
MODULAR FORMS EXERCISES AND SOLUTIONS

1. Due on 26th September

1.1. Exercise. Let P be the set of primes. Prove that
∑

p∈P
1
p

= +∞.

1.2. Solution. Let s > 1. Then from the Euler product of the Zeta function,

log ζ(s) =
∑
p∈P

− log(1− p−s) =
∑
p∈P

∞∑
k=1

1

kpks

≤
∑
p∈P

1

ps
+
∑
p∈P

∑
k=2

1

pk
=
∑
p∈P

1

ps
+
∑
p∈P

1

p(p− 1)

=
∑
p∈P

1

ps
+O(1)

As we know that lims→1+ ζ(s) = +∞, letting s → 1+ in the above inequality we conclude
that

lim
s→1+

∑
p∈P

1

ps
= +∞,

hence the result.

1.3. Summation by Parts. Let a : N → C be an arithmetic function, let 0 < y < x and
let f : [y, x]→ C be a function with continuous derivative on [y, x]. Then∑

y<n≤x

anf(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where A(x) =
∑

n≤x an.

1.4. Exercise. Prove that for every δ > 0,

π(x) := |{p ∈ P | p ≤ x}|

is bigger than x
(log x)1+δ

for some sufficiently large x.
1
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1.5. Solution. Let an be the prime indicator function, i.e.

an :=

{
1, if n is prime

0, if n is not a prime.
.

Using summation by parts we note that,∑
p≤x

1

p
=

∑
3/2<n≤x

an
n

=
π(x)

x
+

∫ x

3/2

π(t)

t2
dt.

If the claim is false i.e. for all sufficiently large x, π(x) ≤ x/(log x)1+δ then from the above,∑
p≤x

1

p
≤ 1

(log x)1+δ
+ C +

1

(log x)δ
,

for some constant C. The RHS of the above tends to C as x → ∞ contradicting Exercise
1.1, hence the result.

1.6. Exercise. Prove that for <(s) > 1,

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx,

where {x} is the fractional part of x. Using this show that ζ(s) has meromorphic continuation
to <(s) > 0 with a simple pole at s = 1.

1.7. Solution. Let <(s) > 1. Then using the summation by parts as following.∑
n≤x

1

ns
=

[x]

xs
+ s

∫ x

1

[t]

ts+1
dt =

1

xs−1
− {x}

xs
+ s

∫ x

1

t−sdt− s
∫ x

1

{t}
ts+1

dt

=
s

s− 1
− s

∫ x

1

{t}
ts+1

dt+O(x−<(s) + x−<(s)+1).

Letting x→∞, as <(s) > 1, we conclude that

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

We now note that the integral right hand side is well defined for <(s) > 0 and is holomorphic
in s. As s

s−1
is a meromorphic function with simple pole at s = 1 and residue 1, we conclude

the meromorphic continuation of ζ(s) to <(s) > 0.

1.8. Exercise. Prove that the Gamma function, which is defined for <(s) > 0 by

Γ(s) :=

∫ ∞
0

e−tts
dt

t

has analytic continuation to C \Z≤0 with simple pole at each non-positive integer. Find the
residues of the Gamma function at those poles.
Hint: First prove that Γ(s+ 1) = sΓ(s).
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1.9. Solution. By integration by parts we see that

Γ(s+ 1) =

∫ ∞
0

e−tts+1dt

t
=

∫ ∞
0

e−tsts
dt

t
= sΓ(s),

for <(s) > 0. Thus Γ(s) = Γ(s+1)
s

extends definition of Γ(s) to <(s) > −1 meromorphically
with pole at s = 0 as

lim
s→0+

∫ ∞
0

e−tts
dt

t
= +∞.

The pole is simple, as lims→0 sΓ(s) = 1, and with residue 1. Similarly Γ(s) can be extended
to all C \ Z≤0 with simple poles at s = −n, n ∈ N with residue,

lim
s→−n

(s+ n)Γ(s) = lim
s→−n

Γ(s+ n+ 1)

(s+ n− 1) . . . s
=

(−1)n

n!
.

1.10. Exercise. Prove the Poisson summation formula: Let f ∈ S(R) be in the Schwartz
class. Prove that ∑

n∈Z

f(n+ u) =
∑
n∈Z

f̂(n)e(nu).

Note: Putting u = 0 we get the usual Poisson summation formula.

1.11. Solution. Let
F (x) :

∑
n∈Z

f(n+ x)

which is a function on L1(R/Z) so has a Fourier expansion of the form

F (x) =
∑
n∈Z

e(nx)F̂ (n).

