Commutative Algebra

Exercise Sheet 9

DIMENSION AND HEIGHT

- 1. Let A be a ring. Prove the following statements:
 - (a) For every prime ideal $\mathfrak{p} \subset A$ we have $\operatorname{ht}(\mathfrak{p}) + \operatorname{coht}(\mathfrak{p}) \leq \dim(A)$.
 - (b) For every ideal $\mathfrak{a} \subset A$ we have $ht(\mathfrak{a}) + coht(\mathfrak{a}) \leq dim(A)$. (Recall that $ht(\mathfrak{a}) = \inf_{\mathfrak{p} \supset \mathfrak{a} \text{ prime}} ht(\mathfrak{p})$)
- 2. Give an example of a
 - (a) non-Noetherian local ring A with maximal ideal \mathfrak{m} and dim $A > \dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$.
 - (b) Noetherian non-local ring A with a maximal ideal \mathfrak{m} such that dim $A > ht(\mathfrak{m})$.
- 3. Let A be a ring and consider the polynomial ring in one variable A[X]. Let $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subset A[X]$ be two prime ideals such that their contraction to A is equal $\mathfrak{p} := \mathfrak{p}_1 \cap A = \mathfrak{p}_2 \cap A$. Prove that $\mathfrak{p}_1 = \mathfrak{p}A[X]$. Deduce that for any three subsequent prime ideals $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subset A[X]$ their contractions $\mathfrak{p}_1 \cap A, \mathfrak{p}_2 \cap A, \mathfrak{p}_3 \cap A$ cannot all be equal.

[Hint: Take a ring of fractions and use that $\dim(K[X]) = 1$ for every field K]

4. Consider the ring $R := \mathbb{C}[X, Y, Z]/(XY, XZ)$. Compute the height of the two maximal ideals $\mathfrak{m}_1 := (X - 1, Y, Z) \subset R$ and $\mathfrak{m}_2 := (X, Y - 1, Z) \subset R$. Interpret your result geometrically on the variety $V(XY, XZ) \subset \mathbb{C}^3$.