
D-MATH Commutative Algebra HS 2017
Prof. Paul Nelson

Solutions Sheet 2

Extensions and Contractions, Modules, Spectrum of a Ring

1. Consider rings A,B and a ring homomorphism ϕ : A → B. As in the lecture,
denote:

C := {ϕ∗(b) | b ⊂ B } ⊂ A

E := {ϕ∗(a) | a ⊂ A} ⊂ B

for the set of contracted ideals and extended ideals, respectively. Show that C is
closed under intersections, taking radicals and ideal quotients of ideals and E is
closed under sums and products of ideals. More precisely, show that:

(a) for all a, b ∈ C we have a ∩ b ∈ C, r(a) ∈ C and (a : b) ∈ C.

(b) for all a, b ∈ E we have a + b ∈ E and ab ∈ E.

Solution:

(a) Let c, d ⊂ B be two ideals. The identity ϕ∗(c ∩ d) = ϕ∗(c) ∩ ϕ∗(d) follows by
set theory and implies that the intersection of two contracted ideals is again
contracted.

Next, we show that ϕ∗(r(c)) = r(ϕ∗(c)). An element f ∈ A is in ϕ∗(r(c))
if and only if there is an integer n > 0 such that ϕ(f)n = ϕ(fn) ∈ c. This
is the case if and only if fn ∈ ϕ∗(c) for some n > 0 which is equivalent to
f ∈ r(ϕ∗(c)). This proves that the radical of a contracted ideal is again a
contracted ideal.

Finally, we show that ϕ∗((c : ϕ∗ϕ
∗(d))) = (ϕ∗(c) : ϕ∗(d)). Let f ∈ ϕ∗((c :

ϕ∗ϕ
∗(d))). Then ϕ(f)ϕ∗ϕ

∗(d) ⊂ c, so by the property ϕ∗ϕ∗ϕ
∗(d) = ϕ∗(d)

we conclude fϕ∗(d) ⊂ ϕ∗(c) and thus f ∈ (ϕ∗(c) : ϕ∗(d)). Conversely let
f ∈ (ϕ∗(c) : ϕ∗(d)). Then fϕ∗(d) ⊂ ϕ∗(c), which implies that ϕ(f)ϕ(ϕ∗(d)) ⊂
c. Since c is an ideal we conclude ϕ(f)ϕ∗(ϕ

∗(d)) ⊂ c. Hence f ∈ ϕ∗((c :
ϕ∗ϕ

∗(d))). This proves that the ideal quotient of contracted ideals is a con-
tracted ideal.

(b) Let c, d ⊂ A be ideals. We show that ϕ∗(c + d) = ϕ∗(c) + ϕ∗(d). We
have the inclusion ϕ(c + d) ⊂ ϕ∗(c) + ϕ∗(d). Since the right hand side is
an ideal we conclude that ϕ∗(c + d) ⊂ ϕ∗(c) + ϕ∗(d). Conversely we note
that ϕ∗(c + d) ⊃ ϕ(c + d) ⊃ ϕ(c) and since the left hand side is an ideal
also ϕ∗(c + d) ⊃ ϕ∗(c) and similarly ϕ∗(c + d) ⊃ ϕ∗(d). Since the sum
of two ideals is the smallest ideal containing both ideals, we conclude that
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ϕ∗(c+ d) ⊃ ϕ∗(c) +ϕ∗(d). This shows that the sum of two extended ideals is
again an extended ideal.

We show that ϕ∗(cd) = ϕ∗(c)ϕ∗(d). By definition of the product of ideals
we have ϕ(cd) ⊂ ϕ∗(c)ϕ∗(d) and thus ϕ∗(cd) ⊂ ϕ∗(c)ϕ∗(d). Conversely every
element in ϕ∗(c)ϕ∗(d) can be written as a finite sum of products ab with
a ∈ ϕ∗(c) and b ∈ ϕ∗(d). These elements can again be expressed as finite
linear combinations of elements in ϕ(c) and ϕ(d), respectively. Multiplying
all out and using that ϕ is a homomorphism we get a finite linear combination
of elements ϕ(cd) with c ∈ c and d ∈ d. Hence it is contained in ϕ∗(cd). This
proves that the product of extended ideals is an extended ideal.

2. Let A be a ring and a ⊂ A be an ideal that is contained in the Jacobson radical
of A. Let M,N be A-modules, where N is finitely generated, and let ϕ : M → N
be an A-module homomorphism. Consider the induced homomorphism

ϕa : M�aM →
N�aN

Prove that if ϕa is surjective, then ϕ is surjective.

Solution: We first show that a
(
N�ϕ(M)

)
= N�ϕ(M). Clearly, the left hand

side is contained in the right hand side. Conversely, let n ∈ N . Because ϕa is
surjective, there is an element m ∈ M such that ϕ(m) − n ∈ aN . Choose a ∈ a
and n′ ∈ N such that ϕ(m)− n = an′. Hence n+ an′ ∈ ϕ(M). We conclude that

[n] = [an′] = a[n′] in N�ϕ(M) and thus the equality a
(
N�ϕ(M)

)
= N�ϕ(M).

By the fact that a quotient module of a finitely generated module is still finitely

generated we can use Nakayama’s lemma to conclude that N�ϕ(M) = 0 and hence

ϕ is surjective.

