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1 Introduction
We recall some definitions and background, record proofs of some of the main
theorems regarding Krull dimension, and give some of their geometric interpre-
tations. We mainly follow the course reference by Bosch.

2 Basic definitions
Let A be a ring (always commutative and with identity). In what follows, the
symbols p or pi always denote prime ideals. We set

dim(A) := sup{n ≥ 0 : ∃p0 ( · · · ( pn}.

For a prime ideal p of A, we set

height(p) := sup{n ≥ 0 : ∃p0 ( · · · ( pn ⊆ p},

coheight(p) := sup{n ≥ 0 : ∃p ⊆ p0 ( · · · ( pn}.
For a general ideal a, we set

height(a) := inf
p)a

height(p),

coheight(a) := sup
p)a

coheight(p) = sup{n ≥ 0 : ∃a ⊆ p0 ( · · · ( pn}.

Since prime ideals in the localization Ap correspond to the primes in A contained
in p, we have

height(p) = dim(Ap).

Since prime ideals in the quotient A/a correspond to the primes in A containing
a, we have

coheight(a) = dim(A/a).

We note the following easy inequality:

Lemma 1. height(a) + dim(A/a) ≤ dim(A).

Proof. It suffices to show that if height(a) ≥ r and dim(A/a) ≥ s, then
dim(A) ≥ r + s. By hypothesis, we may find primes a ⊆ q0 ( · · · ( qs.
Then height(q0) ≥ height(a) ≥ r, so we may find primes p0 ( · · · ( pr = q0.
Then

p0 ( · · · ( pr = q0 ( q1 ( · · · ( qs

is a chain of primes in A of length r + s.

We also note:

Lemma 2. Let (A,m) be a local ring. Then dim(A) = height(m).

Proof. Let p0 ( · · · ( pr be a chain of primes in A. By enlarging this chain if
necessary, we may assume that pr = m. Thus the suprema in the definitions of
dim(A) and height(m) may be taken over the same chains of primes.
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3 Geometric interpretations
Reference for this section: exercises in Chapter 1 of Atiyah–Macdonald.

Let A be a ring. Recall that Spec(A) denotes the set of prime ideals p in A.
Each f ∈ A defines a function

f |Spec(A) : Spec(A)→
⊔

p∈Spec(A)

A/p

sending p to the class of f in the quotient ring A/p. For f ∈ A and any subset
X of Spec(A), we may form the restriction f |X of f to X. For the sake of
illustration, note that f |Spec(A) = 0 (i.e., f |Spec(A) maps each p to the zero class
in A/p) if and only if f belongs to the nilradical of A.

For example, we have seen (using the Nullstellensatz) that ifA = C[X1, . . . , Xn]/I
for some ideal I ⊆ C[X1, . . . , Xn], then the set Specm(A) of maximal ideals
in A is in natural bijection with V := {(x1, . . . , xn) ∈ Cn : f(x1, . . . , xn) =
0 for all f ∈ I}. For each such maximal ideal m we may identify A/m with
C. For f ∈ A, the function f |Specm(A) then identifies with the obvious map
V 3 (x1, . . . , xn) 7→ f(x1, . . . , xn) ∈ C.

For a subset S of A, we set

V (S) := {p ∈ Spec(A) : p ⊇ S} = {p ∈ Spec(A) : f(p) = 0 for each f ∈ S}.

For finite sets S = {f1, . . . , fn} we write simply V (f1, . . . , fn) := V (S). Note
that if S generates an ideal a, then V (S) = V (a). Given any subset X of
Spec(A), we set

I(X) := ∩p∈Xp = {f ∈ A : f |X = 0}.

Recall that a subset of Spec(A) is called closed if it is of the form V (S) for
some S; this defines a topology on Spec(A). Recall that an ideal a is radical if
rad(a) = a.

Lemma 3.

(i) For each ideal a of A, we have I(V (a)) = rad(a).

(ii) For each subset X of Spec(A), we have V (I(X)) = X (the closure of X).

(iii) The maps V and I define mutually-inverse inclusion-reversing bijections
between the set of radical ideals of A and the set of closed subsets of
Spec(A).

Proof. It is clear that I and V are inclusion-reversing.

(i) By definition, I(V (a)) = ∩p∈V (a)p = ∩p⊇ap = rad(a).

