Exercise Sheet 1

RADICAL IDEALS, LOCAL RINGS AND AFFINE VARIETIES

Let A be a ring, k an algebraically closed field and n > 0 an integer.

- 1. Let $\mathfrak{a} \subset A$ be an ideal. Show that its radical $r(\mathfrak{a})$ is an ideal. Furthermore, prove:
 - (a) $r(\mathfrak{a}) \supset \mathfrak{a}$
 - (b) $r(r(\mathfrak{a})) = r(\mathfrak{a})$
 - (c) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
 - (d) $r(\mathfrak{a}) = (1) \iff \mathfrak{a} = (1)$
 - (e) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$
 - (f) if $\mathfrak{p} \subset A$ is a prime ideal, then $r(\mathfrak{p}^k) = \mathfrak{p}$ for all k > 0
- 2. Consider the polynomial ring A[X]. Let $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ be a polynomial. Prove:
 - (a) f is a unit in A[X] if and only if a_0 is a unit in A and a_1, \ldots, a_n are nilpotent.
 - (b) f is nilpotent if and only if a_0, \ldots, a_n are nilpotent.
 - (c) f is a zero-divisor if and only if there exists $a \neq 0$ in A such that af = 0.
- 3. Fix an element $x_0 \in \mathbb{R}^n$. Denote by $\mathfrak{U} := \{U \subset \mathbb{R}^n \text{ open } | x_0 \in U\}$ the set of open neighbourhoods of x_0 and define the set

$$S := \{ (U, f) \mid U \in \mathfrak{U}, f : U \to \mathbb{R} \text{ continuous} \}.$$

We define an equivalence relation on S as follows: two elements $(U, f), (V, g) \in S$ are equivalent if and only if there is an open neighbourhood $W \subset U \cap V$ of x_0 such that $f|_W = g|_W$. We denote the set of equivalence classes of S by R. It is called *ring of germs* of continuous functions. Prove that R is a local ring.

- 4. Show that the Zariski topology on \mathbb{C}^n is coarser than the usual topology.
- 5. Let $X \subset k^n$ be a subset. Show that I(X) is an ideal in $k[X_1, \ldots, X_n]$ and it is radical.

- 6. Let $X, X' \subset k^n$ and $S, S' \subset k[X_1, \ldots, X_n]$ be subsets. Show:
 - (a) $X \subset V(S) \iff S \subset I(X)$ (b) $V(S \cup S') = V(S) \cap V(S')$ (c) $I(X \cup X') = I(X) \cap I(X')$ (d) $S \subset S' \Rightarrow V(S) \supset V(S')$ (e) $X \subset X' \Rightarrow I(X) \supset I(X')$ (f) $S \subset I(V(S))$ (g) $X \subset V(I(X))$ (h) V(S) = V(I(V(S)))(i) I(X) = I(V(I(X)))