Here

F̂ (n) =

∫ 1

0

F (x)e(−nx)dx =
∑
n∈Z

∫ 1

0

∑
m∈Z

f(m+ x)e(−nx)dx

=
∑
m∈Z

∫ m+1

m

f(x)e(−nx) =

∫ ∞
−∞

f(x)e(−nx)dx = f̂(n),

this provides the result.

1.12. Exercise. Recall that,

G(1, N) :=
∑

n mod N

e(n2/N).

Prove that

(1) For any odd positive integer N , G(1, N2) = N and G(1, N3) = NG(1, N).

(2) For every positive integer N , G(1, N) = 1+i−N

1−i

√
N.
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1.13. Solution. (1) is elementary. We can parametrize the residue class of Nk by

{a1N
k−1 + a2N

k−2 + · · ·+ ak | 0 ≤ ai ≤ N − 1}.

Using this we have,

G(1, N2) =
N−1∑
a=0

N−1∑
b=0

e

(
(aN + b)2

N2

)

=
N−1∑
b=0

e(b2/N2)
N−1∑
a=0

e

(
2ab

N

)

=
N−1∑
b=0

e(b2/N2)δb=0N = N.

Similarly,

G(1, N3) =
N−1∑
a=0

N−1∑
b=0

N−1∑
c=0

e

(
(aN2 + bN + c)2

N3

)

=
N−1∑
c=0

N−1∑
b=0

e

(
(bN + c)2

N3

)N−1∑
a=0

e(2ac/N)

=
N−1∑
c=0

N−1∑
b=0

e

(
(bN + c)2

N3

)
Nδc=0 = NG(1, N).

For the second part we use the Poisson summation formula. First we note the function

f(x) := 1[0,N ]e(x
2/N)

is a function which is continuous on (0, N) and has continuity only from one side at x = 0, N .
From the Fourier theory we know that the Fourier series of f at x = 0 would converge to
f(0+)+f(0−)

2
= f(0+)/2. and similarly, at x = N to f(N−)/2 Thus using the (modified)

Poisson summation formula and using that f(0+) = f(N−) we get that,

N∑
n=0

e(N2/N) =
f(0+)

2
+

N−1∑
n=1

f(n) +
f(N−)

2

=
∑
n∈Z

∫ ∞
−∞

f(x)e(nx)dx =
∑
n∈Z

∫ N

0

e(x2/N + nx)dx.

Thus,

G(1, N) = N
∑
n∈Z

∫ 1

0

e(Nx2 + nNx)dx = N
∑
n∈Z

e(−Nn2/4)

∫ 1

0

e(N(x+ n/2)2)
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Noting that

e(−Nn2/4) =

{
1, if n is even,

i−N , if n is odd.
,

and dividing the above sum into odd and even parts we get that,

G(1, N) = N
∑
n∈Z

∫ 1+n

n

e(Nx2)dx+Ni−N
∑
n∈Z

∫ n+1/2

n−1/2

e(nx2)dx

=
√
N(1 + i−N)

∫ ∞
−∞

e(y2)dy.

The last integral can be checked convergent and we call it C. Thus,

G(1, N) =
√
NC(1 + i−N).

Checking that, G(1, 1) = 1, we conclude the result.

1.14. Dirichlet Character. A Dirichlet character with modulus q is a character

χ : Z/qZ× → C×

extended to Z by making it q-periodic and defining χ(a) = 0 for (a, q) > 1. Associated to
each character χ, in addition to its modulus q, is a natural number q′, its conductor. The
conductor q′ is the smallest divisor of q such that χ can be written as χ = χ′χ0, where χ0 is
the trivial Dirichlet character mod q and χ′ is a character of modulus q′. If a character has
conductor equal to to its modulus then it is called a primitive Dirichlet character. Check
that, for a primitive Dirichlet character χ mod q one has

1

q

∑
a mod q

χ(ma+ b) =

{
χ(b), if q | m
0, if q - m.

The above is not true for a non-primitive character.

1.15. Exercise. Let χ be a primitive Dirichlet character mod q and f ∈ L1(R). Prove that∑
m∈Z

f(m)χ(m) =
G(χ)

q

∑
n∈Z

f̂(n/q)χ̄(n),

where G(χ) is the Gauss sum attached to χ defined by

G(χ) :=
∑

a mod q

χ(a)e(a/q).

Hint: Use the Poisson summation formula.
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1.16. Solution. First we prove the following. Let v ∈ R and u ∈ R+. Then using the
Poisson summation formula,∑

m∈Z

f(um+ v) =
∑
m∈Z

∫ ∞
∞

f(ux+ v)e(−mx)dx

=
∑
m∈Z

∫ ∞
−∞

f(x)e(−m(x− v)/u)
dx

u

=
1

u

∑
m∈Z

f̂(m)e(mv/u).