(ii) The set V (I(X)) is closed and contains X, so it will suffice to verify for
each closed set V (a) containing X that V (a) ⊇ V (I(X)). From V (a) ⊇ X
we see that f |X = 0 for all f ∈ a, thus a ⊆ I(X). Applying the inclusion-
reversing map V , we obtain V (a) ⊇ V (I(X)), as required.
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(iii) Immediate by the above.

Lemma 4. Let X be a closed subset of Spec(A). The following are equivalent:

(i) X = V (p) for some prime ideal p of A.

(ii) I(X) is a prime ideal of A.

(iii) X is nonempty and may not be written as X = X1 ∪X2 for closed subsets
X1, X2 of Spec(A) except in the trivial case that either X ⊆ X1 or X ⊆ X2.

We say that a closed subset X of Spec(A) is irreducible if it satisfies the
equivalent conditions of the preceeding lemma. The irreducible closed subsets
of Spec(A) correspond bijectively to the prime ideals of A.

We note that for any ideal a, we may identify

V (a) = Spec(A/a).

We note also that if p is a prime of A, then the primes of the localization Ap

correspond to the primes of A contained in p, hence the spectrum of Ap identifies
with the set of closed irreducible subsets of Spec(A) that contain p:

Spec(Ap) = {q ∈ Spec(A) : q ⊆ p} = {q ∈ Spec(A) : p ∈ V (q)}.

By an irreducible component of a closed subset X of Spec(A), we shall mean
a maximal closed irreducible subset of X, i.e., a closed irreducible subset Z ⊆ X
with the property that if Z ′ ⊆ X is any closed irreducible subset with Z ′ ⊇ Z,
then Z ′ = Z. Using the inclusion-reversing bijections noted above, we verify
readily that for any ideal a, the irreducible components of X = V (a) correspond
bijectively to the set (denoted Ass′(a) in lecture) of minimal prime ideals p ⊇ a.

We assume henceforth that A is Noetherian. Then the set of minimal primes
of any ideal is finite, and any prime containing an ideal contains a minimal prime
of that ideal. It follows that the set of irreducible components of any closed
subset X of Spec(A) is a finite set {Z1, . . . , Zn} for which X = Z1 ∪ · · · ∪ Zn.

We define the dimension of a closed subset X of Spec(A) to be

dim(X) = sup{n ≥ 0 : ∃ closed irreducible subsets Zn ( · · · ( Z0 ⊆ X}

and the codimension in the special case that Z is closed irreducible to be

codim(Z) := sup{n ≥ 0 : ∃ closed irreducible subsets Z0 ) · · · ) Zn ⊃ Z}

and then in general by

codim(X) := inf
Z⊆X:closed irreducible

codim(Z).

Equivalently, codim(X) is the smallest codimension of any irreducible compo-
nent of X. We note also that dim(X) coincides with the largest dimension of
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any irreducible component of X. We might write codim(X) as codimSpec(A)(X)
when we wish to emphasize the reference space Spec(A).

Using the inclusion-reversing bijections noted above, we see that

dimSpecA = dimA

and more generally that

dimV (a) = coheight a = dimA/a, dimX = coheight I(X) = dimA/I(X),

codimV (a) = height a, codimX = height I(X)

for any ideal a and any closed X ⊆ Spec(A). Lemma 1 says that dimX +
codimX ≤ dimSpecA.

4 Prime avoidance lemma
Lemma 5. Let A be a ring, let p1, . . . , pn be prime ideals, and let a be an ideal
contained in the union ∪pj. Then there exists an index j for which a ⊆ pj.
Equivalently, if a 6⊆ pj for each j, then a 6⊆ ∪pj.

In “geometric” terms, let Z1, . . . , Zn ⊆ Spec(A) be closed irreducible subsets,
and let X = V (a) be a closed irreducible subset of Spec(A), defined by an ideal
a, with the property that X 6⊇ Zj for all j. Then there exists f ∈ a with f |Zj

6= 0
for all j. In particular, we may find f ∈ A with f |X = 0 but f |Zj

6= 0 for all j.

Proof. We verify that if a is not contained in any of the pj , then it is not
contained in their union. For this we may induct on n. The case n = 1 is
trivial, so suppose n > 2. By our inductive hypothesis, we may find for each
i = 1..n an element ai ∈ a with ai /∈ pj whenever j 6= i. If moreover ai /∈ pi
for some i, then we are done, so suppose otherwise that ai ∈ pi for all i. Set
bi :=

∏
j:j 6=i aj . Then bi /∈ pi (using that pi is prime) but bi ∈ pj for all j 6= i.

