
MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. Exercise. Let P be the set of primes. Prove that
∑

p∈P
1
p

= +∞.

1.2. Summation by Parts. Let a : N → C be an arithmetic function, let 0 < y < x and
let f : [y, x]→ C be a function with continuous derivative on [y, x]. Then∑

y<n≤x

anf(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where A(x) =
∑

n≤x an.

1.3. Exercise. Prove that for every δ > 0,

π(x) := |{p ∈ P | p ≤ x}|

is bigger than x
(log x)1+δ

for some sufficiently large x.

1.4. Exercise. Prove that for <(s) > 1,

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx,

where {x} is the fractional part of x. Using this show that ζ(s) has analytic continuation to
<(s) > 0 with a simple pole at s = 1.

1.5. Exercise. Prove that the Gamma function, which is defined for <(s) > 0 by

Γ(s) :=

∫ ∞
0

e−tts
dt

t

has analytic continuation to C \Z≤0 with simple pole at each non-positive integer. Find the
residues of the Gamma function at those poles.
Hint: First prove that Γ(s+ 1) = sΓ(s).

1.6. Exercise. Prove the Poisson summation formula: Let f ∈ S(R) be in the Schwartz
class. Prove that ∑

n∈Z

f(n+ u) =
∑
n∈Z

f̂(n)e(nu).

Note: Putting u = 0 we get the usual Poisson summation formula.
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1.7. Exercise. Recall that,

G(1, N) :=
∑

n mod N

e(n2/N).

Prove that

(1) For any odd positive integer N , G(1, N2) =
√
N and G(N3) = NG(N).

(2) For every positive integer N , G(1, N) = 1+i−N

1−i

√
N.

1.8. Dirichlet Character. A Dirichlet character with modulus q is a character

χ : Z/qZ× → C×

extended to Z by making it q-periodic and defining χ(a) = 0 for (a, q) > 1. Associated to
each character χ, in addition to its modulus q, is a natural number q′, its conductor. The
conductor q′ is the smallest divisor of q such that χ can be written as χ = χ′χ0, where χ0 is
the trivial Dirichlet character mod q and χ′ is a character of modulus q′. If a character has
conductor equal to to its modulus then it is called a primitive Dirichlet character. Check
that, for a primitive Dirichlet character χ mod q one has

1

q

∑
a mod q

χ(ma+ b) =

{
χ(b), if q | m
0, if q - m.

The above is not true for a non-primitive character.

1.9. Exercise. Let χ be a primitive Dirichlet character mod q and f ∈ L1(R). Prove that∑
m∈Z

f(m)χ(m) =
G(χ)

q

∑
n∈Z

f̂(n/q)χ̄(n),

where G(χ) is the Gauss sum attached to χ defined by

G(χ) :=
∑

a mod q

χ(a)e(a/q).

Hint: Use the Poisson summation formula.
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