Exercise Sheet 4

Localisation, Splitting Lemma, Irreducible Variety

1. Let A be a ring reduced ring (i.e. without any nonzero nilpotent elements). Let M be a finitely generated A-module and let $f: M \rightarrow M$ be a surjective module homomorphism. Then f is also injective.
Remark: The intended proof for A reduced did not work, but there is a more general proof. Many apologies for this inconvenience!
2. Let A be a ring such that every localisation $A_{\mathfrak{p}}$ of A with respect to a prime ideal $\mathfrak{p} \subset A$ has no nonzero nilpotent elements. Prove that A has no nonzero nilpotent elements. Is the same true for zero-divisors?
3. Let A be a ring. Let T, S be two multiplicatively closed subsets and let U be the image of T in $S^{-1} A$. Prove that $(S T)^{-1} A$ is isomorphic to $U^{-1} S^{-1} A$.
4. Let A be an integral domain and M an A-module. Prove that the following are equivalent:
(a) M is torsion-free.
(b) $M_{\mathfrak{p}}$ is torsion-free for all prime ideals $\mathfrak{p} \subset A$.
(c) $M_{\mathfrak{m}}$ is torsion-free for all maximal ideals $\mathfrak{m} \subset A$.
5. (Splitting Lemma) Let A be a ring and $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ a short exact sequence of A-modules. The sequence is called split if there is an isomorphism $M \rightarrow M^{\prime} \oplus M^{\prime \prime}$ such that the diagram

commutes, where the homomorphisms in the lower row are the inclusion and projection respectively.
Prove the splitting lemma, i.e. that the following are equivalent:
(a) The short exact sequence splits.
(b) There is a homomorphism $i: M^{\prime \prime} \rightarrow M$ such that $v \circ i=\mathrm{id}_{M^{\prime \prime}}$.
(c) There is a homomorphism $s: M \rightarrow M^{\prime}$ such that $s \circ u=\operatorname{id}_{M^{\prime}}$.
6. A topological space is called irreducible if it is non-empty and every two non-empty open subsets have a non-empty intersection. Prove that for $\operatorname{spec}(A)$ the following are equivalent:
(a) $\operatorname{spec}(A)$ is irreducible.
(b) The nilradical of A is a prime ideal.
(c) There is a dense point $x \in \operatorname{spec}(A)$, i.e. the closure of $\{x\}$ is $\overline{\{x\}}=\operatorname{spec}(A)$.

Remark: We call such a point as in (c) a generic point.