It follows that x := b1 + · · ·+ bn belongs to a but not to pi for any i, hence a is
not contained in the union of the pi.

5 Artin rings
Theorem 1. Let A be a ring. The following are equivalent:

(i) A is an Artin ring.

(ii) A is a Noetherian ring of dimension zero.

6 Krull intersection theorem
Theorem 2. Let a be an ideal contained in the Jacobson radical Jac(A) of a
Noetherian ring A. Then

∩n≥0an = 0.

5
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Corollary 3. With A, a as before, let M be a finitely-generated module. Then
∩n≥0anM = 0.

Corollary 4. Let (A,m) be a Noetherian local ring. Then ∩n≥0mn = 0.

For the proof of Theorem 2, the fact that a is contained in the Jacobson
radical suggests an application of Nakayama’s lemma to the idealM ′ := ∩n≥0an,
for which it is clear that aM ′ ⊆M ′ and plausible but non-obvious that aM ′ =
M ′. The key tool in establishing the latter is the following:

Lemma 6 (Artin–Rees lemma). Let A be Noetherian, let a be an ideal, let M
be a finitely-generated module, and let M ′ ≤ M be a submodule. There exists
n ≥ 0 so that for all k ≥ 0,

ak(anM ∩M ′) = an+kM ∩M ′.

Taking M := A,M ′ := ∩n≥0an, k := 1 in the Artin–Rees lemma gives
anM ∩M ′ = an+kM ∩M ′ = M ′ and hence aM ′ = M ′; we then conclude the
proof of Theorem 2 by Nakayama, as indicated above.

The proof of Artin–Rees reduces formally to the case k = 1, and the con-
tainment

a(anM ∩M ′) ⊆ an+1M ∩M ′

is clear. The proof of the trickier reverse containment is expressed most trans-
parently using the graded ring

Ã := �i≥0Ai = {a = (ai)i≥0 : ai ∈ Ai}, Ai := ai,

where the multiplication law extends the bilinear maps ai × aj → ai+j :

(a · b)k =
∑

i+j=k

aibj .

This graded ring acts by the rule (a ·m)k :=
∑

i+j=k aimj on the graded module

M̃ := �i≥0Mi, Mi := aiM,

and its graded submodule

M̃ ′ := �i≥0M
′
i , M ′i := aiM ∩M ′.

Since a is finitely-generated as a module over A, Ã is finitely-generated as an
algebra over A0 = A; by the Hilbert basis theorem, it follows that Ã is Noethe-
rian. The module M is finitely-generated over A, from which it follows readily
that the graded module M̃ is finitely-generated over Ã; since the ring Ã is
Noetherian, so is the module M̃ , hence its submodule M̃ ′ is finitely-generated.
Choose n large enough that the module M̃ ′ is generated by �0≤i≤nM

′
i , thus

M̃ ′ = Ã�0≤i≤n M
′
i .
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By taking the degree n+1 homogeneous component of this identity, we see that

an+1M ∩M ′ = ˜M ′n+1 =
∑

0≤i≤n

An+1−iM
′
i =

∑
0≤i≤n

an+1−i(aiM ∩M ′)

⊆
∑

0≤i≤n

a(anM ∩ an−iM ′) ⊆ a(anM ∩M ′),

giving the required reverse containment. The proof of Artin–Rees and hence of
the Krull intersection theorem is then complete.

7 Kernel of localization with respect to a prime
Let p be a prime ideal in a Noetherian ring A. Let p(n) denote the nth symbolic
power; it is the p-primary ideal given by A ∩ pnAp := ι∗((ι∗p)

n), where ι : A→
Ap denotes the localization map.

Theorem 5. ker(ι) = ∩n≥0p(n).

Proof. Set m := ι∗p. We have ker(ι) = ι(−1)(0) and ι−1(∩n≥0mn) = ∩n≥0p(n),
so it suffices to show that ∩n≥0mn = 0, which is the content of Corollary 4 of
the Krull intersection theorem applied to the Noetherian local ring (Ap,m).

