 1 and checking that cos(nπ + π/2) = 0 we conclude
that

ζ(−2n) = 0.

2.9. Eisenstein Series of weight 2. In the lecture we have defined Eisenstein series Ek of
weight k for k > 2. In this exercise we will define Eisenstein series E2 of weight 2 and will
show that it satisfies an “almost modularity” relation.

2.10. Exercise. Define the following functions for z ∈ H:

G2(z) :=
∞∑
n=1

1

n2
+
∞∑
m=1

∑
n∈Z

1

(mz + n)2
,

G∗2(z) := G2(z)− π

2=(z)
,

G2,ε :=
1

2

∑
(m,n)6=(0,0)

1

(mz + n)2

1

|mz + n|2ε
, for ε > 0.
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(1) Let γ =

(
a b
c d

)
. Prove that G2,ε converges absolutely and locally uniformly. Also

show that,
G2,ε(γz) = (cz + d)2|cz + d|2εG2,ε(z).

(2) For ε > −1/2 define:

Iε(z) :=

∫
R

dt

(z + t)2|z + t|2ε
and I(ε) :=

∫
R

dt

(i+ t)2(1 + t2)ε
.

Consider

G2,ε(z)−
∞∑
m=1

Iε(mz).

Use the mean value theorem to prove that it converges absolutely and locally uni-
formly for ε > −1/2 and the limit as ε→ 0 is G2(z).

(3) Show that

Iε(z) =
I(ε)

=(z)1+2ε
and I ′(0) = −π.

Use this to show that the limit of G2,ε(z) as ε → 0 is G∗2(z). Hence G∗2 transforms
like a modular form of weight 2.

(4) Conclude that

G2(γz) = (cz + d)2G2(z)− πic(cz + d).

E2 is defined to be, as usual, G2

ζ(2)
.

2.11. Solution.

(1) Note that, for k > 2 and z ∈ H
∞∑
N=1

∑
N<|mz+n|≤N+1

1

|mz + n|k
≤

∞∑
N=1

#{(m,n) ∈ Z2 | N ≤ |mz + n|≤ N + 1}
Nk

.

It is easy to check that

#{(m,n) | N ≤ |mz + n|≤ N + 1} � π(N + 1)2 − πN2 � N.

Thus the above sum is, as k > 2

�
∞∑
N=1

N1−k <∞.

Now we see that,

G2,ε ≤
∑

0≤|mz+n|≤1

|mz + n|−2−2ε+
∑

1≤|mz+n|

|mz + n|−2−2ε.

The first sum has finite number of summands and second sum is absolutely and
locally uniformly convergent by the previous argument. Thus the sum of G2,ε are
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convergent abolustely and locally uniformly, thus defines a holomorphic function on
H. To see the transformation law we first note that every γ ∈ SL2(Z) induces a
bijection from Z2 \ {(0, 0)} to itself by right multiplication. Also one checks that,

mγz + n =
(ma+ nc)z + (mb+ nd)

cz + d
=
m′z + n′

cz + d
.

Combining these two facts, we conclude that

G2, ε(γz) =
∑

(m′,n′)6=(0,0)

(cz + d)2|cz + d|2ε

(m′z + n′)|m′z + n′|2ε
= (cz + d)2|cz + d|2εG2,ε(z).

(2) Let

f(t) := (mz + t)2|mz + t|−2ε,

with implicit dependence on mz. Now as we have proved the absolute convergence
of the

∑
f(n) we will freely change the order of summations and order of integration

and summation, as follows.

G̃2,ε(z) = G2,ε(z)−
∞∑
m=0

Iε(mz)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∑
n∈Z

(f(n)−
∫ n+1

n

f(t)dt)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∑
n∈Z

∫ n+1

n

(f(n)− f(t))dt.

By the mean value theorem on n ≤ t ≤ n+ 1 we get that

|f(n)− f(t)|≤ sup
n≤u≤n+1

|f ′(u)|� |mz + n|−3−2ε.

Hence, the sum is absolutely convergent for ε > −1/2 and thus limε→0 G̃2,ε exists and
defines a holomorphic function. We calculate,

lim
ε→0

G̃2,ε(z)

=
1

2

∑
n 6=0

1

n2
+
∞∑
m=1

[∑
n∈Z

1

(mz + n)2
+
∑
n∈Z

(
1

mz + n+ 1
− 1

mz + n

)]

=
1

2

∑
n 6=0

1

n2
+
∞∑
m=1

∑
n∈Z

1

(mz + n)2

= G2(z)
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(3) Let z = x+ iy. Then changing variable t 7→ yt− x we get that,

Iε(x+ iy) =

∫
R

dt

(x+ t+ iy)2|x+ t+ iy|2ε

=
1

y1+2ε

∫
R

dt

(t+ i)2|t+ i|2ε
=

I(ε)

y1+2ε
.

Differentiating under the integration sign and then integrating by parts we get that,

I ′(0) = −
∫
R

log(1 + t2)

(t+ i)2
dt =

log(1 + t2)

t+ i

∣∣∣∣∣
∞

−∞

−
∫
R

2tdt

(t+ i)(1 + t2)

= −
∫
R

1

(t+ i)2
+

1

1 + t2
= −

∫
R

dt

t2 + 1
= −π.

Using the above two results we compute that,

lim
ε→0

∞∑
m=1

Iε(mz) = lim
ε→0

∞∑
m=1

I(ε)

(my)1+2ε
= lim

ε→0

I(ε)ζ(1 + 2ε)

=(z)1+2ε
.

From the exercise 1.6 we know that

ζ(1 + 2ε) =
1

2ε
+O(1).

Using that I(0) = 0 we have that above limit equals to

lim
ε→0

I(ε)

2ε=(z)1+2ε
=

I ′(0)

2=(z)
.

Thus,

lim
ε→0

G2,ε(Z) = lim
ε→0

(
G̃2,ε(z) +

∞∑
m=1

Iε(mz)

)
= G2(z)− π

2=(z)
= G∗2(z).

(4) From part (1) and (3) letting ε→ 0 we see that G∗2(z) transforms as a modular form
of weight 2. So,

G2(γz)− (cz + d)2G2(z) =
π

2=(γz)
− (cz + d)2 π

2=(z)

=
π

2=(z)
(|cz + d|2−(cz + d)2)

= πic(cz + d),

concluding the result.
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3. Due on 24th October

3.1. Exercise. Prove the Bruhat decomposition: for any subfield K ⊂ C

SL2(K) = N(K)A(K) tN(K)wN(K)A(K),

where the notatons are same as in the lectures. Using this prove that the fractional linear
transformation GL2(C) y P1(C) preserves the lines.

3.2. Solution. Let g =

(
a b
c d

)
. if c = 0 then g is upper triangual so lies in NA. So let us

assume that c 6= 0. So b = ad/c. Then(
a b
c d

)
=

(
1 a/c

1

)
w

(
1 cd

1

)(
c

1/c

)
.

This also can be proved in much more geometric way. First check that

g.∞ = a/c =⇒ StabGL(2)(∞) = NA.