Using the above we get that,∑
m∈Z

f(m)χ(m) =
∑
m∈Z

∑
a mod q

χ(a)f(mq + a)

=
∑

a mod q

χ(a)
1

q

∑
m∈Z

f̂(m)e(ma/q)

=
G(χ)

q

∑
m∈Z

f̂(m)χ̄(m).

Here in the last line we have used that for a primitive Dirichlet character χ,∑
a mod q

χ(a)e(am/q) = χ̄(m)G(χ).

This can be seen as follows. Let (m, q) = 1. Then,

χ̄(m)G(χ) =
∑

a∈(Z/qZ)×

χ(am−1)e(a/q) =
∑

a∈(Z/qZ)×

χ(a)e(am/q).

If (m, q) > 1 then it follows from the fact that χ(m) = 0 and∑
a mod q

χ(a)e(am/q) =
∑

y mod q/(q,m)

e(ym/q)
∑

x mod q

χ(xq/d+ y) = 0.
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2. Due on 10th October

2.1. Exercise. Prove that Γ(q) is a normal subgroup of SL2(Z) and has index in it q3
∏

p|q(1−
1
p2

).

2.2. Solution. We consider the mod q reduction map

SL2(Z)→ SL2(Z/qZ),

whose kernel is by definition Γ(q). Thus Γ(q) is normal. Hence, as the above map is surjective,
by the first isomorphism theorem

SL2(Z/qZ) ∼= SL2(Z)/Γ(q),

and so,
[SL2(Z) : Γ(q)] = |SL2(Z/qZ)|.

To compute the cardinality we first note that if

(
a b
c d

)
∈ SL2(Z/qZ) then (c, d, q) = 1. For

each such lower row (c, d) we have exactly q solutions for the congruence ad−bc ≡ 1 mod q.
Thus the cardinality is,

q|{(c, d) mod q | (c, d, q) = 1}|= q
∑
r|q

µ(r)(q/r)2 = q3
∏
p|q

(1− p−2).

2.3. Exercise. Recall the subgroups Γ0(q), Γ1(q) and Γd(q) of SL2(Z) from the lectures.
Compute indices of the subgroups in SL2(Z).

2.4. Solution. Consider the surjective map

Γ1(q)→ Z/qZ,
by (

a b
c d

)
7→ b mod q.

The kernel of this map is by definition Γ(q). Thus by the first isomorphism theorem,

Γ1(q)/Γ(q) ∼= Z/qZ.
Hence,

[SL2(Z) : Γ1(q)] = [SL2(Z) : Γ(q][Γ1(q) : Γ(q)]−1 = q2
∏
p|q

(1− p−2).

Similarly, considering the map
Γ0(q)→ (Z/qZ)×,

by (
a b
c d

)
7→ d mod q,

we conclude that
Γ0(q)/Γ1(q) ∼= (Z/qZ)×.



8 MODULAR FORMS EXERCISES AND SOLUTIONS

Thus,

[SL2(Z) : Γ1(q)] =
1

φ(q)
q2
∏
p|q

(1− p−2) = q
∏
p|q

(1 + p−1).

Again similarly, considering the map

Γd(q)→ (Z/qZ)×,

by (
a b
c d

)
7→ d mod q,

we conclude that

Γd(q)/Γ(q) ∼= (Z/qZ)×.

Thus,

[SL2(Z) : Γd(q)]
1

φ(q)
q3
∏
p|q

(1− p−2) = q2
∏
p|q

(1 + p−1).

2.5. Exercise. Prove that for any finite abelian group G one has G ∼= Ĝ.

Hint: First try to show for finite abelian groups G1 and G2 that Ĝ1× Ĝ2
∼= Ĝ1 ×G2. Then

use the structure theory of the finite abelian groups.

2.6. Solution. We define a map

Ĝ1 × Ĝ2 → Ĝ1 ×G2 by (χ1, χ2) 7→ {χ : (g1, g2) 7→ χ1(g1)χ2(g2)}.

This map is clearly well-defined homomorphism. To see injectivity if χ is the trivial character
then

χ1(g1) = χ−1
2 (g2)∀(g1, g2) ∈ G1 ×G2,

which implies that χi are the trivial character. From the lecture we recall that |G|= |Ĝ|,
which proves the isomorphism. Now from the structure theory of the finite abelian groups
we know that every finite abelian group is isomorphic to direct product of Z/nZ. hence it is
enough to show that

Ẑ/nZ = Hom(Z/nZ, S1) ∼= µn ∼= Z/nZ,
where µn is the group of n’th roots of unity. To See this isomorphism we consider that map

Hom(Z/nZ, S1)→ µn by χ 7→ χ(1).

