Commutative Algebra

Exercise Sheet 6

PRIMARY DECOMPOSITION & k-Algebras

Definition: Let A be a ring and $\mathfrak{a} \subset A$ an ideal which admits a primary decomposition. Let P be the set of associated prime ideals of \mathfrak{a} . The minimal elements of P with respect to inclusion are called *isolated prime ideals* of \mathfrak{a} , the others are called *embedded prime ideals*.

- 1. The power of a maximal ideal is a primary ideal. Show that the converse is not true: find an example of a ring A and a primary ideal $\mathfrak{a} \subset A$ such that its radical $r(\mathfrak{a})$ is a maximal ideal, but \mathfrak{a} is not a power of $r(\mathfrak{a})$.
- 2. Let k be a field. Consider the polynomial ring A := k[X, Y, Z] and the ideal $\mathfrak{a} := (X^2, XY, YZ, XZ) \subset A$. Find a minimal primary decomposition of \mathfrak{a} and the associated prime ideals. Which components are isolated and which are embedded?
- 3. Let k be a field and A a finitely generated k-algebra. Prove the following statement: An ideal $\mathfrak{a} \subset A$ is a maximal ideal if and only if \mathfrak{a} is prime and the quotient A/\mathfrak{a} is a finite dimensional k-vector space.
- 4. Let k be a field and A a finitely generated k-algebra. Let $\mathfrak{a} \subset A$ be a radical ideal. Using the previous exercise, prove that the associated prime ideals of \mathfrak{a} are all maximal if and only if A/\mathfrak{a} is a finite dimensional k-vector space.
- 5. For $k := \mathbb{C}$, explain the geometry behind exercise 2.