We prove that if g /∈ NA then g ∈ NwNA. To check this we see that(
1 −a/c

1

)
g.z = g.z−a/c =

az + b

cz + d
− a
c

=
1

c2z + cd
= w.c2z+cd = w

(
1 cd

1

)(
c

1/c

)
.z.

To check that this decombosition is unique we note that, again, if g = b ∈ NA this is obvious.
If g = nwb = n′wb′ then

g.∞ = n.0 = n′.0 =⇒ n = n′ =⇒ b = b′.

This proves the first part.
For the second part we first recall that a line in P1(C) is of the form L ∪ {∞} where L is a
line or a circle in C. As from the previous part and the fact that

GL2(C) ∼= Z(C)SL2(C),

it is enough to prove that Z,N,A,w preserves the lines. While Z,N,A transforms in affine
way, i.e.

z 7→ az + b, a ∈ C×, b ∈ C
it is clear that they preserve lines. Thus it is enough to check that w preserves a line L.
Now, as we can freely move object in affine way, we may assume that L is a horizontal line
passing through 0, i.e. =(z) = 0 or a unit circle centered at origin, i.e. |z|= 1. In either case
the fact that

w.z = −1

z
=

z̄

|z|2

proves the claim.
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3.3. Exercise. Recall the Fourier expansions of the Eisenstein series

Ek(z) = 1 + ck

∞∑
n=1

σk−1(n)qn,

where for k = 2, 4, . . . , 14 the ck are−24, 240,−504, 480,−264, 65520/691,−24 with q := e(z)
and σs(n) :=

∑
d|n d

s.

(1) Use dimension formula to show that E8 = E2
4 , E4E6 = E10, and E6E8 = E14. What

relations can you get between σn’s using the above relations (some of them were
obtained during the lectures)?

(2) Define the Serre derivative by

Dk :=
1

2πi

d

dz
− k

12
E2.

Show that Dk : Mk →Mk+2 and Dkf ∈ Sk+2 iff f ∈ Sk.
(3) Calculate DE4 and DE6. Find σ5 in terms of σ1 and σ3 resp. and σ7 in terms of σ1

and σ5.

3.4. Solution.

(1) Check that from the dimension formula that m8, M10, and M14 are one dimensional.
Therefore, E8−cE2

4 , E4E6 = de10, and E6E8 = eE14. But from the Fourier expansions
of the Eisenstein series that their first Fourier coefficients are one we cocnlude that
c = d = e = 1. Now multiplying the Fourier expansions we get that

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m),

−11σ9(n) = 10σ3(n)− 21σ5(n)− 5040
n−1∑
m=1

σ3(m)σ5(n−m),

−σ13(n) = −21σ5(n) + 20σ7(n)− 10080
n−1∑
m=1

σ5(m)σ7(n−m).

(2) Let f ∈ Mk. As E2, f , and f ′ are holomorphic so is Dkf . So it is enough to show
that Dkf transforms as a weight k+2 form to prove that image of Dk is in Mk+2. We

check that for γ =

(
a b
c d

)
with j(γ, z) = cz + d, and recalling from exercise 2.10(4)

that

E2(γz) = j(γ, z)2E2(z) +
12cj(γ, z)

2πi
.
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we get that

Dkf(γz) =
1

2πi
f ′(γz)− k

12
E2(γz)f(γz)

=
1

2πi
j2(γ, z)

df(γz)

dz
− jk+2(γ, z)E2(z)f(z)− ckjk+1(γ, z)

2πi
f(z)

=
1

2πi
j2(γ, z)

d

dz
jk(γ, z)f(z)− jk+2(γ, z)E2(z)f(z)− f(z)

j2(γ, z)

2πi

d

dz
jk(γ, z)

=
jk+2(γ, z)

2πi
f ′(z)− jk+2(γ, z)E2(z)f(z)

= jk+2(γ, z)Dkf(z).

Now note that,

q = e(z) =⇒ 1

2πi

d

dz
= q

d

dq
.

Thus if f has Fourier expansion

f(z) =
∞∑
n=0

anq
n,

then

Dkf = q
df

dq
− k

12
E2f =

∞∑
n=0

nanq
n +

k

12
E2f.

Thus it is clear that the zeroth Fourier coefficient is −ka0/12 and that will be zero if
and only if a0 = 0 which proves the second claim.

(3) By part (2) DE4 ∈M6 and DE6 ∈M8. From the dimension formulas and the zeroth
Fourier coefficients we conclude as in (1) that

DE4 = cE6, c ∈ C,

with c = −1/3. Similarly, DE6 = −1
2
E8. Now as in (1) comparing the Fourier

coefficients we get that

21σ5(n) = (30n− 10)σ3(n) + σ1(n) + 240
n−1∑
m=1

σ1(m)σ3(n−m),

20σ7(n) = (42n− 21)σ5(n) + σ1(n) + 504
n−1∑
m=1

σ1(m)σ5(n−m).
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3.5. Exercise. Recall that the Delta function from the lecture defined in terms of some
Eisenstein series. Here we start with a different defintion and show equality afterwards.

∆(z) := q
∞∏
n=1

(1− qn)24,

which has a Fourier expansion

∆(z) =
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 +O(q4) ∈ Z[[q]],

with q = e(z) as usual. τ : N→ C is called Ramanujan Tau function.

(1) Prove that 1
2πi

d
dz

log ∆(z) = E2(z) and conclude that ∆ ∈ S12.

(2) Show that ∆ =
E3

4−E2
6

1728
, and derive τ in terms of σ3 and σ5.

(3) Show that E12 −E2
6 = c∆ with c = 263572

691
and derive relation between τ , σ11 and σ5.

Use this to prove the famous congruence by Ramanujan:

τ(n) ≡ σ11(n) mod 691,

for all n ≥ 1.

3.6. Solution.

(1) Recall that 1
2πi

d
dz

= q d
dq

. Therefore,

1

2πi

d

dz
log ∆(z) = q

d

dq
log

(
q
∞∏
n=1

(1− qn)24

)

= q
d

dq

[
log q + 24

∞∑
n=1

24 log(1− qn)

]

= q
d

dq

[
log q − 24

∞∑
n=1

∞∑
k=1

qnk

k

]

= 1− 24
∞∑
n=1

∞∑
k=1

nqnk

= 1− 24
∞∑
n=1

qn

∑
k|n

k

 = E2(z).

All interchanges of orders of summations are justified as the series is absolutely
convergent as |q|< 1. Now from the product form it is clear that ∆ is holomorphic
and has zero as zeroth Fourier coefficient. So to prove that ∆ ∈ S12 it is enough to
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show that ∆ transforms as a weight 12 modular form. To check that keeping the
same notations as in the solution 3.4(2) we compute that

1

2πi

d

dz
log ∆(γz)

= j(γz)−2 1

2πi

d

dz
log ∆|γz

= j(γz)−2E2(γz)

= E2(z) +
12c

2πij(γ, z)

=
1

2πi

d

dz
log ∆(z) +

1

2πi

d

dz
log j12(γ, z)

=
1

2πi

d

dz
log(j12(γ, z)∆(z)).

