D-MATH Commutative Algebra HS 2017

Prof. Paul Nelson .
Solutions Sheet 1

RADICAL IDEALS, LOCAL RINGS AND AFFINE VARIETIES

Let A be a ring, k an algebraically closed field and n > 0 an integer.

1. Let a C A be an ideal. Show that its radical r(a) is an ideal. Furthermore, prove:

Solution: First we show that r(a) is an ideal of A. We will strongly use the
commutativity of A. Clearly, 0 € r(a). Let a € r(a) with n > 0 such that " € a.
For every x € A we have (za)” = 2"a™ € a and hence xa € r(a). This shows that

Ar(a) C r(a).

For every a,b € r(a) and n,m > 0 such that a™, b™ € a we compute using the

binomial formula: .
n+m __ n-+m ign+m—i
(a+ D) = Z < ; ) a'b
i=0
Now for every 0 < ¢ < n + m either a* € a or b7~ € a, so by using that a is an
ideal, we conclude that a + b € r(a). Finally, we see that (—a)” = (—1)"a" € a
and thus —a € r(a). This proves that r(a) is an ideal.

(a) This follows directly from the definition.

(b) Using (a) we only need to show that r(r(a)) C r(a). For any a € r(r(a))
there is an integer n > 0 such that ¢™ € r(a), and thus there is an integer
m > 0 such that a"™ = (a™)™ € a. Hence a € r(a).

(c) Since ab C aNb we conclude r(ab) C r(aNb). Let a € r(aNb) with n > 0
such that ™ € anb. Then a" € a and a” € b, so a € r(a) Nr(b). Finally,
for every b € r(a) N r(b) with n > 0,m > 0 such that b" € a and b™ € b
we have b""™ € ab and hence b € r(ab). We conclude r(ab) C r(anb) C
r(a) Nr(b) C r(ab).

(d) If r(a) = (1), then there is an integer n > 0 such that 1" € a, hence a = (1).
The converse follows by (a).



(e) The inclusion r(a + b) C r(r(a) + r(b)) follows by using (a) for a + b C
r(a)+r(b). Conversely, for every element x € r(r(a)+ (b)) with n > 0 such
that 2" € r(a) + r(b), there are a € r(a) and b € r(b) such that 2" = a + b.
Let m,¢ > 0 such that a™ € a, b* € b. Then z"™+) = (2™)"*+* ¢ a 4+ b by
using the binomial formula again. Thus z € r(a + b).

(f) Since every prime ideal is radical, we conclude using (c) that r(p*) = r(p) = p.

2. Consider the polynomial ring A[X]. Let f =>""  a; X’ € A[X] be a polynomial.
Prove:

(a) fisaunitin A[X]if and only if ag is a unit in A and ay, ..., a, are nilpotent.
(b) f is nilpotent if and only if aq, ..., a, are nilpotent.

(c) fis a zero-divisor if and only if there exists a # 0 in A such that af = 0.
Solution:

(a) Assume that f is a unit in A[X]. Then there is a polynomial g = 7" b; X" €
A[X] such that fg = 1. We have

m+n

fg = Z Z aiijk
k=0 i+j=k
and thus we conclude that Ziﬂ.:k a;b; = 0 for all £ > 0 and agby = 1. This
proves, that ag is a unit. We show that a”™b,,_, = 0 for all 0 < r < m by
induction on r. We already know that a,b,, = 0, so we have r = 0. For r > 0
assume that we know the statement for v’ < r. We have

_ T . T+l n—i m—j1 __ _r+1
0=a, E a;b; = ay" by + E a;a, ‘a; 7bj = ay" by

i+j=n+m—r i+j=n+m—r,j>m—r

where we used the induction hypothesis for every term in the sum. We
conclude that a’*'b,, ., = 0 for all 0 < r < m and in particular a”"'by = 0.
Since by is a unit, we conclude that a,, is nilpotent. To conclude the proof we
show that f — a, X™ is still a unit. Then by the above it follows that a,,_; is
nilpotent, so inductively we conclude that aq,...,a, are nilpotent. To show
that f —a, X" is still a unit, we more generally prove that the difference of a
unit and a nilpotent element in a ring R is a unit in R. Let © € R be a unit
and x € R nilpotent with 2° = 0. Consider the element

(u2k + ka)
1

h:=

J4
k=



and note that (u — 2)h = u? — 2% = u* by using ¢ times the binomial
formula (¢ — b)(a + b) = a® — b? and the fact 2¢ > ¢. Since u2" is a unit, too,
we conclude that (v — ) is a unit in R.

Conversely, by the above argument the sum of a unit and a nilpotent element
is again a unit. Inductively we conclude that if a¢ is a unit and a4, ..., a, are
nilpotent, then f is a unit.