8 Krull’s theorems on heights and dimensions

8.1 Principal ideal theorem
We start with the special case to which the general one will eventually be re-
duced:

Lemma 7. Let (A,m) be a local Noetherian integral domain. Suppose that m is
a minimal prime of some principal ideal (f), with f ∈ m. Then m and (0) are
the only primes of A.

In “geometric” terms: suppose that {m} = V (f) for some f ∈ m. Then
Spec(A) = {m, (0)}.

Proof. Let p be any prime in A other than m. Necessarily p ( m; our task is to
show that p = (0). Since A is a domain, it will suffice to show for some n that
pn = (0). Recall that p(n) denotes the nth symbolic power of p, given here with
respect to the injective localization map A ↪→ Ap by p(n) = A ∩ pnAp; it is a
p-primary ideal which contains pn. It will then suffice to verify that p(n) = (0)
for some n. By §7, we have ∩n≥0p(n) = ker(A→ Ap) = (0), so it will suffice to
verify that the chain of ideals p(n) stabilizes, i.e., that p(n) = p(n+1) for large n.

Set A := A/(f), m := m/(f). Our hypotheses imply that m is the only
prime ideal of A. Thus A is a Noetherian ring of dimension 0. By Theorem 1,
it follows that A is an Artin ring. Thus the descending chain of ideals p(n)+(f)
must stabilize; in particular,

p(n) ⊆ p(n+1) + (f)

7
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for large n. This says that any x ∈ p(n) may be written x = y + zf for some
y ∈ p(n+1) and z ∈ A. In that case, x − y ∈ p(n), and so z ∈ (p(n) : f). Since
p(n) is p-primary and f /∈ p, we have (p(n) : f) = p(n), and so in fact z ∈ p(n).
Thus

p(n) ⊆ p(n+1) + p(n)f,

and in fact equality holds, with the reverse containment being clear. This says
that fM = M for the finitely-generated module M := p(n)/p(n+1). Since f ∈
m = Jac(A), it follows from Nakayama’s lemma thatM = 0. Thus p(n) = p(n+1)

for large n, as was to be shown.

Theorem 6. Let A be a Noetherian ring, and let f ∈ A.

(i) Every minimal prime p of (f) satisfies height(p) ≤ 1.

(ii) If f is a non-zerodivisor, then every minimal prime p of (f) satisfies
height(p) = 1.

In “geometric” terms, codim(Z) ≤ 1 for each irreducible component Z of
V (f) ⊆ Spec(A); if f is a non-zerodivisor, then codim(Z) = 1 for each such Z.
(This “generalizes” the fact from linear algebra that the kernel of a linear func-
tional has codimension ≤ 1, with equality whenever the functional is nonzero.)

Proof. To deduce (ii) from (i), suppose that some minimal prime p of (f) has
height(p) = 0. Then p is a minimal prime of (0), hence consists of zero-divisors,
and so f is a zerodivisor.

Our main task is thus to establish (i). We must verify that if p2 is a minimal
prime of (f) and if p0 ⊆ p1 ( p2 are inclusions of prime ideals, then p0 = p1.
After replacing A by its quotient A/p0, we may reduce to the case that p0 = (0);
in particular, A is a local Noetherian domain. After then replacing A by its
localization Ap2

, we reduce further to the case that A is a local Noetherian
domain whose maximal ideal p2 is a minimal prime of (f). We now appeal to
the previous lemma.

We will often apply the above result in a local context:

Corollary 7. Let (A,m) be a Noetherian local ring. Suppose there exists f ∈
A for which m is the unique prime containing f , thus V (f) = {m}. Then
dim(A) = height(m) ≤ 1.

Proof. Given that m is maximal, our assumption is equivalent to requiring that
m be a minimal prime of (f).

For the sake of illustration, let’s reformulate Theorem 6 in the contrapositive.
Let A be a Noetherian ring. Let p0 ( p2 be an inclusion of primes in A. By an
intermediary prime we will mean a prime p1 for which p0 ( p1 ( p2.

Corollary 8. The following are equivalent:

(i) There exists an intermediary prime.

8
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(ii) For each f ∈ p2 there exists an intermediary prime containing f .

In “geometric” terms, let Y2 ( Y0 be irreducible closed subsets of Spec(A).
Then either there are no irreducible closed subsets Y1 contained strictly between
Y2 and Y0, or for each f ∈ I(Y2) there exists an irreducible closed subset Y2 (
Y1 ( Y0 with Y1 ⊆ Z(f).