Thus for each γ ∈ SL2(Z) there exists a constant 0 6= c(γ) such that

∆(γz) = c(γ)j12(γ, z)∆(z).

It suffices to show that c(γ) = 1 for all γ. It is easy to check that

c : SL2(Z)→ C×, γ 7→ c(γ)

a character. Thus it is enough to prove that c(T ) = 1 and c(S) = 1 where T, S are
the usual generators of SL2(Z). But as ∆ is 1-periodic so c(T ) = 1. Now as S.i = i
and ∆(i) 6= 0 we see that

c(S) = i−12 = 1,

completing the proof.
(2) As S12 is one dimensional and E3

4 − E2
6 has zero zeroth Fourier coefficient hence,

E3
4 − E2

6 = d∆, d ∈ C.

d can be calculated to be 1728 from the first Fourier coefficients of E4 and E6. Thus
equating Fourier coefficients we conclude that

12τ(n) = 5σ3(n) + 1200
n−1∑
m=1

σ3(m)σ3(n−m) + 96000
n−1∑
r=1

r−1∑
m=1

σ3(m)σ3(r −m)σ3(n− r)

+ 7σ5(n)− 1764
n−1∑
m=1

σ5(m)σ5(n−m).

(3) Again by dimension formula arguing that S12 is one dimensional and comparing the
first Fourier coefficients we conclude that

E12 − E2
6 =

263572

691
∆.
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Comparing the Fourier coefficients we get that

263572τ(n) = 65520σ11(n) + 691.2.504σ5(n)− 691.5042

n−1∑
m=1

σ5(m)σ5(n−m).

Dividing by 1008 and reducing mod 691 we conclude that

756τ(n) ≡ 65τ(n) ≡ 65σ11(n) mod 691.

As (65, 691) = 1 we conclude the final result.

3.7. A Riemmanian metric on the upper half plane. A Riemmanian metric on H can
be defined as

ds2(z) =
d<2(z) + d=2(z)

=2(z)
,

which gives H a hyperbolic structure (More details in the upcoming lecture).

3.8. Exercise. Let z1, z2 ∈ H. We define geodesic segment between z1 and z2 to be the
unique length minimizing curve (which exists) joining z1 and z2 under the hyperbolic metric
as above. We define the hyperbolic distance between z1 and z2 to be

dh(z1, z2) := Length of geodesic segment between z1 and z2.

(1) Prove that
ds2(gz) = ds2(z), ∀g ∈ GL+

2 (R),

that is ds2 is a GL+
2 (R) invariant metric.

(2) Prove that if <(z1) = <(z2) then the geodesic segment joining them is the vertical
line joining z1 and z2.

(3) Prove that for general z1 and z2 the geodesic segment joining them is the arc of the
unique half-circle centered on R containing these two points.

(4) Prove that

cosh(dh(z1, z2)) = 1 +
|z1 − z2|2

2=(z1)=(z2)
.

3.9. Solution.

(1) Let g =

(
a b
c d

)
. Then we check that

d(gz)

dz
=

det(g)

(cz + d)2
.

Also recall that

=(gz) =
det(g)=(z)

|cz + d|2
.

Thus

ds2(gz) =
|d(gz)|2

=(gz)2
=
|det(g)|2

|cz + d|4
|dz|2 |cz + d|4

|det(g)|2=(z)2
=
|dz|2

=(z)2
= ds2(z).
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(2) WLOG let =(z2) ≥ =(z1). Note that, the vertical path joining z1 and z2 can be given
as

φ(t) = <(z1) + i=(z1)

(
=(z2)

=(z1)

)t
.

It is easy to check that the length of φ

L(φ) = log=(z2)− log=(z1).

Let φ′ be any other curve joining z1 and z2. Then the length of φ1

L(φ1) =

∫ 1

0

|φ′1(t)|
=(φ1(t))

dt ≥
∫ 1

0

=(φ′1(t))

=(φ1(t))
dt = log=(z2)− log=(z1),

which proves the claim.
(3) First we claim that there exists a g ∈ SL2(R) such that

<(gz1) = <(gz2) = 0.

First we assume the claim. Then we see that the length minimizing curve joining gz1

and gz2, them having same real part, is a vertical segment φ as in the previous part.
As SL2(R) acts by isometry the geodesic joining z1 and z2 would be g−1φ. From
Exercise 3.1 we can conclude that SL2(R) preserves lines in P1(R) ∼= H∪{∞}, where
lines in P1(R) are vertical lines or half-circles centered in R. This concludes the proof
assuming the claim.
Now we turn to prove the claim. By transitivity property of SL2(R) action one can
find g such that gz1 = i. Now as we know that SO(2) fixes i for any k ∈ SO(2) we
have gki = z1. So it is enough to find some k such that <(kg−1z2) = 0. For any

z ∈ H we can always find k ∈ SO(2) such that <(kz) = 0. If k =

(
cos θ − sin θ
sin θ cos θ

)
and z = x+ iy) then to make sure that <(kz) = 0 one needs to see whether

tan(2θ) = − x

y2 + 1− x2
,

which clearly exists.
(4) By the argument in the part (3) we can find g ∈ SL2(R) such that gz1 and gz2 has

zero real parts. Also from part (1) we know that g acts by isometry thus it is enough
to prove the statement for z1 and z2 purely imaginary. But in part (2) we have proved
that for such zi ∈ iR one has

dh(z1, z2) = |log=(z1)− log=(z2)|= |log(z1/z2)|.
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Thus,

cosh(dh(z1, z2)) =
1

2

(
edh(z1,z2) + e−dh(z1,z2)

)
=

1

2

∣∣∣∣z1

z2

+
z1

z2

∣∣∣∣2 =
|z2

1 + z2
2 |

2|z1z2|

= 1 +
|z1 − z2|2

2=(z1)=(z2)
,

completing the proof.
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4. Due on 7th November

4.1. Exercise. Prove that all the geodesics of H are the perpendicular lines P1(R) at two
points.

4.2. Solution. From the Exercise 3.8(2), 3.8(3) we know the the geodesic joining two points
z1 and z2 in H is the arc of the unique half-circle centered on R containing these two points
if they have different real parts and the vertical lines joining them if they have same real
parts. So we need to check that both the semicircles centered in R and the vertical lines
are perpendicular to P1(R) at two points. As P1(R) = R ∪ {∞}, semicircles are clearly
perpendicular to R at two points in R, where as, vertical lines are perpendicular at a point
in R and ∞. This proves the claim.

4.3. Exercise. Recall the canonical projection map

π : H→ Y (Γ) := {Γz | z ∈ H}.

Let Ui ⊂ H be an open set. Prove that

(1) π(U1) ∩ π(U2) = ∅ in Y (Γ) iff Γ(U1) ∩ U2 = ∅ in H.
(2) Y (Γ) is connected.