This map is clearly a well-defined homomorphism, as χ(1)n = χ(n) = χ(0) = 1, i.e. χ(1) ∈
µn. If χ(1) = 1 then χ(m) = χm(1) = 1, which proves the injectivity. Equality of the
cardinalities concludes the proof.



MODULAR FORMS EXERCISES AND SOLUTIONS 9

2.7. Exercise. Recall the the product expansion

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
.

(1) Use the above formula to prove that,

1

z
+
∞∑
d=1

[
1

z − d
+

1

z + d

]
= π cot(πz) = πi− 2πi

∞∑
d=0

e(dz).

(2) Prove that for even natural number k

ζ(k) = −(2πi)k

2k!
Bk,

where Bk are the Bernoulli numbers.
(3) Prove that ζ(s) has zeros at negative even integers.

Hint: Use the functional equation of ζ(s).

2.8. Solution.

(1) We do a logarithmic differentiation of the given expression.

π cot(πz) =
d

dz
log sin(πz)

=
d

dz
log(πz) +

d

dz

∞∑
n=1

log(1− z2/n2)

=
1

z
+
∞∑
n=1

2z

n2 − z2
,

hence the first equality. For the second equality we see that,

π cot(πz) = πi
e(z) + 1

e(z)− 1
= πi− 2πi

1

1− e(z)
= πi− 2πi

∞∑
n=0

e(nz),

completing the proof.
(2) Recall that the Bernoulli numbers are defined by the coefficient of the series expansion

of x
ex−1

, i.e.
∞∑
k=0

Bk
xk

k!
=

x

ex − 1
.

Consider the generating series of ζ(2k)

1 + 2
∞∑
k=1

ζ(2k)z2k.



10 MODULAR FORMS EXERCISES AND SOLUTIONS

For |z|< 1 the above sum is absolutely convergent, so plugging in the definition of
ζ(s) for s > 1 and changing the order of the summation we get that above sum is

1 + 2
∞∑
n=1

∞∑
k=1

(z/n)2k = 1 +
∞∑
n=1

2z2

n2 − z2
= πz cot(πz),

where the last equality is from (1). But from (2)

πz cot(πz) = πiz − 2πiz

1− e2πiz
= πiz −

∞∑
k=0

Bk
(2πiz)k

k!
.

Equating two power series we conclude that

2ζ(2k) = −B2k
(2πi)2k

(2k)!
,

concluding the result.
(3) We recall the functional equation of ζ(s)

ζ(s)π−s/2Γ(s/2) = ζ(1− s)π(1−s)/2Γ((1− s)/2).

We also recall the duplication formula,

Γ(s) =
2s−1

√
π

Γ(s/2)Γ((1 + s)/2),

and
Γ(1/2− s/2)Γ(1/2 + s/2) =

π

cos(πs/2)
.

Combining all of them we get that,

ζ(1− s) = 2(2π)−s cos(πs/2)Γ(s)ζ(s).

Plugging in s = 2n + 1 for n ≥ 1 and checking that cos(nπ + π/2) = 0 we conclude
that

ζ(−2n) = 0.

2.9. Eisenstein Series of weight 2. In the lecture we have defined Eisenstein series Ek of
weight k for k > 2. In this exercise we will define Eisenstein series E2 of weight 2 and will
show that it satisfies an “almost modularity” relation.

2.10. Exercise. Define the following functions for z ∈ H:

G2(z) :=
∞∑
n=1

1

n2
+
∞∑
m=1

∑
n∈Z

1

(mz + n)2
,

G∗2(z) := G2(z)− π

2=(z)
,

G2,ε :=
1

2

∑
(m,n)6=(0,0)

1

(mz + n)2

1

|mz + n|2ε
, for ε > 0.
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(1) Let γ =

(
a b
c d

)
. Prove that G2,ε converges absolutely and locally uniformly. Also

show that,
G2,ε(γz) = (cz + d)2|cz + d|2εG2,ε(z).

(2) For ε > −1/2 define:

Iε(z) :=

∫
R

dt

(z + t)2|z + t|2ε
and I(ε) :=

∫
R

dt

(i+ t)2(1 + t2)ε
.

Consider

G2,ε(z)−
∞∑
m=1

Iε(mz).

Use the mean value theorem to prove that it converges absolutely and locally uni-
formly for ε > −1/2 and the limit as ε→ 0 is G2(z).

(3) Show that

Iε(z) =
I(ε)

=(z)1+2ε
and I ′(0) = −π.

Use this to show that the limit of G2,ε(z) as ε → 0 is G∗2(z). Hence G∗2 transforms
like a modular form of weight 2.

