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Solutions Sheet 13
Valuation Rings

1. Let A be an integral domain. Prove:

(a) A is a valuation ring if and only if for all pairs of ideals a, b ⊂ A we have
a ⊂ b or b ⊂ a.

(b) If A is a valuation ring and p ⊂ A a prime ideal, then Ap and A/p are both
valuation rings.

Solution:

(a) Assume that A is a valuation ring and let a, b ⊂ A be two ideals. If a 6⊂ b,
choose an element f ∈ a r b. For all g ∈ b we know that f

g
6∈ A, otherwise

f would be in b. Since A is a valuation ring, we know that g
f
∈ A and thus

g = g
f
f ∈ a. We conclude that b ⊂ a. Conversely, let x := f

g
be an element

in the field of fractions of A. By assumption we have (f) ⊂ (g) or (g) ⊂ (f).
Hence x ∈ A or x−1 ∈ A.

(b) By the inclusion preserving correspondence of ideals in A which contain p
(resp. are contained by p) and ideals in A/p (resp. Ap), we conclude by (a)
that A/p (resp. Ap) is a valuation ring.

2. Let A be a valuation ring with field of fractions K. Prove that every ring B with
A ⊂ B ⊂ K is a localisation of A at a prime ideal.

Solution: For every element x ∈ K we have x ∈ A or x−1 ∈ A, hence x ∈ B or
x−1 ∈ B, which proves that B is a valuation ring. Thus B has a unique maximal
ideal n. Then p := n ∩ A is a prime ideal of A. Every element a ∈ A r p is
invertible in B, hence Ap ⊂ B. Conversely, let x ∈ B. If x ∈ A, then x ∈ Ap.
Otherwise x−1 ∈ A ⊂ B. But then x−1 ∈ B× = B r n and thus x−1 ∈ A r p.
Hence x ∈ Ap. We conclude that Ap = B.

3. Let K be a field and consider the field K(X).

(a) Let P ∈ K[X] be irreducible. Construct a normalized discrete valuation
νP : K(X)∗ → Z such that its valuation ring is K[X](P ).

(b) Prove that τ : K(X)∗ → Z defined by τ(f
g
) = deg(g) − deg(f) is another

valuation.

(c) Prove that the valuations τ and νP for all irreducible polynomials P ∈ K[X]
are precisely all non-trivial valuations on K(X) which are trivial on K.
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Solution:

(a) For an element x ∈ K(X)∗ let f, g ∈ K[X] r {0} such that P does neither
divide f nor g and such that x = P n f

g
for some n ∈ Z. Then we set νP (x) :=

n. This is a well-defined map K(X)∗ → Z. It follows directly that it is
normalized. For x, y ∈ K(X)∗ let f, g, h, k ∈ K[X] r {0} such that x =
P νP (x) f

g
and y = P νP (y) h

k
. Assume without loss of generality that νP (y) >

νP (x). Then we see that νP (xy) = νP (x) + νP (y) and

x+ y = P νP (x)

(
fk + P νP (y)−νP (x)hg

gk

)
The denominator cannot be divisible by P , so we have νP (x+ y) > νP (x) =
min{νP (x), νP (y)}. Thus νP is a valuation. By definition it follows directly
that the valuation ring of νP is K[X](P ).

(b) Let ϕ : K(X)→ K(X) be the field isomorphism induced by ϕ(X) = ϕ(X−1).
Let νX be the valuation from (a) for P := X ∈ K[X]. We observe that
τ = νX ◦ ϕ. Hence τ is a valuation.

(c) Let ν be a nontrivial valuation of K(X) which is trivial on K. We want to
find its valuation ring A. It certainly contains K. Suppose first that X ∈ A,
so K[X] ⊂ A. Let m be the maximal ideal of A. Then m ∩ K[X] is a
prime ideal, which is non-zero, because otherwise K(X) ⊂ A, contrary to
the nontriviality of ν. Since K[X] is a principal ideal domain, there is an
irreducible polynomial P ∈ K[X] such that (P ) = m ∩K[X]. We conclude
that K[X](P ) ⊂ A. Conversely, by exercise 2, we know that A is a localisation
of K[X](P ) at a prime ideal, hence a localisation of K[X] at a prime ideal
contained in (P ). But the only such prime ideals are (0) and (P ), where the
former is not possible by the assumption A 6= K(X). Hence A = K[X](P ).
Since also ν(P ) = 1, we conclude that the valuation ν is the same as νP
defined in (a).

Suppose X 6∈ A. Then X−1 ∈ A, so K[X−1] ⊂ A. We use the automorphism
ϕ defined in the proof of (b) and see that K[X] ⊂ ϕ(A). We do the same
argument as before for ϕ(A) with the addition that P = X in this case,
because X−1 6∈ ϕ(A). We then find that νX = ν ◦ ϕ. Since ϕ is its own
inverse we conclude that ν = τ .

4. Prove that an algebraically closed field does not admit any non-trivial discrete
valuations.

Solution: Let ν be a valuation of an algebraically closed field k. Pick a ∈ k such
that ν(a) > 0. Then

√
a ∈ k, since k is algebraically closed and ν(

√
a) = 1

2
ν(a).

Doing this repeatedly, there are elements in k with arbitrary small valuations.
Hence the valuation cannot be discrete.
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5. Let a ∈ C. Let A be the ring of functions, which are holomorphic in some disc
centered at a. Prove that A is a discrete valuation ring and find a uniformizer.

Solution: By a shift we can assume without loss of generality that a = 0. Via
taylor series we can identify A with the ring C[[X]]. Its field of fractions is C((X)).
We know that a power series is invertible if and only if its constant term is non-
zero. Thus every non-zero element x ∈ C((X)) can be written as x = Xnf , where
f is an invertible element of C[[X]], for some n ∈ Z. We set ν(x) := n. One can
directly check that this defines a discrete valuation on C((X)) with valuation ring
C[[X]]. Furthermore, the element X is a uniformizer.

6. Describe the spectrum of a discrete valuation ring.

Solution: A discrete valuation ring A has only two prime ideals, namely the zero
ideal (0) and the maximal ideal m. We have that V (0) = spec(A) and V (m) = m
are the only closed subsets of spec(A). Hence ∅ and (0) are the only open subsets.
We conclude that spec(A) consists of two points, one of which is closed, but not
open and the other one is open, but not closed.
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