4.4. Solution.

(1) We will show the contrapositive, that

π(U1) ∩ π(U2) 6= ∅ ⇐⇒ Γ(U1) ∩ U2 6= ∅.

To see this let for some ui ∈ Ui for i = 1, 2

Γu1 = Γu2.

This implies that for γ1 ∈ Γ there exists γ2 ∈ Γ such that

γ1u1 = γ2u2 =⇒ γ−1
2 γ1u1 = u2.

But the above implies that u2 ∈ Γu1, in other words,

u2 ∈ Γ(U1) ∩ U2.

The opposite implication is trivial. If there exists ui ∈ Ui for i = 1, 2 such that
u2 ∈ Γu1 then Γu1 = Γu2. Hence π(U1) ∩ π(U2) 6= ∅.

(2) As π is a projection, hence a continuous surjection, and H is connected so Im(π) =
Y (Γ) is also connected.
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4.5. Exercise. Recall the definition of Ux,Y from the lecture with x ∈ P1(Q) and Y > 0.
Let Γ be a congruence subgroup of SL2(Z), x, y ∈ P1(Q), and z ∈ H.

(1) Let U be a neighbourhood of z with compact closure. Show that the set

{γ ∈ Γ | γUx,Y ∩ U 6= ∅}
is finite, in fact empty, for U sufficient small and Y sufficiently large.

(2) If y /∈ Γx then show that the set

{γ ∈ Γ | γUx,Y ∩ Uy,Y 6= ∅}
is finite for any Y > 0 and empty if Y > 1.

(3) If Y > 1 then show that

{γ ∈ Γ | γUx,Y ∩ Ux,Y 6= ∅} = Γx.

(4) Prove that X(Γ) equipped with the quotient topology is a connected, compact, Haus-
dorff topological space.

4.6. Solution.

(1) Note that
γUx,Y = γσx(HY ∪ {∞}) = γσxHY ∪ γ{x}.

As x /∈ H and U has compact closure hence

u ∈ γUx,Y ∩ U =⇒ u ∈ γσxHY .

Now as σx is determined up to a translation on the right and HY is translation
invariant we may think that x = ∞ and count γ ∈ Γ so that γu ∈ HY with u ∈ U .
In the usual notation of γ this implies that

=(u)

|cu+ d|2
> Y =⇒ min

{
1

c2=(u)
,

=(u)

(c<(u) + d)2

}
> Y.

As U has compact closure both c ad d has finitely many choices, following a similar
argument as in the lecture. Thus there are only finitely many (c, d) such that γ with
bottom row (c, d) has γUx,Y ∩ U 6= ∅. This in turn, equivalently, implies that there
are finitely many γ ∈ Γx\Γ such that the same happens. In fact, if

Y > sup
u∈U
{=(u),=(u)−1},

then from the above inequalities we conclude that c = 0 = d, thus no possible choice
for γ.

(2) By conjugating we may assume that y =∞. So, as Ux,Y = σxHY ∪{x} and∞ /∈ Γx,
we have that

u ∈ γUx,Y ∩ U∞,Y =⇒ γ−1σ−1
x u, u ∈ HY .

We count γ′ := γ−1σ−1
x =

(
a b
c d

)
. Again proceeding as previous we see that c has

finitely many choice and thus finitely many choices for γ. This proves the claim.
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(3) As we know that σ−1
x x = ∞ and σ−1

x Γxσx = B we may conjugate the claimed
equation by σx and assume that x = ∞. Therefore, if u ∈ γ−1Ux,Y ∩ Ux,Y we have
that =(γu) > Y and =(u) > Y . This implies that

Y > =(γu) =
=(u)

|cu+ d|2
≥ 1

c2=(u)
< c−2Y −1.

As Y > 1 this implies that c = 0 and thus γ ∈ B. Other inclusion is trivial to show.
(4) Compactness and connectedness of X(Γ) follow from compactification and connected-

ness of compactification of connected space respectively. Hausdorff property follows
from part (1) and (2).

4.7. Exercise. Show that a set of representatives for Cusp(Γ0(q)) is given by the fractions{u
v

∣∣∣v | q, 0 < u ≤ (v, q/v)
}
.

Compute their respective widths.

4.8. Solution. All cusps are equivalent to some rational numbers as Γ0(q) ⊂ SL2(Z). First
we find a set of representatives of Γ0(q)\SL2(Z). We claim that they are given by(

a ∗
c ∗

)
, with c | q, (a, c) = 1 and a mod q/c.

To see this we check that(
a′ b′

c′ d′

)(
a b
c d

)
=

(
∗ ∗

c′a+ d′c c′b+ d′d

)
.

Here

(
a′ b′

c′ d′

)
∈ Γ0(q). So(a, q) is invariant by multiplication of Γ0(q) in the left. In fact,

we can choose c′, d′ such that

v := c′b+ d′d = (d, q) =⇒ v | q.
Solutions of c′b+ d′d = v form an one parameter family (c′ + dt, d′ − bt) where t ranges over
mod q/v, to ensure c′ ≡ 0 mod q. These solutions translate the bottom left u := c′a+d′cby
t, which ensures any choice of u modulo q/v. So a set of representatives can be chosen as

τ =

(
∗ ∗
a c

)
, with c | q, (a, c) = 1 and a mod q/c.

Now transforming

τ 7→
(

−1
1

)
τ−1

we conclude the claim.
Now the cusps of Γ0(q) are Γ0(q)\SL2(Z).∞. They are of the form

{a/c | with c | q, (a, c) = 1 and a mod (c, q/c)}.
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To see that they are non-equivalent, let

a′

c′
= γ.

a

c
,

for some γ =

(
a1 b1

c1 d1

)
∈ Γ0(q). So c′ = c1a+ d1c. This implies that c | c′ and as (c′, d1) = 1

also c′ | c so c = c′. Thus d1 ≡ 1 mod q/c. So

a′ = a1a+ b1c ≡ a1a ≡ d1a ≡ a mod (c, q/c).

This proves the set of inequivalent cusps is given by the claimed formula.
To find the width of the cusp a := a/c with need to find the generator of σ−1

a Γaσa ⊂ B.

Let the generator be

(
1 m

1

)
. Thus

Γa = σaΓ∞σ
−1
a ∩ Γ0(q)

=

{
±
(
a ∗
c ∗

)(
1 m

1

)(
∗ ∗
−c a

)
∈ Γ0(q)

}
=

{
±
(

1−mac ma2

mc2 1 +mac

)
: q | mc2

}
.

So m ranges over all the multiples of q/(q, c2) and this shows that m = q/(q, c2). Thus the
width of the cusp a/c is q/(q, c2).

4.9. Exercise. Let a and b are two cusps for a congruence subgroup Γ with scaling matrices
σa and σb.

(1) Prove the following disjoint decomposition of double cosets:

σ−1
a Γσb = δabB ∪

⋃
c>0

⋃
d mod c

B

(
∗ ∗
c d

)
B,

where B is the set of upper triangular matrices in SL2(Z) and

(
∗ ∗
c d

)
such that it

belongs to σ−1
a Γσb.