Proof. We need only show that (i) implies (ii). If (ii) fails, then we may find
f ∈ p2 not contained in any intermediary primes. In other words, after replacing
A with A/p0 as necessary to reduce to the case that p0 is a minimal prime of
A, we are given that p2 is a minimal prime of (f). By Krull’s principal ideal
theorem, it follows that height(p2) ≤ 1; thus there exist no intermediary primes,
and so (i) fails.

8.2 Dimension theorem
Theorem 9. Let A be a Noetherian ring, and let f1, . . . , fn ∈ A. Then
each minimal prime p of (f1, . . . , fr) satisfies height(p) ≤ r. In particular,
height(f1, . . . , fr) ≤ r.

In “geometric” terms, codim(Z) ≤ r for each irreducible component Z of
V (f1, . . . , fr) ⊆ Spec(A). (This “generalizes” the fact from linear algebra that
the solution set to a system of r linear equations has codimension ≤ r.)

Here’s a lemma that I think clarifies the key step in the proof.

Lemma 8. Let (A,m) be a Noetherian local ring, and let f1, . . . , fr ∈ m with
V (f1, . . . , fr) = {m}. Let p ( m be a prime with no prime strictly contained
between p and m. Then there exist g1, . . . , gr ∈ m for which

1. V (g1, . . . , gr) = {m} and

2. p contains and is a minimal prime of (g1, . . . , gr−1).

In “geometric” terms, let Z be a closed irreducible subset of Spec(A) that
is minimal among the closed irreducible sets that properly contain {m}. Then
we may find g1, . . . , gr for which V (g1, . . . , gr) = {m} and for which Z is an
irreducible component of V (g1, . . . , gr−1).

Proof. Since m is the unique prime ideal containing (f1, . . . , fr), we may assume
after reindexing f1, . . . , fr as necessary that fr /∈ p. Then the ideal p + (fr)
strictly contains p and is contained in m; our hypotheses on p imply that m is
the only prime ideal containing p + (fr), i.e., that V (p + (fr)) = {m}, or that
rad(p+(fr)) = m. In particular, for each 1 ≤ i ≤ r−1 we may find ni for which
fni
i ∈ p+ (fr), say

fni
i = gi + zifr with gi ∈ p, zi ∈ A.

We claim that the conclusion of the lemma is now satisfied with g1, . . . , gr−1 as
above and gr := fr:

9
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1. The above equation shows that any prime q that contains g1, . . . , gr−1, fr
also contains fni

i and hence fi for 1 ≤ i ≤ r, hence q = m. Thus
V (g1, . . . , gr) = {m}.

2. It’s clear by construction that p contains (g1, . . . , gr−1). There is thus
a minimal prime p′ of (g1, . . . , gr−1) contained in p; we must verify that
p = p′. (Geometrically, p′ corresponds to an irreducible component Z ′
of V (g1, . . . , gr−1) containing Z.) To see this, consider the quotient ring
A := A/(g1, . . . , gr−1). Let

m ) p ⊇ p′ (1)

denote the chain of primes in A given by the image of m ) p ⊇ p′ ⊇
(g1, . . . , gr−1). Then (A,m) is a Noetherian local ring, and our task is
equivalent to showing that p = p′. Let f ∈ A denote the image of fr. The
primes of A containing f are in bijection with the primes of A containing
g1, . . . , gr−1, fr, so VA(f) = {m}. By Krull’s principal ideal theorem (in
the form of Corollary 7), it follows that height(m) ≤ 1. From (1) we
then deduce that p = p′, as required. (Intuitively, by choosing fr not
to vanish on any irreducible component of V (f1, . . . , fr−1), we guarantee
that appending it to the set of generators has the effect of knocking down
the dimension of each such component by 1.)

We now deduce Theorem 9. We must show that if p is a minimal prime
of (f1, . . . , fr), then height(p) ≤ r. We may assume without loss of generality
(replacing A with Ap and p with pp, which doesn’t change the height of or
minimality assumption on the latter) that (A, p) is a Noetherian local ring with
V (f1, . . . , fr) = {p}; we must show then that height(p) ≤ r. We do this by
induction on r. The case r = 1 is given by Krull’s principal ideal theorem,
so suppose r > 1. Let q ( p be a maximal element of the set of primes
strictly contained in p; it will suffice then to show that height(q) ≤ r − 1.
By Lemma 8, we may assume without loss of generality that q is a minimal
prime of (f1, . . . , fr−1); the required inequality then follows from our inductive
hypothesis.