(4) Conclude that

G2(γz) = (cz + d)2G2(z)− πic(cz + d).

E2 is defined to be, as usual, G2

ζ(2)
.

2.11. Solution.

(1) Note that, for k > 2 and z ∈ H
∞∑
N=1

∑
N<|mz+n|≤N+1

1

|mz + n|k
≤

∞∑
N=1

#{(m,n) ∈ Z2 | N ≤ |mz + n|≤ N + 1}
Nk

.

It is easy to check that

#{(m,n) | N ≤ |mz + n|≤ N + 1} � π(N + 1)2 − πN2 � N.

Thus the above sum is, as k > 2

�
∞∑
N=1

N1−k <∞.

Now we see that,

G2,ε ≤
∑

0≤|mz+n|≤1

|mz + n|−2−2ε+
∑

1≤|mz+n|

|mz + n|−2−2ε.

The first sum has finite number of summands and second sum is absolutely and
locally uniformly convergent by the previous argument. Thus the sum of G2,ε are
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convergent abolustely and locally uniformly, thus defines a holomorphic function on
H. To see the transformation law we first note that every γ ∈ SL2(Z) induces a
bijection from Z2 \ {(0, 0)} to itself by right multiplication. Also one checks that,

mγz + n =
(ma+ nc)z + (mb+ nd)

cz + d
=
m′z + n′

cz + d
.

Combining these two facts, we conclude that

G2, ε(γz) =
∑

(m′,n′)6=(0,0)

(cz + d)2|cz + d|2ε

(m′z + n′)|m′z + n′|2ε
= (cz + d)2|cz + d|2εG2,ε(z).

(2) Let

f(t) := (mz + t)2|mz + t|−2ε,

with implicit dependence on mz. Now as we have proved the absolute convergence
of the

∑
f(n) we will freely change the order of summations and order of integration

and summation, as follows.

G̃2,ε(z) = G2,ε(z)−
∞∑
m=0

Iε(mz)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∑
n∈Z

(f(n)−
∫ n+1

n

f(t)dt)

=
∞∑
n=1

1

n2+2ε
+
∞∑
m=1

∑
n∈Z

∫ n+1

n

(f(n)− f(t))dt.

By the mean value theorem on n ≤ t ≤ n+ 1 we get that

|f(n)− f(t)|≤ sup
n≤u≤n+1

|f ′(u)|� |mz + n|−3−2ε.

Hence, the sum is absolutely convergent for ε > −1/2 and thus limε→0 G̃2,ε exists and
defines a holomorphic function. We calculate,

lim
ε→0

G̃2,ε(z)

=
1

2

∑
n 6=0

1

n2
+
∞∑
m=1

[∑
n∈Z

1

(mz + n)2
+
∑
n∈Z

(
1

mz + n+ 1
− 1

mz + n

)]

=
1

2

∑
n 6=0

1

n2
+
∞∑
m=1

∑
n∈Z

1

(mz + n)2

= G2(z)
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(3) Let z = x+ iy. Then changing variable t 7→ yt− x we get that,

Iε(x+ iy) =

∫
R

dt

(x+ t+ iy)2|x+ t+ iy|2ε

=
1

y1+2ε

∫
R

dt

(t+ i)2|t+ i|2ε
=

I(ε)

y1+2ε
.

Differentiating under the integration sign and then integrating by parts we get that,

I ′(0) = −
∫
R

log(1 + t2)

(t+ i)2
dt =

log(1 + t2)

t+ i

∣∣∣∣∣
∞

−∞

−
∫
R

2tdt

(t+ i)(1 + t2)

= −
∫
R

1

(t+ i)2
+

1

1 + t2
= −

∫
R

dt

t2 + 1
= −π.

Using the above two results we compute that,

lim
ε→0

∞∑
m=1

Iε(mz) = lim
ε→0

∞∑
m=1

I(ε)

(my)1+2ε
= lim

ε→0

I(ε)ζ(1 + 2ε)

=(z)1+2ε
.

From the exercise 1.6 we know that

ζ(1 + 2ε) =
1

2ε
+O(1).

Using that I(0) = 0 we have that above limit equals to

lim
ε→0

I(ε)

2ε=(z)1+2ε
=

I ′(0)

2=(z)
.

Thus,

lim
ε→0

G2,ε(Z) = lim
ε→0

(
G̃2,ε(z) +

∞∑
m=1

Iε(mz)

)
= G2(z)− π

2=(z)
= G∗2(z).