(2) Define

C(a, b) :=

{
c > 0 |

(
∗ ∗
c ∗

)
∈ σ−1

a Γσb

}
.

Also define c(a, b) to be the smallest element of C(a, b). Let

C := max{c(a, a), c(b, b)}.
Prove that for any X > 0∑

0<c≤X

c−1

∣∣∣∣{d mod c |
(
∗ ∗
c d

)
∈ σ−1

a Γσb

}∣∣∣∣ ≤ C−1X.
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Hence for any c ∈ C(a, b) we have∣∣∣∣{d mod c |
(
∗ ∗
c d

)
∈ σ−1

a Γσb

}∣∣∣∣ ≤ C−1c2.

(3) Let z ∈ H and Y > 0. Then prove that

|{γ ∈ Γa\Γ | =σ−1
a γz > Y }|−1� 1

c(a, a)Y
.

4.10. Solution.

(1) First note that for any cusp a we have σ−1
a a = ∞ and σ−1

a Γaσa = B. We examine
the set

Ω∞ := {ω ∈ σ−1
a Γσb | ω∞ =∞},

which consists of the upper-triangular matrices in σ−1
a Γσb. Suppose that Ω∞ is not

empty, say ω := σ−1
a γσb ∈ Ω∞. Evaluating γ at b, we get that

γb = σaΓσ
−1
b = σa∞ = a.

Hence a and b are equivalent; hence they are same cusps and γ ∈ Γa and ω ∈ B.
Therefore, Ω∞ = B if a = b, and empty otherwise.

Let ω :=

(
a ∗
c d

)
be any other element of σ−1

a Γσb. Then from the relation that(
1 m

1

)(
a ∗
c d

)(
1 n

1

)
=

(
a+ cm ∗

c d+ cn

)
we can conclude that the double coset Ω := B

(
∗ ∗
c d

)
B determines c uniquely and

d modulo a multiple of c. Moreover, given c, d with ω, the double coset Ω does not

depend on the upper row of ω. To see that if ω :=

(
a′ ∗
c d

)
∈ σ−1

a Γσb then

ω′ω−1 ∈ σ−1
a Γaσa = B.

Thus w′ ∈ ωB and so a′ = a+ cm for some m ∈ Z. Hence the disjoint decomposition
follows.

(2) Let C = c(a) ≥ c(b), if not, by symmetry we can interchange the cusps by inversion.

If ω =

(
∗ ∗
c d

)
and ω′ =

(
∗ ∗
c′ d′

)
with 0 < c, c′ ≤ X then ω′′ := ω′ω−1 =

(
∗ ∗
c′′ ∗

)
∈

σ−1
a Γσa with c′′ = c′d− cd′. If c′′ = 0 then, as in the previous case, the cusps will be

equal. So we assume that c′′ 6= 0 and thus |c′′|≥ C and so∣∣∣∣d′c′ − d

c

∣∣∣∣ ≥ C

cc′
≥ C

cX
.
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As (c, d) = 1 the fraction d
c

uniquely determines the pair. Let A be set of d
c

in [0, 1]
with the prescribed gap. Then

1 ≥ max(A)−min(A)

≥
∑

0<c≤x

∑
d/c and d′/c′ are successive

d

c
− d′

c′

≥ C

X

∑
0<c≤X

c−1

∣∣∣∣{d mod c |
(
∗ ∗
c d

)
∈ σ−1

a Γσb

}∣∣∣∣ ,
which completes the proof. Second part is immediate from the proof.

(3) Again as in solution 4.6 we may assume that, possibly conjugating, a = ∞. Let
γ ∈ Γ \ Γa, so c > 0. Also acting by element from Γ∞ on the left of γz, which
amounts to translation of γz we can also assume that

z ∈ Γ∞\H ∩D =⇒ 0 < <(z) < 1, |cz + d|> 1.

Thus from

=(γz) =
=(z)

|cz + d|2
> Y

we conclude that =(z) > Y . Also,

c < (=(z)Y )−1/2, |c<(z) + d|< (=(z)/Y )1/2.

Thus for C ≤ c < 2C,

|<(z) + d/c|< 1

C
(=(z)/Y )1/2 =⇒ d/c ∈ [−1− 1

C
(=(z)/Y )1/2,

1

C
(=(z)/Y )1/2].

From the spacing property of the possible d/c, as in the previous solution, we conclude
that possible number of (c, d) is

� C

c(∞,∞)
(=(z)/Y )1/2.

Now summing over the dyadic intervals with C = 2−n(=(z)Y )−1/2 we get that number
of possible γ which are not in B is

�
∞∑
n=1

2−n
(=(z)Y )−1/2

c(∞,∞)
(=(z)/Y )1/2 � 1

c(∞,∞)Y
.

Now adding one more point for γ ∈ B we conclude.
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5. Due on 21st November

In all the following discussions we let k > 2.

5.1. Poincare series for general cusps. Let a and b be two cusps of a congruence sub-
group Γ with usual notations for scaling matrices and stabilizing subgroups. Here we will
define a Poincare series of weight k with respect to a cusp which not necessarily ∞. Recall
that j(g, z) = cz + d where g has (c, d) as its lower row. Let p : H → C be a bounded
holomorphic function with period one.

(1) Define π : Γ×H→ C by

(γ, z) 7→ j(σ−1
a γ, z)−kp(σ−1

a γz).

Prove that π is Γa left-invariant on the first entry. This allows us to unambiguously
define the Poincare series

Pa(z) :=
∑

γ∈Γa\Γ

π(γ, z).

Check that the defining series of Pa converges absolutely if k > 2.
(2) Prove that Pa satisfies the modular transformation.
(3) Recall the slash operation of weight k, for det(g) = 1, by

f|g(z) := j(g, z)−kf(gz).

Prove that

Pa|σb(z) = δabp(z) +
∑

16=γB\σ−1
a Γσb/B

Iγ(z),

where

Iγ(z) :=
∑
n∈Z

(c(z + n) + d)−kp

(
a

c
− 1

c(c(z + n) + d)

)
,

for any γ =

(
a ∗
c d

)
∈ σ−1

a Γσb.

(4) In the lecture we have seen the case when p(z) = e(mz) to define m’th Poincare series
and obtained its Fourier expansion at the cusp∞. Prove that, again if p(z) = e(mz)
and b is a cusp of Γ then the m′th Poincare series Pam has Fourier expansion at cusp
b:

Pam(z) =
∞∑
n=1

pab(m,n)e(nz),

where

pab(m,n) := (n/m)
k−1
2

{
δabδmn +

1

(2πi)k

∑
c>0

Sab(m,n; c)

c
Jk−1

(
4π
√
mn

c

)}
,
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and

Sab(m,n; c) :=
∑

a ∗
c d

∈σ−1
a Γσb

e

(
ma+ nd

c

)
.