Corollary 10. Let a be an ideal in a Noetherian ring A. Then height(a) <∞.

Proof. Write a = (f1, . . . , fr). Then height(a) ≤ r.

Corollary 11. Let (A,m) be a Noetherian local ring. Then dim(A) =
height(m) <∞.

Proof. Use Lemma 2.

Remark 12. Dimension theory works best for local Noetherian rings: there
exist non-local Noetherian rings A with dim(A) = ∞. On the other hand, the
height of an ideal in a Noetherian ring A is always finite, regardless of whether
A is local.

10
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8.3 Converse to the dimension theorem
Theorem 13. Let A be a Noetherian ring. Let r, s be nonnegative integers
with s ≤ r. Let a be an ideal with height(a) ≥ r, and let f1, . . . , fs ∈ a
satisfy height(f1, . . . , fs) = s. Then there exist fs+1, . . . , fr ∈ a so that
height(f1, . . . , fi) = i for all s ≤ i ≤ r.

Proof. It suffices (after finitely many iterations) to consider the case s = r − 1.
For each minimal prime q of (f1, . . . , fr−1), we have height(q) = r− 1 (here the
inequality “≥” follows from our assumption height(f1, . . . , fr−1) = r − 1, while
“≤” follows from the Krull dimension theorem); it follows from this and the
inequality height(a) ≥ r that a 6⊆ q. By the prime avoidance lemma (§4), we
may find an element fr ∈ a not contained in any minimal prime of (f1, . . . , fr−1).
We claim then that height(f1, . . . , fr) = r. Consider any minimal prime q of
(f1, . . . , fr); we must verify that height(q) = r. The upper bound “≤” follows
as before from the Krull dimension theorem. For the lower bound, note that q
contains (f1, . . . , fr−1), and so contains some minimal prime q′ of (f1, . . . , fr−1).
By construction, we have fr ∈ q but fr /∈ q′, hence q ) q′, and so height(q) >
height(q′) = r − 1. This forces height(q) = r, as required.

Remark 14. It may be instructive to recast in geometric terms some parts
of the proof given above. Our hypothesis is that each irreducible component
of V (f1, . . . , fr−1) has codimension r − 1, while each irreducible component of
V (a) has codimension ≥ r. It follows readily that V (a) contains no irreducible
component of V (f1, . . . , fr−1). By the prime avoidance lemma, we may thus
find an element fr ∈ a which does not vanish on any irreducible component
of V (f1, . . . , fr−1). Now, each irreducible component Z of V (f1, . . . , fr) is con-
tained in some irreducible component Z ′ of V (f1, . . . , fr−1). Since f |Z′ 6= 0,
this containment must be strict: Z ( Z ′. Therefore codim(Z) ≥ r; Krull then
gives codim(Z) ≤ r, hence codim(Z) = r, hence codim(V (f1, . . . , fr)) = r, as
required.

Corollary 15. Let p be a prime ideal of height r in a Noetherian ring A. Then
there exist f1, . . . , fr ∈ p so that p is a minimal prime of (f1, . . . , fr).

In “geometric” terms, every closed irreducible subset Z of Spec(A) with
codim(Z) = r arises as an irreducible component of V (f1, . . . , fr) ⊆ Spec(A)
for some f1, . . . , fr ∈ A.

Proof. We apply the previous result with s = 0.

Here’s a slightly sharper variant:

Theorem 16. Let p be a prime ideal in a Noetherian ring with height(p) = r.
Let p0 ( · · · ( pr = p be a chain of primes realizing the height of p. (Note
that this forces height(pi) = i for all i.) There exist f1, . . . , fr so that for each
0 ≤ i ≤ r,

• height(f1, . . . , fi) = i, and

11
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• pi is a minimal prime of (f1, . . . , fi) for each 0 ≤ i ≤ r.

In “geometric” terms, let Z0 ) · · · ) Zr be closed irreducible subsets of
Spec(A) with codim(Zr) = r. (Note that this forces codim(Zi) = i for all i.)
Then we may find f1, . . . , fr ∈ A so that for each 0 ≤ i ≤ r,

• every irreducible component of V (f1, . . . , fi) has codimension i, and

• Zi is an irreducible component of V (f1, . . . , fi).

