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Solutions Sheet 11

Integral Ring Extensions

1. Let A ↪→ B be an integral ring extension. Let f : A→ k be a homomorphism to
an algebraically closed field k. Prove that f can be extended to a homomorphism
B → k, which restricts to f on A.

Solution: Let p := ker(f) ⊂ A. Since k is a field, the ideal p is prime. Using this
and the universal property of the field of fractions we conclude that we can factor
f as

A→ A/p→ K → k

where K is the field of fractions of A/p. On the other hand, by Lying over there
is a prime ideal q ⊂ B with q ∩ A = p and B/q is integral over A/p. Let L be
the field of fractions of B/q. The inclusion A/p → B/q extends to an inclusion
of fields K → L. Since B/q is integral over A/p, we conclude that L/K is an
algebraic field extension. By a classical statement of algebra, we can thus lift the
map K → k to a map L→ k. Together with the map B → B/q→ L this gives a
lift of f .

2. Let A ↪→ B be an integral ring extension. Prove:

(a) If x ∈ A is a unit in B, then it is a unit in A.

(b) The Jacobson radical of A is the contraction of the Jacobson radical of B.

Solution:

(a) Let x ∈ A be a unit in B. Let y ∈ B such that xy = 1. Since B is integral
over A we conclude that y satisfies a polynomial equation

yn + an−1y
n−1 + · · ·+ a1y + a0 = 0

for elements a0, . . . , an−1 ∈ A. Multiplying it by xn−1 gives the equation

y + an−1 + · · ·+ a1x
n−2 + a0x

n−1 = 0

And so y ∈ A.

(b) By Lying over the maximal ideals of A are precisely the contractions of the
maximal ideals of B. Since the Jacobson radical is the intersection of all
maximal ideals we conclude the statement.
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3. Let A ↪→ B be an integral ring extension. Let n ⊂ B be a maximal ideal and
denote m := n ∩ A for the corresponding maximal ideal in A. Is Bn necessarily
integral over Am?

Solution: No. Consider the rings A := k[X2 − 1] ⊂ k[X] =: B, where k is a
field. The ring B is integral over A, since the element X is integral over A. Let
n := (X − 1). This gives m = (X − 1)∩A = (X2 − 1). We show that the element

1
X+1

is not integral over Am. Assume otherwise. Then there are polynomials
f0, . . . , fn ∈ A and g0, . . . , gn ∈ Arm such that

n∑
i=0

fi
gi(X + 1)i

=
1

(X + 1)n+1

But the g0, . . . , gn do not have a root at X = ±1. Thus the left hand side of the
equation

n∑
i=0

fi(X + 1)n−i

gi
=

1

X + 1

does not have a pole at X = −1. A contradiction.

4. Show that the integral closure of Z in C is not Noetherian.

Solution: Denote by A the integral closure of Z in C. Let p ∈ Z be a prime number.
For n > 1 let an be a root of X2n − p such that a2n+1 = an. By construction, the
an are in A. We prove that the ideals (an)n>1 form a strictly ascending chain of
ideals in A. We only need to show that an+1 6∈ (an). Assume otherwise. Then
an+1 = ban for some element b ∈ A. But then an = a2n+1 = b2a2n. This proves
that an is a unit in A. Since A is integral over Z[an], we use exercise 2.(a) to
conclude that an is a unit in Z[an]. However, in the ring Z[an] ∼= Z[X]/(X2n − p)
the element X is not invertible, because p is not invertible in Z. A contradiction.

5. Let A be an integral domain with field of fractions K. Let L/K be an algebraic
field extension and B be the integral closure of A in L. Prove that the field of
fractions of B is equal to L.

Solution: Since L is a field containing B, it also contains the field of fractions of
B. Conversely, let S := Ar (0). Since B is the integral closure of A in L we know
that S−1B is the integral closure of S−1A = K in S−1L = L. But the integral
closure of K in L is L. Therefore we conclude that L = S−1B ⊂ frac(B).

2