5.2. Solution.

(1) Let γa ∈ Γa be any element. As from the definition

γ′ := σ−1
a γaσ

−1 ∈ B,

thus

p(σ−1
a γaγz) = p(γ′σ−1

a γz) = p(γ′σ−1
a γz),

as p is one periodic thus invariant under B. Similarly, j also enjoys such invariance.
Hence we conclude the well-definedness of Pa.

To check absolute convergence, we see that, as p is bounded so the series is ma-
jorized by ∑

γ∈Γa\Γ

|j(σ−1
a γ, z)|−k= =(z)−k/2

∑
γ∈Γa\Γ

=(σ1
aγz)k/2.

One can check that the RHS is absolutely convergent similarly, as in, 2.11(1) and
using 4.9(3).

(2) By conjugating the group we assume that a =∞ and σa = 1. Thus

P∞(z) =
∑

γ∈Γ∞\Γ

j(γ, z)−kp(γz).

Note that for some τ ∈ Γ,

j(γτ−1, τz) = j(γ, z)j(τ, z)−1.

Hence,

P∞(τz) =
∑

γ∈Γ∞\Γ

j(γ, τz)−kp(γτz)

=
∑

γ∈Γ∞\Γ

j(γτ−1, τz)−kp(γz)

= j(τ, z)k
∑

γ∈Γ∞\Γ

j(γ, z)−kp(γz)

= j(τ, z)kP∞(z).

This shows the modularity of Pa.
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(3) First note that,

Pa(σbz) =
∑

γ∈Γa\Γ

j(σ−1
a γ, σbz)−kp(σ−1

a γσbz)

= j(σb, z)
k
∑

γ∈Γa\Γ

j(σ−1
a γσb, z)

−kp(σ−1
a γσbz).

Now using double coset decomposition in 4.9(1) we conclude the result directly.
(4) This follows exactly same way as shown in the lecture replacing the Bruhat decom-

position by general double coset decomposition as in 4.9(1).

5.3. Petersson trace formula. If a = ∞ we will denote Pam by Pm. Let f be a weight k
modular form having Fourier expansion at b

f(z) =
∞∑
n=0

f̂b(n)e(nz).

Denote 〈, 〉 to be the Petersson inner product as defined in the lecture.

(1) Prove that

〈f, Pm〉 =
Γ(k − 1)

(4πm)k−1
f̂∞(m).

(2) Let F be an orthonormal basis of Sk(Γ). Prove that,

Γ(k − 1)

(4π
√
mn)k−1

∑
f∈F

f̂a(m)f̂b(n) = δabδmn +
1

(2πi)k

∑
c>0

Sab(m,n; c)

c
Jk−1

(
4π
√
mn

c

)
.

(3) There exists an absolute constant m0 such that if m < m0c(a, a) then Pam does not
vanish identically.
Hint: Lower bound ‖Pam‖2 by bounding average Kloosterman sum and the bound
Jk(y)� min(yk, y−1/2).

5.4. Solution.
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(1) Let z = x + iy in usual notation. Using the Fourier expansions of f and pm at ∞
and doing a folding-unfolding, we calculate

〈f, Pm〉 =

∫
Γ\H

ykf(z)
∑

γ∈Γ∞\Γ

j(γ, z)−ke(mγz)dµz

=

∫
Γ∞\H

f(γz)=(γz)ke(−mγz)dµz

=

∫ ∞
0

∫ 1

0

f(z)yk−2e(−mz)dxdy

=
∞∑
n=0

f̂∞(n)

∫ ∞
0

yk−1e−2πny dy

y

∫ 1

0

e((n−m)x)dx

=
Γ(k − 1)

(4πm)k−1
f̂∞(m).

Conjugating by σa we can also prove similarly that

〈f, Pam〉 =
Γ(k − 1)

(4πm)k−1
f̂a(m).

(2) Using F we can write

Pam =
∑
f∈F

〈Pam, f〉f.

We take 〈, Pbn〉 both sides and use the generalised result in (1) to obtain

〈Pam, Pbn〉 =
∑
f∈F

Γ(k − 1)2

(4π
√
mn)2k−2

f̂a(m)f̂b(n).

On the other hand again using 5.1(4) and part (1) above we get that

〈Pam, Pbn〉 =
Γ(k − 1)

(4πn)k−1
(n/m)

k−1
2

{
δabδmn +

1

(2πi)k

∑
c>0

Sab(m,n; c)

c
Jk−1

(
4π
√
mn

c

)}
.

Thus we conclude.
(3) From (2) we see that for a = b and m = n

‖Pam‖2 (4πm)k−1

Γ(k − 1)
= 1 +

1

(2πi)k

∑
c>0

Saa(m,m; c)

c
Jk−1

(
4πm

c

)
.

To show the claim it is thus enough to show that the sum in the RHS of the above
has absolute value strictly smaller than 1. Recalling definition of c(a, a) and using
4.9(2) we trivially estimate the Kloosterman sum that∑

c≤X

|Saa(m,m; c)|
c

≤ X

C(a, a)
.
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Also for an absolute constant m0 we have that∣∣∣∣Jk−1

(
4πm

c

)∣∣∣∣ ≤ j0

(
4πm

c

)k−1

.

Thus using summation by parts (recall from 1.3) we obtain that

1

(2π)k

∑
c≥c(a,a)

∣∣∣∣Saa(m,m; c)

c
Jk−1

(
4πm

c

)∣∣∣∣
≤ j0

(4πm)k−1

(2π)k
(k − 1)

∫ ∞
c(a,a)

x/c(a, a)

xk
dx

= j0
(k − 1)

2π(k − 2)

(
2m

c(a, a)

)k−1

.

Clearly there is an absolute constant m0 (say m0 = j
1/k−1
0 /2) such that if m ≤

m0c(a, a) then the above quantity is smaller than 1. Hence the conclusion follows.

5.5. Bounds of Fourier coefficients. Let f be a weight k > 2 cusp form for Γ0(q) with
Fourier expansion at infinity

f(z) =
∞∑
n=1

a(n)e(nz).

Fix k and q.

(1) Prove that ∑
n≤N

|a(n)|2�f N
k.

(2) Prove that without the absolute value the above sum will have lot of cancellation, in
fact, ∑

n≤N

a(n)e(αn)�f N
k/2 log(2N),

for any real α. Thus, ∑
n≡a mod q;n≤N

a(n)�f N
k/2 log(2N).

(3) Let for some 1/2 ≤ σ < 1 the sum∑
c>0

c−2σ|S(n, n; c)|�ε n
ε.

Prove that, assuming the above,

a(n)�f,ε n
k/2−1+σ+ε.
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5.6. Solution. Here we always write H 3 z = x+ iy with x ∈ R and y > 0.

(1) Recall the Sobolev estimate from the lecture that

‖f‖∞= sup
z∈H

yk/2|f(z)|�f 1.

Thus f(z) �f y
−k/2. Now from the Fourier expansion of f and using the Parseval’s

formula we obtain that

∞∑
n=1

|a(n)|2e−4πny =

∫ 1

0

|f(z)|2dx�f y
−k,

which is true for any z ∈ H. Choosing y = N−1 and dropping all the terms for n > N
from the sum we conclude.