(4) From part (1) and (3) letting ε→ 0 we see that G∗2(z) transforms as a modular form
of weight 2. So,

G2(γz)− (cz + d)2G2(z) =
π

2=(γz)
− (cz + d)2 π

2=(z)

=
π

2=(z)
(|cz + d|2−(cz + d)2)

= πic(cz + d),

concluding the result.
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3. Due on 24th October

3.1. Exercise. Prove the Bruhat decomposition: for any subfield K ⊂ C

SL2(K) = N(K)A(K) tN(K)wN(K)A(K),

where the notatons are same as in the lectures. Using this prove that the fractional linear
transformation GL2(C) y P1(C) preserves the lines.

3.2. Solution. Let g =

(
a b
c d

)
. if c = 0 then g is upper triangual so lies in NA. So let us

assume that c 6= 0. So b = ad/c. Then(
a b
c d

)
=

(
1 a/c

1

)
w

(
1 cd

1

)(
c

1/c

)
.

This also can be proved in much more geometric way. First check that

g.∞ = a/c =⇒ StabGL(2)(∞) = NA.

We prove that if g /∈ NA then g ∈ NwNA. To check this we see that(
1 −a/c

1

)
g.z = g.z−a/c =

az + b

cz + d
− a
c

=
1

c2z + cd
= w.c2z+cd = w

(
1 cd

1

)(
c

1/c

)
.z.

To check that this decombosition is unique we note that, again, if g = b ∈ NA this is obvious.
If g = nwb = n′wb′ then

g.∞ = n.0 = n′.0 =⇒ n = n′ =⇒ b = b′.

This proves the first part.
For the second part we first recall that a line in P1(C) is of the form L ∪ {∞} where L is a
line or a circle in C. As from the previous part and the fact that

GL2(C) ∼= Z(C)SL2(C),

it is enough to prove that Z,N,A,w preserves the lines. While Z,N,A transforms in affine
way, i.e.

z 7→ az + b, a ∈ C×, b ∈ C
it is clear that they preserve lines. Thus it is enough to check that w preserves a line L.
Now, as we can freely move object in affine way, we may assume that L is a horizontal line
passing through 0, i.e. =(z) = 0 or a unit circle centered at origin, i.e. |z|= 1. In either case
the fact that

w.z = −1

z
=

z̄

|z|2

proves the claim.
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3.3. Exercise. Recall the Fourier expansions of the Eisenstein series

Ek(z) = 1 + ck

∞∑
n=1

σk−1(n)qn,

where for k = 2, 4, . . . , 14 the ck are−24, 240,−504, 480,−264, 65520/691,−24 with q := e(z)
and σs(n) :=

∑
d|n d

s.

(1) Use dimension formula to show that E8 = E2
4 , E4E6 = E10, and E6E8 = E14. What

relations can you get between σn’s using the above relations (some of them were
obtained during the lectures)?

(2) Define the Serre derivative by

Dk :=
1

2πi

d

dz
− k

12
E2.

Show that Dk : Mk →Mk+2 and Dkf ∈ Sk+2 iff f ∈ Sk.
(3) Calculate DE4 and DE6. Find σ5 in terms of σ1 and σ3 resp. and σ7 in terms of σ1

and σ5.

3.4. Solution.

(1) Check that from the dimension formula that m8, M10, and M14 are one dimensional.
Therefore, E8−cE2

4 , E4E6 = de10, and E6E8 = eE14. But from the Fourier expansions
of the Eisenstein series that their first Fourier coefficients are one we cocnlude that
c = d = e = 1. Now multiplying the Fourier expansions we get that

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m),

−11σ9(n) = 10σ3(n)− 21σ5(n)− 5040
n−1∑
m=1

σ3(m)σ5(n−m),

−σ13(n) = −21σ5(n) + 20σ7(n)− 10080
n−1∑
m=1

σ5(m)σ7(n−m).

(2) Let f ∈ Mk. As E2, f , and f ′ are holomorphic so is Dkf . So it is enough to show
that Dkf transforms as a weight k+2 form to prove that image of Dk is in Mk+2. We

check that for γ =

(
a b
c d

)
with j(γ, z) = cz + d, and recalling from exercise 2.10(4)

that

E2(γz) = j(γ, z)2E2(z) +
12cj(γ, z)

2πi
.
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we get that

Dkf(γz) =
1

2πi
f ′(γz)− k

12
E2(γz)f(γz)

=
1

2πi
j2(γ, z)

df(γz)

dz
− jk+2(γ, z)E2(z)f(z)− ckjk+1(γ, z)

2πi
f(z)

=
1

2πi
j2(γ, z)

d

dz
jk(γ, z)f(z)− jk+2(γ, z)E2(z)f(z)− f(z)

j2(γ, z)

2πi

d

dz
jk(γ, z)

=
jk+2(γ, z)

2πi
f ′(z)− jk+2(γ, z)E2(z)f(z)

= jk+2(γ, z)Dkf(z).