3. Let k be a field and 0 → M0 → · · · → Mn → 0 be an exact sequence of finite
dimensional k-vector spaces and k-linear maps. Prove that

n∑
i=0

(−1)i dimk(Mi) = 0

Solution: Denote di for the map di : Mi →Mi+1, where we denote Mk = 0 for k >
n. The long exact sequence splits into short exact sequences 0→ ker(di)→Mi →
im(di)→ 0. By using the dimension formula for linear maps of finite dimensional
vector spaces and the fact ker(di+1) = im(di) we conclude that dimk(ker(di)) +
dimk(ker(di+1)) = dimk(Mi). Thus

n∑
i=0

(−1)i dimk(Mi) = dimk(ker(d0)) + (−1)n dimk(ker(dn+1)) = 0.
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4. Prove the 4-Lemma by diagram chasing: If the rows of the commutative diagram
of A-modules and A-module homomorphisms

M1
//

α
��

M2
//

β
��

M3
//

γ

��

M4

δ
��

M ′
1

//M ′
2

//M ′
3

//M ′
4

are exact, then the following holds:

(a) If α is surjective, and β and δ are injective, then γ is injective;

(b) if δ is injective, and α and γ are surjective, then β is surjective.

Solution: We will denote di : Mi →Mi+1 and d′i : M ′
i →M ′

i+1.

(a) Let m3 ∈ M3 with γ(m3) = 0. By commutativity of the right square and
injectivity of δ we conclude that d3(m3) = 0. Thus there is an element
m2 ∈ M2 such that d2(m2) = m3. Consider the element β(m2). We have
d′2(β(m2)) = γ(m3) = 0. We conclude that there is an element m′1 ∈M ′

1 such
that d′1(m

′
1) = β(m2). Since α is surjective, there is an element m1 ∈M1 such

that α(m1) = m′1. By injectivity of β and using β(d1(m1)) = d′1(α(m1)) =
β(m2) we conclude that d1(m1) = m2. Hence m3 = d2(m2) = d2(d1(m1)) = 0.
This proves that γ is injective.

(b) Let m′2 ∈ M ′
2 and look at d′2(m

′
2). Since γ is surjective there is an element

m3 ∈ M3 such that γ(m3) = d′2(m
′
2). We have δ(d3(m3)) = d′3(γ(m3)) =

d′3(d
′
2(m

′
2)) = 0. Since δ is injective this implies that d3(m3) = 0. Thus

there is an element m2 ∈ M2 such that d2(m2) = m3. By commutativity of
the middle square we conclude that d′2(β(m2) −m′2) = 0. Hence there is an
element a′ ∈ M ′

1 such that d′1(a
′) = β(m2) − m′2. Since α is surjective we

can lift this to an element a ∈ M1 such that α(a) = a′. Finally we conclude
that β(m2 − d1(a)) = d′1(a

′) + m′2 − d′1(α(a)) = m′2, which proves that β is
surjective.
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5. Prove the 3× 3-lemma: If

0

��

0

��

0

��
0 //M ′

1
//

��

M ′
2

//

��

M ′
3

//

��

0

0 //M1
//

��

M2
//

��

M3
//

��

0

0 //M ′′
1

//

��

M ′′
2

//

��

M ′′
3

//

��

0

0 0 0

is a commutative diagram of A-modules and A-module homomorphisms, and all
columns and the middle row are exact, then the top row is exact if and only if the
bottom row is exact.

Solution: This follows directly from the snake lemma: if the bottom row is exact,
look at the morphisms Mi → M ′′

i and use the snake lemma. If the top row is
exact, use the snake lemma for the morphisms M ′

i →Mi.

6. In this exercise, we generalize the notion of an affine variety introduced in the
lecture. Let A be a ring. We denote by spec(A) the set of all prime ideals of A.
For a subset S ⊂ A define

V (S) := {p ∈ spec(A) | S ⊂ p}

Show that:

(a) If a ⊂ A is the ideal generated by S, then V (S) = V (a) = V (r(a)).

(b) V (0) = spec(A) and V (1) = ∅.

(c) For a family of subsets (Si)i∈I ⊂ A we have V (
⋃
i∈I Si) =

⋂
i∈I V (Si).

(d) For finitely many ideals a1, . . . , an ⊂ A we have V (
⋂n
i=1 ai) =

⋃n
i=1 V (ai).

This shows that the subsets (V (S))S⊂A form the closed sets of a topology on
spec(A), called Zariski topology. We call the topological space spec(A) the (prime)
spectrum of A.

Solution:

(a) Every prime ideal that containes S also contains a and vice versa. Thus
V (S) = V (a). The radical of a is the intersection of all prime ideals containing
a. Thus every prime ideal that contains a contains r(a) and the converse is
clear. Hence V (a) = V (r(a)).
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(b) Every prime ideal contains the zero ideal and no prime ideal contains the unit
ideal, hence V (0) = spec(A) and V (1) = ∅.

(c) This follows by set theory.

(d) We use a proposition from the lecture. If a prime ideal p contains
⋂n
i=1 ai, then

it contains one of the ai by the proposition. Thus V (
⋂n
i=1 ai) ⊂

⋃n
i=1 V (ai).

The converse is true by set theory.
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