(b) Since the nilradical is an ideal, it follows that sums and differences of nilpotent
elements are nilpotent. Inductively, we conclude the equivalence.

(c) Assume that f is a zero-divisor and let ¢ = Y /" ;X" € A[X] be a non-
zero polynomial of lowest degree such that fg = 0. We show by induction
on r that a,_,g = 0 for all 0 < r < n. Let r = 0. Then fg = 0, so
anb, = 0. Hence a,g has strictly smaller degree than g and still anihilates f.
We conclude that a,g = 0. Let » > 0 and assume we know the statement for
all smaller . Note that 0 = fg = > " (a;gX' = > a;gX" by induction
hypothesis. The highest term is thus 0 = a,,_,.b,,X™""~". Hence, a,_,g has
strictly smaller degree than ¢ and still anihilates f. Thus a,_,g = 0. We
conclude that in particular a;bg = 0 for all 0 < ¢ < n and thus by f = 0. The
converse is trivial.

3. Fix an element xy € R™. Denote by 4 := {U C R" open | zy € U } the set of open
neighbourhoods of xy and define the set

S:={(U,f)|Uel, f:U — R continuous } .

We define an equivalence relation on S as follows: two elements (U, f), (V,g) € S
are equivalent if and only if there is an open neighbourhood W C U NV of x
such that f|,, = g|,,- We denote the set of equivalence classes of S by R. It is
called ring of germs of continuous functions. Prove that R is a local ring.

Solution: We need first to define the two operations on R. For (U, f), (V,g) € S we
define (U, f)-(V,g) .= (UNV, fg) and (U, f)+(V,g) :== (UNV, f+g). The element
(R™, 1) is the multiplicative identity and (R",0) is the additive identity. That this
descends to a well-defined ring structure on R follows from direct calculations and
the fact that the set of continuous functions on an open neighbourhood of zy forms
aring. We will show that it is local. Denote m := {[(U, f)] € R | f(x¢) = 0}. This
is a well-defined set and as a short calculation shows, it is an ideal. Also, 1 ¢ m.
We show that every element = & m is a unit. Let [(U, f)] € m. Then f(zq) # 0. By
continuity of f we conclude that there is an open neighbourhood V' C U such that
Ve eV : f(x) # 0. Hence [(V, %)] € Ris an inverse of [(U, f)]. By the proposition
from the lecture, we conclude that R is a local ring with maximal ideal m.

4. Show that the Zariski topology on C™ is coarser than the usual topology.



Solution: Let X C C" be a Zariski-closed subset.
= X. We have

S C C[Xy,...,X,] such that V(S5)

X=V(S)={zecC" |VfeS: f(x

Then there is some subset

)=0}=[)F}

fes

Because every polynomial f € S is continuous for the usual topology of C™ we con-

clude that f~

1(0) is closed in the usual topology for all f € S. Since an intersection

of closed sets is closed we conclude that X is closed in the usual topology. To show
that it is strictly coarser consider the set Z x {0}"~! C C". Tt is closed in the usual

topology, but not in the Zariski-topology: Let f € C[Xj,...
Thus [f] € C[X;,...

that vanishes on Z x {0}"1.

, X,,] be a polynomial
CXnl/(Xa, ., X)) &2 CIXY]

needs to be a polynomial that vanishes at all points in Z implying [f] = 0. This

shows that f vanishes on C x {0}"~'.

Z x {0}"1in C"is C x {0} L.

5. Let X C k" be a subset. Show that I(X) is an ideal in k[Xq,...

radical.

Solution: Clearly 0 € I(X) and for f € I(X) we have —f € I(X
f(x)+g(x) = 0, hence f+g € I(X). Let f € I(X) and

(hf)(x) =
This shows that I(X) is an ideal in k[X7,...

ThenVx € X :
h € k[Xy,...

(f+9)(z) =
, X,]. Then Vo € X :

This shows that the Zariski closure of

, X,,] and it is

). Let f,g € I(X).

h(z)f(z) = 0 and thus hf € I(X).
, X,]. Now take f € k[Xy,...,X,]

and n > 0 such that f™ € I(X). Thus for all z € X we have f"(x) = f(z)" = 0.
Since k is an integral domain, we conclude that f(z) = 0 and thus f € I(X). This

proves that (X)) is radical.

6. Let X, X' C k" and S,5" C k[X;,...

(a) X CV(9) <= S cCI(X)
(b) V(SUS) =V(S)NV(S)
(c) (XUX)=I(X)NI(X)
(d) SCS"=V(S)DV()

)
)
c)
)
e) XC X' =1(X)DI(X')
)
)
)
)

(
(f) S CI(V(S))
(g) X CV({I(X))
(h) V(5) = V({I(V(9)))

(i) 1(X) = 1(V(I(X)))

, X, be subsets. Show:

Solution: It all follows directly from the definitions.