(2) From the Fourier expansion of f we can write that

a(n) =

∫ 1

0

f(z)e(−nz)dx.

Now for any real α, we multiply the above equation by e(αn), do a change of variable,
and sum over n ≤ N . We obtain that∑

n≤N

a(n)e(αn) =

∫ 1

0

f(z + α)SN(z)dx,

where

SN(z) :=
∑

0<n≤N

e(−nz) =
e(−Nz)− 1

1− e(z)
� e2πNy|1− e(z)|−1.

Again employing the Sobolev estimate that f(z + α)�f y
−k/2 and checking that∫ 1

0

|1− e(z)|−1dx�
∫ 1

0

dx

z
� log(1 + y−1),

we obtain that, ∑
n≤N

a(n)e(αn)�f y
−k/2e2πNy log(1 + y−1),

for any y > 0. Thus choosing y = N−1 we conclude.
For the second part we first note that

1

q

∑
0≤a<q

e(an/q) = δq|n(n).
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Hence, ∑
n≡a mod q;n≤N

a(n) =
∑
n≤N

a(n)
1

q

∑
b mod q

e((n− a)b/q)

=
1

q

∑
b mod q

e(−ab/q)
∑
n≤N

a(n)e(nb/q).

We conclude employing the bound from the first part in the second sum.
(3) We choose an orthonormal basis F of Sk(Γ) which contains f . The using a =∞ = b

and m = n in the Petersson trace formula in 5.3(2) we get that

Γ(k − 1)

(4πn)k−1

∑
g∈F

|ĝ(n)|2= 1 +
1

(2πi)k

∑
c>0

S(n, n; c)

c
Jk−1

(
4πn

c

)
.

We will drop all the terms but the term for g = f in the LHS; thus it will enough
to show that the RHS is Of,ε(n

2σ−1+ε) assuming the bound of the Kloosterman sum.
Now using that

Jk−1(x)� min(xk−1, x−1/2) ≤ x2σ−1,

and doing summation by parts (see 1.3) we obtain that∑
c>0

|S(n, n; c)|
c

∣∣∣∣Jk−1

(
4πn

c

)∣∣∣∣�∑
c>0

|S(n, n; c)|
c

(n/c)2σ−1 � n2σ−1+ε.

Hence the conclusion follows.
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6. Due on 12th December

6.1. L-function. There is a vast general theory about attaching a Dirichlet series, which is
called (automorphic/Hecke) L-function in some special context, to an object like a modular
form. In this exercise we will see some introductory thing on some modular L-function.

Let f be a weight k modular form of full level SL2(Z) with Fourier expansion

f(z) =
∞∑
n=0

a(n)e(nz).

We attach a meromorphic L-function to f , defined for <(s) sufficiently large by the Dirichlet
series

L(s, f) :=
∞∑
n=1

a(n)

ns
,

(1) Prove that the defining Dirichlet series of L(s, f) converges absolutely for <(s) > k+1
2

.
(2) Recall that in the very first lecture we obtained the Riemann zeta function multiplied

with some Gamma functions by a Mellin transform of the Theta series. Show that,∫ ∞
0

(f(iy)− a(0))ys
dy

y
= ΓC(s)L(s, f),

for <(s) sufficiently large and ΓC(s) := (2π)−sΓ(s).
(3) Let us call the completed L-function to be

Λ(s, f) := ΓC(s)L(s, f).

Use the exponential decay property of f(iy)− a(0) at ∞ and 0 to show that Λ(s, f)
can be continued meromorphically to the full complex plane with simple poles at
s = 0, k with residues −a(0) and ika(0) respectively.

(4) Using the Fourier expansion f |w for w =

(
−1

1

)
prove that Λ(s, f) satisfies the

functional equation:
Λ(s, f) = ikΛ(k − s, f).

(5) Let Ek be the k’th Eisenstein series. Calculate L(s, Ek) in terms of the Riemann zeta
functions. Manually (without using the functional equation) check that

Λ(s, Ek) = ikΛ(k − s, Ek).
(6) Let f be now a normalized (i.e. first Fourier coefficient is 1) cuspidal Hecke eigenform

(i.e. eigenfunction of all Hecke operators) with p-Hecke eigenvalue λ(p). Prove that
L(s, f) has an Euler product of the form

L(s, f) =
∏
p

(1− λ(p)p−s + pk−1−2s)−1.

Hint: For
g : Primes× Z≥0 → C
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prove that ∏
p

n∑
r=0

g(p, r) =
∞∑
n=1

∏
pr||n

g(p, r),

provided g is small enough to justify the rearrangements.

6.2. Solution.

(1) Using the result from 5.5(1) and Cauchy-Schwartz we get that

A(x) :=
∑
n≤x

|a(n)|�
√
x
∑
n≤x

|a(n)|2 � x
k+1
2 .

Now using the summation by parts (1.3) we see that
x∑

n=1

a(n)

ns
=
A(x)

xs
− s

∫ ∞
1

A(t)

ts+1
dt� x

k+1
2
−<(s) + |s|

∫ x

1

t
k−1
2
−<(s)dt.

Clearly if <(s) > k+1
2

the above sum is absolutely convergent as x→∞, proving the
claim.

(2) As we may assume that <(s) is sufficiently large we can justify interchange of inte-
gration and summation below. Thus∫ ∞

0

(f(iy)− a(0))ys
dy

y
=

∫ ∞
0

∞∑
n=1

a(n)e−2πnyys
dy

y

=
∞∑
n=1

a(n)

∫ ∞
0

e−2πnyys
dy

y
= (2π)−sΓ(s)

∞∑
n=1

a(n)

ns
.

From 5.6(1) it is clear that a(n)� nk for n ≥ 1 (check that
∞∑
n=1

|a(n)|2e−4πny � y−k,

then choose y = n−1 after dropping all but the n’th term in the lHS). Thus for y ≥ 1

|f(iy)− a(0)|≤
∞∑
n=1

|a(n)|e−2πny � e−2πy

∞∑
n=1

nke−2π(n−1) � e−2πy.

Similarly for y < 1,

|f(iy)− (iy)−ka(0)| = |f(i/y)(iy)−k − (iy)−ka(0)|

= y−k
∞∑
n=1

|a(n)|e−2πn/y

� e−π/y.
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For <(s) > k + 1 large enough we have the following:

Λ(s, f) =

∫ ∞
0

(f(iy)− a(0))ys
dy

y

=

∫ 1

0

(f(iy)− (iy)−ka(0))ys
dy

y
+

∫ ∞
1

(f(iy)− a(0))ys
dy

y

+ a(0)

∫ 1

0

((iy)−k − 1)ys
dy

y

= h(s) +
ika(0)

s− k
− a(0)

s
.

where

h(s) :=

∫ 1

0

(f(iy)− (iy)−ka(0))ys
dy

y
+

∫ ∞
1

(f(iy)− a(0))ys
dy

y

is entire by the previous two estimates of f(iy). Thus Λ(s, f) has simple poles at
s = 0, k with residues −a(0) and ika(0) respectively. Now we see that

h(k − s) =

∫ 1

0

(f(iy)− (iy)−ka(0))yk−s
dy

y
+

∫ ∞
1

(f(iy)− a(0))yk−s
dy

y

=

∫ ∞
1

(f(i/y)y−k − ika(0))ys
dy

y
+

∫ 1

0

(f(i/y)y−k − a(0)y−k)ys
dy

y

=

∫ 1

0

(f(iy)ik − a(0)y−k)ys
dy

y
+ ik

∫ ∞
1

(f(iy)− a(0))ys
dy

y

= ikh(s).

