Solutions Sheet 12

INTEGRAL EXTENSIONS

1. Let A be a normal integral domain with field of fractions K. Let L/K be an algebraic field extension. Prove that an element $b \in L$ is integral over A if and only if its minimal polynomial over K lies in A[X].

Solution: Let $b \in L$ such that its minimal polynomial over K lies in A[X]. Since the minimal polynomial is monic we conclude that b is integral over A.

Conversely assume that $b \in L$ is integral over A. Then there is a monic polynomial $P \in A[X]$ such that P(b) = 0. Let $M \in K[X]$ be the minimal polynomial of b over K. Since P is also an element in K[X] we conclude that M divides P in K[X]. But all zeroes of P in an algebraic closure \overline{L} of L are integral over A and so all zeroes of M in \overline{L} are integral over A. Since the coefficients of a polynomial are polynomial expressions in the zeroes, we conclude that the coefficients of M are integral over A. Since they are in K and A is normal, we conclude that $M \in A[X]$.

- 2. Let A be a ring and G a finite group of automorphisms of A. Let A^G denote the subring of G-invariants of A, i.e. all $x \in A$ such that $\sigma(x) = x$ for all $\sigma \in G$.
 - (a) Prove that A is integral over A^G .
 - (b) If moreover A is a normal integral domain with field of fractions K and let L/K be a Galois extension with Galois group G. Let B denote the integral closure of A in L. Prove that $\sigma(B) = B$ for all $\sigma \in G$ and $B^G = A$.

Solution:

- (a) Let $a \in A$. We define $g := \prod_{\sigma \in G} (X \sigma(a))$. This is a polynomial, because G is a finite group. Furthermore $\sigma(g) = g$ for all $\sigma \in G$ and thus the coefficients of g are in A^G . So g is a monic polynomial in $A^G[X]$ with a as a zero, which proves the claim.
- (b) In the lecture, we have already seen that $\sigma(B) = B$ for all $\sigma \in G$. The inclusion $B^G \supset A$ follows from the fact that $B \supset A$ and G acts trivially on A. Conversely let $b \in B^G \subset B$. Then $b \in L^G = K$ and b is integral over A. Because A is normal, we conclude that $b \in A$. Hence $B^G \subset A$.
- 3. Let K be a field of characteristic zero. Find an explicit solution of Noether's Normalization Lemma for the following K-algebras:
 - (a) K[X,Y]/(XY)

- (b) K[X, Y, Z, W]/(XY ZW)
- (c) $K[X, Y, Z]/((XY 1) \cap (Y, Z))$

Solution: We find the solutions by following the proof of Noether's Normalisation Lemma.

- (a) A solution is K[X+Y].
- (b) A solution is K[X + Y, Z, W].
- (c) A solution is K[X + Y, X Z].
- 4. Prove that every unique factorisation domain is normal.

Solution: Let A be a unique factorisation domain with field of fractions K. Let $\frac{a}{b} \in K$ be integral over A with $a, b \in A$ relatively coprime. Thus there exists a monic polynomial $f = X^n + \sum_{i=0}^{n-1} c_i X^i \in A[X]$ such that $f(\frac{a}{b}) = 0$. Then we have $a^n + b \sum_{i=0}^{n-1} c_i a^i b^{n-i-1} = 0$. This implies that b divides a^n . A contradiction to the unique factorisation property.

5. Let R be a ring and $A \subset B$ be R-algebras. Suppose that $B_{\mathfrak{p}}$ is integral over $A_{\mathfrak{p}}$ for all prime ideals $\mathfrak{p} \subset R$. Prove that B is integral over A.

Solution: Let $\mathfrak{b} \in B$. Let $\mathfrak{p} \subset R$ be a prime ideal. Since b is integral over $A_{\mathfrak{p}}$, we find elements $a_0, \ldots, a_{n-1} \in A$ and $s_0, \ldots, s_{n-1} \in R \setminus \mathfrak{p}$ such that

$$b^{n} + (a_{n-1}/s_{n-1})b^{n-1} + \dots + (a_{0}/s_{0}) = 0$$

Set $s_{\mathfrak{p}} := s_0 \dots s_{n-1}$. We multiply with $(s_{\mathfrak{p}})^n$ to find that $s_{\mathfrak{p}}b$ is integral over A. Let I be the ideal in R generated by $s_{\mathfrak{p}}$ for all prime ideals \mathfrak{p} of R. We prove that I = (1). If not, then I is contained in a maximal ideal \mathfrak{m} of R. But $s_{\mathfrak{m}} \notin \mathfrak{m}$, which gives a contradiction. Since I = (1) there is a finite linear combination $\sum_{\mathfrak{p}}' r_{\mathfrak{p}} s_{\mathfrak{p}} = 1$ with $r_{\mathfrak{p}} \in R$. Multiplied by b this leads to $b = \sum_{\mathfrak{p}}' r_{\mathfrak{p}} s_{\mathfrak{p}} b$. As a sum of integral elements over A, we conclude that b is integral over A.