Now note that,

q = e(z) =⇒ 1

2πi

d

dz
= q

d

dq
.

Thus if f has Fourier expansion

f(z) =
∞∑
n=0

anq
n,

then

Dkf = q
df

dq
− k

12
E2f =

∞∑
n=0

nanq
n +

k

12
E2f.

Thus it is clear that the zeroth Fourier coefficient is −ka0/12 and that will be zero if
and only if a0 = 0 which proves the second claim.

(3) By part (2) DE4 ∈M6 and DE6 ∈M8. From the dimension formulas and the zeroth
Fourier coefficients we conclude as in (1) that

DE4 = cE6, c ∈ C,

with c = −1/3. Similarly, DE6 = −1
2
E8. Now as in (1) comparing the Fourier

coefficients we get that

21σ5(n) = (30n− 10)σ3(n) + σ1(n) + 240
n−1∑
m=1

σ1(m)σ3(n−m),

20σ7(n) = (42n− 21)σ5(n) + σ1(n) + 504
n−1∑
m=1

σ1(m)σ5(n−m).
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3.5. Exercise. Recall that the Delta function from the lecture defined in terms of some
Eisenstein series. Here we start with a different defintion and show equality afterwards.

∆(z) := q
∞∏
n=1

(1− qn)24,

which has a Fourier expansion

∆(z) =
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 +O(q4) ∈ Z[[q]],

with q = e(z) as usual. τ : N→ C is called Ramanujan Tau function.

(1) Prove that 1
2πi

d
dz

log ∆(z) = E2(z) and conclude that ∆ ∈ S12.

(2) Show that ∆ =
E3

4−E2
6

1728
, and derive τ in terms of σ3 and σ5.

(3) Show that E12 −E2
6 = c∆ with c = 263572

691
and derive relation between τ , σ11 and σ5.

Use this to prove the famous congruence by Ramanujan:

τ(n) ≡ σ11(n) mod 691,

for all n ≥ 1.

3.6. Solution.

(1) Recall that 1
2πi

d
dz

= q d
dq

. Therefore,

1

2πi

d

dz
log ∆(z) = q

d

dq
log

(
q
∞∏
n=1

(1− qn)24

)

= q
d

dq

[
log q + 24

∞∑
n=1

24 log(1− qn)

]

= q
d

dq

[
log q − 24

∞∑
n=1

∞∑
k=1

qnk

k

]

= 1− 24
∞∑
n=1

∞∑
k=1

nqnk

= 1− 24
∞∑
n=1

qn

∑
k|n

k

 = E2(z).

All interchanges of orders of summations are justified as the series is absolutely
convergent as |q|< 1. Now from the product form it is clear that ∆ is holomorphic
and has zero as zeroth Fourier coefficient. So to prove that ∆ ∈ S12 it is enough to
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show that ∆ transforms as a weight 12 modular form. To check that keeping the
same notations as in the solution 3.4(2) we compute that

1

2πi

d

dz
log ∆(γz)

= j(γz)−2 1

2πi

d

dz
log ∆|γz

= j(γz)−2E2(γz)

= E2(z) +
12c

2πij(γ, z)

=
1

2πi

d

dz
log ∆(z) +

1

2πi

d

dz
log j12(γ, z)

=
1

2πi

d

dz
log(j12(γ, z)∆(z)).

Thus for each γ ∈ SL2(Z) there exists a constant 0 6= c(γ) such that

∆(γz) = c(γ)j12(γ, z)∆(z).

It suffices to show that c(γ) = 1 for all γ. It is easy to check that

c : SL2(Z)→ C×, γ 7→ c(γ)

a character. Thus it is enough to prove that c(T ) = 1 and c(S) = 1 where T, S are
the usual generators of SL2(Z). But as ∆ is 1-periodic so c(T ) = 1. Now as S.i = i
and ∆(i) 6= 0 we see that

c(S) = i−12 = 1,

completing the proof.
(2) As S12 is one dimensional and E3

4 − E2
6 has zero zeroth Fourier coefficient hence,

E3
4 − E2

6 = d∆, d ∈ C.

d can be calculated to be 1728 from the first Fourier coefficients of E4 and E6. Thus
equating Fourier coefficients we conclude that

12τ(n) = 5σ3(n) + 1200
n−1∑
m=1

σ3(m)σ3(n−m) + 96000
n−1∑
r=1

r−1∑
m=1

σ3(m)σ3(r −m)σ3(n− r)

+ 7σ5(n)− 1764
n−1∑
m=1

σ5(m)σ5(n−m).

