Exercise Sheet 13

VALUATION RINGS

- 1. Let A be an integral domain. Prove:
 - (a) A is a valuation ring if and only if for all pairs of ideals $\mathfrak{a}, \mathfrak{b} \subset A$ we have $\mathfrak{a} \subset \mathfrak{b}$ or $\mathfrak{b} \subset \mathfrak{a}$.
 - (b) If A is a valuation ring and $\mathfrak{p} \subset A$ a prime ideal, then $A_{\mathfrak{p}}$ and A/\mathfrak{p} are both valuation rings.
- 2. Let A be a valuation ring with field of fractions K. Prove that every ring B with $A \subset B \subset K$ is a localisation of A at a prime ideal.
- 3. Let K be a field and consider the field K(X).
 - (a) Let $P \in K[X]$ be irreducible. Construct a normalized discrete valuation $\nu_P: K(X)^* \to \mathbb{Z}$ such that its valuation ring is $K[X]_{(P)}$.
 - (b) Prove that $\tau : K(X)^* \to \mathbb{Z}$ defined by $\tau(\frac{f}{g}) = \deg(g) \deg(f)$ is another valuation.
 - (c) Prove that the valuations τ and ν_P for all irreducible polynomials $P \in K[X]$ are precisely all non-trivial valuations on K(X) which are trivial on K.
- 4. Prove that an algebraically closed field does not admit any non-trivial discrete valuations.
- 5. Let $a \in \mathbb{C}$. Let A be the ring of functions, which are holomorphic in some disc centered at a. Prove that A is a discrete valuation ring and find a uniformizer.
- 6. Describe the spectrum of a discrete valuation ring.