Proof. We argue by induction as above, choosing fi+1 to belong to pi+1 but not
to any minimal prime of (f1, . . . , fi).

9 Systems of parameters

9.1 A characterization of dimension
Lemma 9. Let (A,m) be a Noetherian local ring and x1, . . . , xn ∈ m. The
following conditions are equivalent:

(i) m is the only prime containing (x1, . . . , xn), i.e.:

V ((x1, . . . , xn)) = {m}.

(ii) m is a minimal prime of (x1, . . . , xn).

(iii) rad((x1, . . . , xn)) = m.

(iv) The ideal (x1, . . . , xn) is m-primary.

Proof. The equivalence of (i),(ii) and (iii) follows from the assumption that m
is maximal. The equivalence of (iii) and (iv) follows from the fact that an ideal
is primary whenever its radical is a maximal ideal.

Theorem 17. Let (A,m) be a Noetherian local ring. Then dim(A) is the small-
est integer n for which the equivalent conditions of Lemma 9 are satisfied, i.e.,

dim(A) = min{n ≥ 0 : ∃x1, . . . , xn ∈ m with V ((x1, . . . , xn)) = {m}}.

Proof. If there exist x1, . . . , xn with V ((x1, . . . , xn)) = {m} then Krull’s di-
mension theorem implies that dim(A) = height(m) ≤ n. If n = dim(A), then
the “converse to Krull” (Corollary 15) implies that there exist x1, . . . , xn with
V ((x1, . . . , xn)) = {m}.

Theorem 17 will be very useful as a tool for giving upper bounds on the
dimension of a Noetherian local ring (A,m): to show that dim(A) ≤ n, it
suffices to construct elements x1, . . . , xn with V ((x1, . . . , xn)) = m.

12
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9.2 Definition
Definition 18. Let (A,m) be a Noetherian local ring. We say that x1, . . . , xn ∈
m form a system of parameters for m if

(i) n = dim(A) = height(m), and

(ii) the equivalent conditions of Lemma 9 are satisfied, e.g., if V ((x1, . . . , xn)) =
{m}.

Theorem 17 implies that systems of parameters exist.

9.3 Extensions of partial systems of parameters
Let (A,m) be a Noetherian local ring. Given a collection of x1, . . . , xr ∈ m of
elements of its maximal ideal, we aim to understand when this collection may
be extended to a system of parameters. To that end, define the quotient ring
A := A/(x1, . . . , xr); it is a Noetherian local ring with maximal ideal m given
by the image of m, and satisfies the following general dimension lower-bound:

Lemma 10. dim(A) ≥ dim(A)− r.

Proof. Write s = dim(A). Choose elements y1, . . . , ys ∈ A whose images
y1, . . . , ys ∈ A form a system of parameters for m. In particular, m is the only
prime containing (y1, . . . , ys). It follows that m is the only prime containing
(x1, . . . , xr, y1, . . . , ys). From this we deduce the upper bound dim(A) ≤ r + s,
which rearranges to the required inequality.

Theorem 19. Among the following assertions, (i) implies (ii) and (iii), while
(ii) and (iii) are equivalent.

(i) height((x1, . . . , xr)) = r.

(ii) We may extend {x1, . . . , xr} to a system of parameters for m.

(iii) dim(A) = dim(A)− r.

Proof.

• (i) implies (ii): Set n := height(m) = dim(A). Then every prime in A
has height ≤ n, so r ≤ n. By Theorem 13, we may find xr+1, . . . , xn
for which height((x1, . . . , xn)) = n, i.e., so that n is the minimal height
among primes containing (x1, . . . , xn). Since m is the unique prime in A
of height n, we deduce that it is the only prime containing (x1, . . . , xn).
Thus x1, . . . , xn is a system of parameters.

• (i) implies (iii): we combine Lemma 10 with the easy inequality dim(A) ≥
dim(A) + height((x1, . . . , xr)) (cf. Lemma 1). (This implication has been
included redundantly for the sake of illustration.)

13
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• (ii) implies (iii): Suppose we can extend x1, . . . , xr to a system of
parameters x1, . . . , xr, y1, . . . , ys for m. Then r + s = dim(A) and
V ((y1, . . . , ys)) = m, whence s ≥ dim(A); by Lemma 10, we deduce that
s ≥ dim(A) ≥ dim(A) − r = s, so equality holds and dim(A) = s, as
required.

