
D-MATH Commutative Algebra HS 2017
Prof. Paul Nelson

Solutions Sheet 1
Radical ideals, Local Rings and Affine Varieties

Let A be a ring, k an algebraically closed field and n > 0 an integer.

1. Let a ⊂ A be an ideal. Show that its radical r(a) is an ideal. Furthermore, prove:

(a) r(a) ⊃ a

(b) r(r(a)) = r(a)

(c) r(ab) = r(a ∩ b) = r(a) ∩ r(b)

(d) r(a) = (1) ⇐⇒ a = (1)

(e) r(a + b) = r(r(a) + r(b))

(f) if p ⊂ A is a prime ideal, then r(pk) = p for all k > 0

Solution: First we show that r(a) is an ideal of A. We will strongly use the
commutativity of A. Clearly, 0 ∈ r(a). Let a ∈ r(a) with n > 0 such that an ∈ a.
For every x ∈ A we have (xa)n = xnan ∈ a and hence xa ∈ r(a). This shows that
Ar(a) ⊂ r(a).

For every a, b ∈ r(a) and n,m > 0 such that an, bm ∈ a we compute using the
binomial formula:

(a + b)n+m =
n+m∑
i=0

(
n + m

i

)
aibn+m−i

Now for every 0 6 i 6 n + m either ai ∈ a or bn+m−i ∈ a, so by using that a is an
ideal, we conclude that a + b ∈ r(a). Finally, we see that (−a)n = (−1)nan ∈ a
and thus −a ∈ r(a). This proves that r(a) is an ideal.

(a) This follows directly from the definition.

(b) Using (a) we only need to show that r(r(a)) ⊂ r(a). For any a ∈ r(r(a))
there is an integer n > 0 such that an ∈ r(a), and thus there is an integer
m > 0 such that anm = (an)m ∈ a. Hence a ∈ r(a).

(c) Since ab ⊂ a ∩ b we conclude r(ab) ⊂ r(a ∩ b). Let a ∈ r(a ∩ b) with n > 0
such that an ∈ a ∩ b. Then an ∈ a and an ∈ b, so a ∈ r(a) ∩ r(b). Finally,
for every b ∈ r(a) ∩ r(b) with n > 0,m > 0 such that bn ∈ a and bm ∈ b
we have bn+m ∈ ab and hence b ∈ r(ab). We conclude r(ab) ⊂ r(a ∩ b) ⊂
r(a) ∩ r(b) ⊂ r(ab).

(d) If r(a) = (1), then there is an integer n > 0 such that 1n ∈ a, hence a = (1).
The converse follows by (a).

1



(e) The inclusion r(a + b) ⊂ r(r(a) + r(b)) follows by using (a) for a + b ⊂
r(a) + r(b). Conversely, for every element x ∈ r(r(a) + r(b)) with n > 0 such
that xn ∈ r(a) + r(b), there are a ∈ r(a) and b ∈ r(b) such that xn = a + b.
Let m, ` > 0 such that am ∈ a, b` ∈ b. Then xn(m+`) = (xn)m+` ∈ a + b by
using the binomial formula again. Thus x ∈ r(a + b).

(f) Since every prime ideal is radical, we conclude using (c) that r(pk) = r(p) = p.

2. Consider the polynomial ring A[X]. Let f =
∑n

i=0 aiX
i ∈ A[X] be a polynomial.

Prove:

(a) f is a unit in A[X] if and only if a0 is a unit in A and a1, . . . , an are nilpotent.

(b) f is nilpotent if and only if a0, . . . , an are nilpotent.

(c) f is a zero-divisor if and only if there exists a 6= 0 in A such that af = 0.

Solution:

(a) Assume that f is a unit in A[X]. Then there is a polynomial g =
∑m

i=0 biX
i ∈

A[X] such that fg = 1. We have

fg =
m+n∑
k=0

∑
i+j=k

aibjX
k

and thus we conclude that
∑

i+j=k aibj = 0 for all k > 0 and a0b0 = 1. This

proves, that a0 is a unit. We show that ar+1
n bm−r = 0 for all 0 6 r 6 m by

induction on r. We already know that anbm = 0, so we have r = 0. For r > 0
assume that we know the statement for r′ < r. We have

0 = arn
∑

i+j=n+m−r

aibj = ar+1
n bm−r +

∑
i+j=n+m−r, j>m−r

aia
n−i
n am−jn bj = ar+1

n bm−r

where we used the induction hypothesis for every term in the sum. We
conclude that ar+1

n bm−r = 0 for all 0 6 r 6 m and in particular am+1
n b0 = 0.

Since b0 is a unit, we conclude that an is nilpotent. To conclude the proof we
show that f − anX

n is still a unit. Then by the above it follows that an−1 is
nilpotent, so inductively we conclude that a1, . . . , an are nilpotent. To show
that f − anX

n is still a unit, we more generally prove that the difference of a
unit and a nilpotent element in a ring R is a unit in R. Let u ∈ R be a unit
and x ∈ R nilpotent with x` = 0. Consider the element

h :=
∏̀
k=1

(u2k + x2k)
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and note that (u − x)h = u2` − x2` = u2` by using ` times the binomial
formula (a− b)(a + b) = a2 − b2 and the fact 2` > `. Since u2` is a unit, too,
we conclude that (u− x) is a unit in R.

Conversely, by the above argument the sum of a unit and a nilpotent element
is again a unit. Inductively we conclude that if a0 is a unit and a1, . . . , an are
nilpotent, then f is a unit.

