MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. Exercise. Let \mathcal{P} be the set of primes. Prove that $\sum_{p \in \mathcal{P}} \frac{1}{p}=+\infty$.
1.2. Summation by Parts. Let $a: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function, let $0<y<x$ and let $f:[y, x] \rightarrow \mathbb{C}$ be a function with continuous derivative on $[y, x]$. Then

$$
\sum_{y<n \leq x} a_{n} f(n)=A(x) f(x)-A(y) f(y)-\int_{y}^{x} A(t) f^{\prime}(t) d t
$$

where $A(x)=\sum_{n \leq x} a_{n}$.
1.3. Exercise. Prove that for every $\delta>0$,

$$
\pi(x):=|\{p \in \mathcal{P} \mid p \leq x\}|
$$

is bigger than $\frac{x}{(\log x)^{1+\delta}}$ for some sufficiently large x.
1.4. Exercise. Prove that for $\Re(s)>1$,

$$
\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x
$$

where $\{x\}$ is the fractional part of x. Using this show that $\zeta(s)$ has analytic continuation to $\Re(s)>0$ with a simple pole at $s=1$.
1.5. Exercise. Prove that the Gamma function, which is defined for $\Re(s)>0$ by

$$
\Gamma(s):=\int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}
$$

has analytic continuation to $\mathbb{C} \backslash \mathbb{Z}_{\leq 0}$ with simple pole at each non-positive integer. Find the residues of the Gamma function at those poles.
Hint: First prove that $\Gamma(s+1)=s \Gamma(s)$.
1.6. Exercise. Prove the Poisson summation formula: Let $f \in \mathcal{S}(\mathbb{R})$ be in the Schwartz class. Prove that

$$
\sum_{n \in \mathbb{Z}} f(n+u)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e(n u) .
$$

Note: Putting $u=0$ we get the usual Poisson summation formula.
1.7. Exercise. Recall that,

$$
G(1, N):=\sum_{n \bmod N} e\left(n^{2} / N\right)
$$

Prove that
(1) For any odd positive integer $N, G\left(1, N^{2}\right)=\sqrt{N}$ and $G\left(N^{3}\right)=N G(N)$.
(2) For every positive integer $N, G(1, N)=\frac{1+i^{-N}}{1-i} \sqrt{N}$.
1.8. Dirichlet Character. A Dirichlet character with modulus q is a character

$$
\chi: \mathbb{Z} / q \mathbb{Z}^{\times} \rightarrow \mathbb{C}^{\times}
$$

extended to \mathbb{Z} by making it q-periodic and defining $\chi(a)=0$ for $(a, q)>1$. Associated to each character χ, in addition to its modulus q, is a natural number q^{\prime}, its conductor. The conductor q^{\prime} is the smallest divisor of q such that χ can be written as $\chi=\chi^{\prime} \chi_{0}$, where χ_{0} is the trivial Dirichlet character $\bmod q$ and χ^{\prime} is a character of modulus q^{\prime}. If a character has conductor equal to to its modulus then it is called a primitive Dirichlet character. Check that, for a primitive Dirichlet character $\chi \bmod q$ one has

$$
\frac{1}{q} \sum_{a} \chi(m a+b)=\left\{\begin{array}{l}
\chi(b), \text { if } q \mid m \\
0, \text { if } q \nmid m .
\end{array}\right.
$$

The above is not true for a non-primitive character.
1.9. Exercise. Let χ be a primitive Dirichlet character $\bmod q$ and $f \in L^{1}(\mathbb{R})$. Prove that

$$
\sum_{m \in \mathbb{Z}} f(m) \chi(m)=\frac{G(\chi)}{q} \sum_{n \in \mathbb{Z}} \hat{f}(n / q) \bar{\chi}(n)
$$

where $G(\chi)$ is the Gauss sum attached to χ defined by

$$
G(\chi):=\sum_{a}^{\bmod q} \chi \chi(a) e(a / q)
$$

Hint: Use the Poisson summation formula.