• (iii) implies (ii): Suppose that s := dim(A) = dim(A) − r. Let
y1, . . . , ys ∈ m be such that their images y1, . . . , ys form a system of param-
eters for m. Then V ((x1, . . . , xr, y1, . . . , ys)) = {m} and r+s = dim(A), so
x1, . . . , xr, y1, . . . , ys gives the required extension of x1, . . . , xr to a system
of parameters for m.

Corollary 20. Let (A,m) be a Noetherian local ring, and let f ∈ m be a non-
zerodivisor. Then

dim(A/(f)) = dim(A)− 1.

Proof. Since f is a non-zerodivisor, Krull’s principal ideal theorem implies that
height((f)) = 1. Theorem 19 applies with r := 1 and x1 := f to produce
an extension of {f} to a system of parameters f, y1, . . . , ys for A, with s :=
dim(A/(f)). In particular, dim(A) = s+ 1, as required.

10 Dimensions of polynomial rings
Theorem 21. Let A be a Noetherian ring, and n ∈ Z≥0. Then

dimA[X1, . . . , Xn] = dimA+ n.

Proof. By iterating, it suffices to consider the case n = 1. Set r := dim(A). We
must verify that dimA[X] = r+ 1. Let p0 ( · · · ( pr be a chain of primes in A
of length realizing the dimension of A. Then

p0A[x] ( · · · ( prA[X] ( prA[X] +XA[X]

is readily seen to give a chain of primes in A[X] of length r+1, hence dimA[X] ≥
r+1. The upper bound is trickier. It will suffice to show for each maximal ideal
m ⊆ A[X] that height(m) ≤ r + 1. Set p := m ∩A; it is a prime ideal. We may
replace A with its localization Ap and A[X] with (A[X])p = Ap[X] to reduce to
the case that (A, p) is a Noetherian local ring. The quotient A/p is then a field
and so the ring A[X]/pA[X] = A/p[X] is then a PID. The image of m in the
latter ring is thus principal. We may thus write m = pA[X] + fA[X] for some
f ∈ A[X]. Let x1, . . . , xr ∈ p be a system of parameters for p. Then m is the
only prime containing (x1, . . . , xr, f): any such prime q contains x1, . . . , xr and
hence contains p, and so identifies with a prime ideal in the quotient A/p[X]
that contains the image of f , whence q = m. It follows from Theorem 17 that
dim(A) = height(m) ≤ r + 1, as required.

14
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For example:

Proposition 22. Let A := C[X1, . . . , Xn], and let m be a maximal ideal, thus
m = (X1 − x1, . . . , Xn − xn) for some (x1, . . . , xn) ∈ Cn. Then height(m) = n.
The localization Am is a local ring of dimension n, whose maximal ideal is
generated by a system of parameters.

Proof. The ideals pi := (X1−x1, . . . , Xi−xi) (i = 0..n) are prime, distinct and
increasing to pn = m, so height(m) ≥ n. Conversely, it’s clear that height(m) ≤
dim(A) = n. Therefore height(m) = n. The assertion concerning Am then
follows from the identity dim(Am) = height(m) and the fact that m is generated
by X1 − x1, . . . , Xn − xn.

11 Preliminaries on regular local rings
Let (A,m) be a Noetherian local ring of dimension d := dim(A) = height(m).
Denote by k := A/m the residue field. For any module M , the quotient M/mM
is then naturally a k-vector space. This consideration applies in particular when
M = m, so that M/mM = m/m2.

Lemma 11. In general, dimk m/m
2 ≥ d. The following are equivalent:

(i) m is generated by d elements, necessarily a system of parameters.

(ii) dimk m/m
2 = d.

Proof. Set r := dimk m/m
2.

For the first inequality, suppose x1, . . . , xr ∈ m have the property that their
images give a k-basis of m/m2. By Nakayama’s lemma, it follows that x1, . . . , xr
generate m. By Krull’s dimension theorem, it follows that d = height(m) ≤ r,
as required.

(i) implies (ii): If x1, . . . , xd generate m, then their images span m/m2,
whence d ≥ r. Comparing with the reverse inequality which holds in general,
we deduce that d = r.

(ii) implies (i): Assuming (ii), we may find x1, . . . , xd ∈ m which generate
m/m2, hence (by Nakayama) generate m, giving (i).

15
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