(3) Again by dimension formula arguing that S12 is one dimensional and comparing the
first Fourier coefficients we conclude that

E12 − E2
6 =

263572

691
∆.
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Comparing the Fourier coefficients we get that

263572τ(n) = 65520σ11(n) + 691.2.504σ5(n)− 691.5042

n−1∑
m=1

σ5(m)σ5(n−m).

Dividing by 1008 and reducing mod 691 we conclude that

756τ(n) ≡ 65τ(n) ≡ 65σ11(n) mod 691.

As (65, 691) = 1 we conclude the final result.

3.7. A Riemmanian metric on the upper half plane. A Riemmanian metric on H can
be defined as

ds2(z) =
d<2(z) + d=2(z)

=2(z)
,

which gives H a hyperbolic structure (More details in the upcoming lecture).

3.8. Exercise. Let z1, z2 ∈ H. We define geodesic segment between z1 and z2 to be the
unique length minimizing curve (which exists) joining z1 and z2 under the hyperbolic metric
as above. We define the hyperbolic distance between z1 and z2 to be

dh(z1, z2) := Length of geodesic segment between z1 and z2.

(1) Prove that
ds2(gz) = ds2(z), ∀g ∈ GL+

2 (R),

that is ds2 is a GL+
2 (R) invariant metric.

(2) Prove that if <(z1) = <(z2) then the geodesic segment joining them is the vertical
line joining z1 and z2.

(3) Prove that for general z1 and z2 the geodesic segment joining them is the arc of the
unique half-circle centered on R containing these two points.

(4) Prove that

cosh(dh(z1, z2)) = 1 +
|z1 − z2|2

2=(z1)=(z2)
.

3.9. Solution.

(1) Let g =

(
a b
c d

)
. Then we check that

d(gz)

dz
=

det(g)

(cz + d)2
.

Also recall that

=(gz) =
det(g)=(z)

|cz + d|2
.

Thus

ds2(gz) =
|d(gz)|2

=(gz)2
=
|det(g)|2

|cz + d|4
|dz|2 |cz + d|4

|det(g)|2=(z)2
=
|dz|2

=(z)2
= ds2(z).
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(2) WLOG let =(z2) ≥ =(z1). Note that, the vertical path joining z1 and z2 can be given
as

φ(t) = <(z1) + i=(z1)

(
=(z2)

=(z1)

)t
.

It is easy to check that the length of φ

L(φ) = log=(z2)− log=(z1).

Let φ′ be any other curve joining z1 and z2. Then the length of φ1

L(φ1) =

∫ 1

0

|φ′1(t)|
=(φ1(t))

dt ≥
∫ 1

0

=(φ′1(t))

=(φ1(t))
dt = log=(z2)− log=)z1),

which proves the claim.
(3) First we claim that there exists a g ∈ SL2(R) such that

<(gz1) = <(gz2) = 0.

First we assume the claim. Then we see that the length minimizing curve joining gz1

and gz2, them having same real part, is a vertical segment φ as in the previous part.
As SL2(R) acts by isometry the geodesic joining z1 and z2 would be g−1φ. From
Exercise 3.1 we can conclude that SL2(R) preserves lines in P1(R) ∼= H∪{∞}, where
lines in P1(R) are vertical lines or half-circles centered in R. This concludes the proof
assuming the claim.
Now we turn to prove the claim. By transitivity property of SL2(R) action one can
find g such that gz1 = i. Now as we know that SO(2) fixes i for any k ∈ SO(2) we
have gki = z1. So it is enough to find some k such that <(kg−1z2) = 0. For any

z ∈ H we can always find k ∈ SO(2) such that <(kz) = 0. If k =

(
cos θ − sin θ
sin θ cos θ

)
and z = x+ iy) then to make sure that <(kz) = 0 one needs to see whether

tan(2θ) = − x

y2 + 1− x2
,

which clearly exists.
(4) By the argument in the part (3) we can find g ∈ SL2(R) such that gz1 and gz2 has

zero real parts. Also from part (1) we know that g acts by isometry thus it is enough
to prove the statement for z1 and z2 purely imaginary. But in part (2) we have proved
that for such zi ∈ iR one has

dh(z1, z2) = |log=(z1)− log=(z2)|= |log(z1/z2)|.
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Thus,

cosh(dh(z1, z2)) =
1

2

(
edh(z1,z2) + e−dh(z1,z2)

)
=

1

2

∣∣∣∣z1

z2

+
z1

z2

∣∣∣∣2 =
|z2

1 + z2
2 |

2|z1z2|

= 1 +
|z1 − z2|2

2=(z1)=(z2)
,

completing the proof.
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