Exercise Sheet 7

PRIMARY DECOMPOSITION, ARTINIAN RINGS AND MODULES

Definition: Let A be a ring and $\mathfrak{p} \subset A$ a prime ideal of A. Denote $\varphi : A \to A_{\mathfrak{p}}$ for the localisation map. For an integer n > 0 we define the *n*-th symbolic power of \mathfrak{p} to be the ideal $\mathfrak{p}^{(n)} := \varphi^* \varphi_*(\mathfrak{p}^n)$.

- 1. Let A be a ring and $\mathfrak{p} \subset A$ a prime ideal. Let n > 0 be an integer. Consider the *n*-th symbolic power $\mathfrak{p}^{(n)}$. Prove:
 - (a) $\mathbf{p}^{(n)}$ is a **p**-primary ideal.
 - (b) If \mathfrak{p}^n has a primary decomposition, then $\mathfrak{p}^{(n)}$ is its \mathfrak{p} -primary component.
 - (c) $\mathbf{p}^{(n)} = \mathbf{p}^n$ if and only if \mathbf{p}^n is a primary ideal.
- 2. Let k be a field and consider the ring A := k[X, Y, Z]. Compute the ideal of A given by

$$\mathfrak{a} := (Y^2 + XY - XZ - YZ, (X+Y)^2 + 2X) \cap ((X+Y)^2, X, Y^3 - Y^2Z)$$

and find a minimal primary decomposition of $\mathfrak{a}.$

(*Hint:* Substitutions might be helpful.)

- 3. Let A be a ring and $\mathfrak{a} \subset A$ an ideal which admits a primary decomposition. Let \mathfrak{p} be a maximal element of the set $\{(\mathfrak{a}: x) \mid x \in A \setminus \mathfrak{a}\}$. Prove that \mathfrak{p} is an associated prime ideal of \mathfrak{a} .
- 4. Let A be a ring and M an Artinian A-module. Let $f: M \to M$ be an injective module homomorphism. Prove that f is an isomorphism.
- 5. Let A be a ring and M a Noetherian A-module. Let $\mathfrak{a} \subset A$ be the annihilator of M, i.e. $\mathfrak{a} = \{x \in A \mid xM = 0\}$. Prove that the ring A/\mathfrak{a} is Noetherian.

Is the same true if we replaced Noetherian with Artinian?