(b) Since the nilradical is an ideal, it follows that sums and differences of nilpotent
elements are nilpotent. Inductively, we conclude the equivalence.

(c) Assume that f is a zero-divisor and let g =
∑m

i=0 biX
i ∈ A[X] be a non-

zero polynomial of lowest degree such that fg = 0. We show by induction
on r that an−rg = 0 for all 0 6 r 6 n. Let r = 0. Then fg = 0, so
anbm = 0. Hence ang has strictly smaller degree than g and still anihilates f .
We conclude that ang = 0. Let r > 0 and assume we know the statement for
all smaller r. Note that 0 = fg =

∑n
i=0 aigX

i =
∑n−r

i=0 aigX
i by induction

hypothesis. The highest term is thus 0 = an−rbmX
m+n−r. Hence, an−rg has

strictly smaller degree than g and still anihilates f . Thus an−rg = 0. We
conclude that in particular aib0 = 0 for all 0 6 i 6 n and thus b0f = 0. The
converse is trivial.

3. Fix an element x0 ∈ Rn. Denote by U := {U ⊂ Rn open | x0 ∈ U } the set of open
neighbourhoods of x0 and define the set

S := {(U, f) | U ∈ U, f : U → R continuous} .

We define an equivalence relation on S as follows: two elements (U, f), (V, g) ∈ S
are equivalent if and only if there is an open neighbourhood W ⊂ U ∩ V of x0

such that f |W = g|W . We denote the set of equivalence classes of S by R. It is
called ring of germs of continuous functions. Prove that R is a local ring.

Solution: We need first to define the two operations on R. For (U, f), (V, g) ∈ S we
define (U, f)·(V, g) := (U∩V, fg) and (U, f)+(V, g) := (U∩V, f+g). The element
(Rn, 1) is the multiplicative identity and (Rn, 0) is the additive identity. That this
descends to a well-defined ring structure on R follows from direct calculations and
the fact that the set of continuous functions on an open neighbourhood of x0 forms
a ring. We will show that it is local. Denote m := {[(U, f)] ∈ R | f(x0) = 0}. This
is a well-defined set and as a short calculation shows, it is an ideal. Also, 1 6∈ m.
We show that every element x 6∈ m is a unit. Let [(U, f)] 6∈ m. Then f(x0) 6= 0. By
continuity of f we conclude that there is an open neighbourhood V ⊂ U such that
∀x ∈ V : f(x) 6= 0. Hence [(V, 1

f
)] ∈ R is an inverse of [(U, f)]. By the proposition

from the lecture, we conclude that R is a local ring with maximal ideal m.

4. Show that the Zariski topology on Cn is coarser than the usual topology.
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Solution: Let X ⊂ Cn be a Zariski-closed subset. Then there is some subset
S ⊂ C[X1, . . . , Xn] such that V (S) = X. We have

X = V (S) = {x ∈ Cn | ∀f ∈ S : f(x) = 0} =
⋂
f∈S

f−1(0)

Because every polynomial f ∈ S is continuous for the usual topology of Cn we con-
clude that f−1(0) is closed in the usual topology for all f ∈ S. Since an intersection
of closed sets is closed we conclude that X is closed in the usual topology. To show
that it is strictly coarser consider the set Z×{0}n−1 ⊂ Cn. It is closed in the usual
topology, but not in the Zariski-topology: Let f ∈ C[X1, . . . , Xn] be a polynomial
that vanishes on Z × {0}n−1. Thus [f ] ∈ C[X1, . . . , Xn]/(X2, . . . , Xn) ∼= C[X1]
needs to be a polynomial that vanishes at all points in Z implying [f ] = 0. This
shows that f vanishes on C × {0}n−1. This shows that the Zariski closure of
Z× {0}n−1 in Cn is C× {0}n−1.

5. Let X ⊂ kn be a subset. Show that I(X) is an ideal in k[X1, . . . , Xn] and it is
radical.

Solution: Clearly 0 ∈ I(X) and for f ∈ I(X) we have−f ∈ I(X). Let f, g ∈ I(X).
Then ∀x ∈ X : (f+g)(x) = f(x)+g(x) = 0, hence f+g ∈ I(X). Let f ∈ I(X) and
h ∈ k[X1, . . . , Xn]. Then ∀x ∈ X : (hf)(x) = h(x)f(x) = 0 and thus hf ∈ I(X).
This shows that I(X) is an ideal in k[X1, . . . , Xn]. Now take f ∈ k[X1, . . . , Xn]
and n > 0 such that fn ∈ I(X). Thus for all x ∈ X we have fn(x) = f(x)n = 0.
Since k is an integral domain, we conclude that f(x) = 0 and thus f ∈ I(X). This
proves that I(X) is radical.

6. Let X,X ′ ⊂ kn and S, S ′ ⊂ k[X1, . . . , Xn] be subsets. Show:

(a) X ⊂ V (S) ⇐⇒ S ⊂ I(X)

(b) V (S ∪ S ′) = V (S) ∩ V (S ′)

(c) I(X ∪X ′) = I(X) ∩ I(X ′)

(d) S ⊂ S ′ ⇒ V (S) ⊃ V (S ′)

(e) X ⊂ X ′ ⇒ I(X) ⊃ I(X ′)

(f) S ⊂ I(V (S))

(g) X ⊂ V (I(X))

(h) V (S) = V (I(V (S)))

(i) I(X) = I(V (I(X)))

Solution: It all follows directly from the definitions.
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