This proves the functional equation: Λ(k − s, f) = ikΛ(s, f).
(3) Recalling the Fourier series of Ek from 3.3 we get that

L(s, Ek) =
∞∑
n=1

σk−1(n)

ns
=
∞∑
n=1

n−s
∑
d|n

dk−1

=
∞∑

n,m=1

n−sm−s+k−1 = ζ(s)ζ(s− k + 1).

Now using the functional equation of the Riemann zeta function we get that

ζ(s− k + 1) = πs−k+ 1
2

Γ(k−s
2

)

Γ(1−k+s
2

)
ζ(k − s).

Thus using the duplication formula

Γ(s) = 2s−1π−1/2Γ(s/2)Γ(s/2 + 1/2),
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and using notation that

(a)k := (a− 1) . . . (a− k) =
Γ(a)

Γ(a− k)
,

we get that

Λ(s, Ek) = (2π)−sΓ(s)ζ(s)πs−k+ 1
2

Γ(k−s
2

)

Γ(1−k+s
2

)
ζ(k − s)

=
1

2πk/2

(
s+ 1

2

)
k/2

Λ(s)Λ(k − s),

where Λ(s) := π−s/2Γ(s/2)ζ(s). Now we check that(
k − s+ 1

2

)
k/2

=

k/2∏
r=1

k − 2r − s+ 1

2
=

k/2∏
r=1

2r − s− 1

2
= (−1)k/2

(
s+ 1

2

)
k/2

.

This concludes the proof.
(4) From the Hecke multiplicativity we remember that for p prime,

λ(pr)λ(p) = λ(pr+1) + pk−1λ(pr−1); ∀r ≥ 1, λ(1) = 1.

We first note that,

(1− λ(p)p−s + pk−1−2s)
∞∑
r=0

λ(pr)

prs

=
∞∑
r=0

(λ(pr)− p−sλ(pr+1)− pk−1−sλ(pr−1) + pk−1−2sλ(pr))p−rs

=
∞∑
r=0

λ(pr)

prs
−
∞∑
r=1

λ(pr)

prs
− pk−1−2s

∞∑
r=0

λ(pr)

prs
+ pk−1−2s

∞∑
r=0

λ(pr)

prs

= λ(1) = 1.

Thus to prove the claim it is enough to show that
∞∑
n=1

λ(n)

ns
=
∏
p

∞∑
r=0

λ(pr)

prs
.

Assuming that <(s) is large enough so that the sum in consideration converges ab-
solutely we can freely rearrange the summands. Now we recall that

λ(m)λ(n) = λ(mn); (m,n) = 1.

From fundamental theorem of arithmetic one can write that

n =
∏
pr||n

pr.
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Thus,

∞∑
n=1

λ(n)

ns
=
∞∑
n=1

λ(
∏

pr||n p
r)∏

pr||n p
rs

=
∞∑
n=1

∏
pr||n

λ(pr)

prs
=
∏
p

∞∑
r=0

λ(pr)

prs
.

This completes the proof.

6.3. Multiplicity one principle. Let χ be a primitive Dirichlet character mod q. Check
from the definition that Sk(Γ0(q), χ) is the space of newforms.

(1) For any positive integer d let us define the operator

Ad :=
1

d

∑
b mod d

(
1 b/d

1

)
.

Also define

Sq :=
∑
d|q

µ(d)Ad.

Show that if f ∈ Sk(Γ0(q), χ) having Fourier expansion

f(z) =
∞∑
n=1

a(n)e(nz),

then

Sqf(z) =
∑

(n,q)=1

a(n)e(nz).

(2) Prove that if q is square-free then Sq is injective.
(3) Using the above show that if q is square-free and if f is eigenfunction of Hecke

operators Tn with (n, q) = 1 then it is eigenfunction of Tn for all n ∈ N.

6.4. Solution.

(1) We check that

Adf(z) =
1

d

∑
b mod d

f(z + b/d)

=
∞∑
n=1

a(n)e(nz)
1

d

∑
b mod d

e(nb/d) =
∑
d|n

a(n)e(nz).

Thus, as ∑
d|n

µ(d) = δn=1,
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we get

Sqf(z) =
∑
d|q

µ(d)
∑
d|n

a(n)e(nz)

=
∞∑
n=1

a(n)e(nz)
∑
d|q
d|n

µ(d) =
∑

(n,q)=1

a(n)e(nz).

This completes the proof.
(2) To prove Sq has zero kernel it is enough to show that if a(n) = 0 for all (n, q) = 1

then f = 0 i.e. a(n) = 0 for all n.

Suppose that τ =

(
a ∗
c d

)
∈ Γ0(q). Let us recall the modularity relation of f at

the point z−d
c

. We get that,

z−kf

(
a

c
− 1

cz

)
= χ(d)f

(
z − d
c

)
.

Expanding both sides into corresponding Fourier series.

z−k
∞∑
m=1

a(m)e
(am
c
− m

cz

)
= χ(d)

∞∑
n=1

a(n)

(
n(z − d)

c

)
.

Now we take c = q and ad ≡ 1( mod c). Hence , summing over a ∈ Z/qZ×, we get
that,

z−k
∞∑
m=1

a(m)S(m, 0; q)e(−m/qz) =
∞∑
n=1

a(n)χ̄(−n)τ(χ)e(nz/q),

where S(m, 0; q) is the Ramanujan sum and τ(χ) is the Gauss sum. We see that
every term in the RHS is zero by the hypothesis; hence so is every term in the LHS.
Therefore for all m ≥ 1

a(m)S(m, 0; q) = 0.

Now as q is square-free then Ramanujan sum

S(m, 0; q) = µ(q/(m, q))φ((m, q)) 6= 0,

This completes the proof.
(3) Part (2) implies that the n’th Hecke eigenvalues for (n, q) = 1 determines f com-

pletely. Now we know that for any m the Hecke operators Tm and Tn commute. Thus
for (n, q) = 1 and f Hecke eigenfunction of Tn with eigenvalue λ(n) we see that

Tn(Tmf) = Tm(Tnf) = Tm(λ(n)f) = λ(n)(Tmf).

That is, Tmf has same Hecke eigenvalues for Tn for (n, q) = 1. Thus Tmf must be a
constant multiple of f , which prove the claim.
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