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EXTENSIONS AND CONTRACTIONS, MODULES, SPECTRUM OF A RING

1. Consider rings A, B and a ring homomorphism ¢ : A — B. As in the lecture,
denote:

C:={¢*(b) |[bCcB}CA
E:={p.(a) |laCc A} CB

for the set of contracted ideals and extended ideals, respectively. Show that C' is
closed under intersections, taking radicals and ideal quotients of ideals and F is
closed under sums and products of ideals. More precisely, show that:

(a) for all a,b € C we haveanb e C, r(a) € C and (a:b) € C.

(b) for all a,b € £ we have a+b € F and ab € E.

Solution:

(a) Let ¢, C B be two ideals. The identity ¢*(¢Nd) = ¢*(¢) N *(d) follows by

set theory and implies that the intersection of two contracted ideals is again
contracted.

Next, we show that ¢*(r(c)) = r(¢*(c)). An element f € A is in ¢*(r(c))
if and only if there is an integer n > 0 such that ¢(f)" = ¢(f™) € ¢. This
is the case if and only if f* € ¢*(¢) for some n > 0 which is equivalent to
f € r(p*(c)). This proves that the radical of a contracted ideal is again a
contracted ideal.

Finally, we show that ¢*((c : p.0*(0))) = (¢*(c) : ¢*(0)). Let f € o*((c:
@«*(0))). Then p(f)p.p*(d) C ¢, so by the property ¢*p.p*(d) = *(?)
we conclude fp*(d) C ¢*(¢) and thus f € (¢*(¢) : ¢*(9)). Conversely let
f e (¢*(c) : ¢*(d)). Then f*(d) C ¢*(¢), which implies that ¢(f)e(¢*()) C
¢. Since ¢ is an ideal we conclude ¢(f)p.(¢*(9)) C ¢. Hence f € ¢*((c :
©«*(0))). This proves that the ideal quotient of contracted ideals is a con-
tracted ideal.

Let ¢,0 C A be ideals. We show that p.(c +0) = @.(c) + ¢.(0). We
have the inclusion ¢(c 4+ 0) C @.(c) + ¢.(0). Since the right hand side is
an ideal we conclude that ¢.(c + ) C p.(c) + v (0). Conversely we note
that @.(c +0) D p(c +9) D ¢(c) and since the left hand side is an ideal
also p.(c +0) D @.(c) and similarly @.(c +0) D ¢.(0). Since the sum
of two ideals is the smallest ideal containing both ideals, we conclude that



©u(c+0) D @i(c) + . (0). This shows that the sum of two extended ideals is
again an extended ideal.

We show that ¢.(cd) = p.(c)@«(0). By definition of the product of ideals
we have ¢(cd) C p.(c)p«(9) and thus ¢, (cd) C p.(c)p. (D). Conversely every
element in ¢,(¢)p.(d) can be written as a finite sum of products ab with
a € p.(c) and b € (D). These elements can again be expressed as finite
linear combinations of elements in (¢) and ¢(0), respectively. Multiplying
all out and using that ¢ is a homomorphism we get a finite linear combination
of elements p(cd) with ¢ € ¢ and d € 9. Hence it is contained in ¢, (¢d). This
proves that the product of extended ideals is an extended ideal.

2. Let A be a ring and a C A be an ideal that is contained in the Jacobson radical
of A. Let M, N be A-modules, where N is finitely generated, and let ¢ : M — N
be an A-module homomorphism. Consider the induced homomorphism

Spa:M/aM%N/aN
Prove that if ¢, is surjective, then ¢ is surjective.

S N _ N
Solution: We first show that a( /QD(M)> = /<P(M)' Clearly, the left hand
side is contained in the right hand side. Conversely, let n € N. Because ¢, is
surjective, there is an element m € M such that ¢(m) —n € aN. Choose a € a
and n’ € N such that ¢(m) —n = an’. Hence n + an’ € o(M). We conclude that
_ n _ nin N : N _ N
[n] = [an'] = a[n/] in /QD(M) and thus the equality a( /SO(M)> = /QO(M)'
By the fact that a quotient module of a finitely generated module is still finitely
generated we can use Nakayama’s lemma to conclude that N /90 (M) = 0 and hence

© 1s surjective.

3. Let k be a field and 0 — My — --- — M, — 0 be an exact sequence of finite
dimensional k-vector spaces and k-linear maps. Prove that

n

> (=1)" dimy (M) = 0

=0

Solution: Denote d; for the map d; : M; — M;,,, where we denote M = 0 for k >
n. The long exact sequence splits into short exact sequences 0 — ker(d;) — M; —
im(d;) — 0. By using the dimension formula for linear maps of finite dimensional
vector spaces and the fact ker(d;;1) = im(d;) we conclude that dimy(ker(d;)) +
dimy (ker(d;11)) = dimg(M;). Thus

n

> (—1) dimy(M;) = dimy(ker(dp)) + (—1)" dimy (ker(d,11)) = 0.

1=0



4. Prove the 4-Lemma by diagram chasing: If the rows of the commutative diagram
of A-modules and A-module homomorphisms

M,y M, M; M,

ol b

M M My My

are exact, then the following holds:

()
(b)

If « is surjective, and S and ¢ are injective, then ~ is injective;

if § is injective, and « and ~ are surjective, then [ is surjective.

Solution: We will denote d; : M; — M,y and d : M — M.

(a)

Let mg € Ms with y(ms3) = 0. By commutativity of the right square and
injectivity of 0 we conclude that ds3(mg) = 0. Thus there is an element
my € My such that ds(ms) = mg. Consider the element f(msy). We have
dy(B(m2)) = v(m3) = 0. We conclude that there is an element m/ € M such
that d}(m)) = f(ms2). Since « is surjective, there is an element m; € M; such
that a(my) = m). By injectivity of 5 and using £(d;(mq)) = dj(a(my)) =
B(mg) we conclude that dy(m;) = mg. Hence mg = da(ms) = da(dy(my)) = 0.
This proves that ~ is injective.

Let mj € M) and look at dy(mj). Since v is surjective there is an element
ms € Mj such that y(ms) = dy(m)). We have §(ds(ms)) = dy(y(ms)) =
dy(dy(m4)) = 0. Since ¢ is injective this implies that d3(ms) = 0. Thus
there is an element my € My such that dy(ms) = mg. By commutativity of
the middle square we conclude that dj(8(mg) — mb) = 0. Hence there is an
element a’ € M| such that d|(a’) = S(mg) — mj. Since « is surjective we
can lift this to an element a € M; such that a(a) = @’. Finally we conclude
that B(mg — di(a)) = dj(a’) + m,y — dj(a(a)) = m), which proves that g is
surjective.



5. Prove the 3 x 3-lemma: If

is a commutative diagram of A-modules and A-module homomorphisms, and all
columns and the middle row are exact, then the top row is exact if and only if the
bottom row is exact.

Solution: This follows directly from the snake lemma: if the bottom row is exact,
look at the morphisms M; — M/ and use the snake lemma. If the top row is
exact, use the snake lemma for the morphisms M/ — M.

6. In this exercise, we generalize the notion of an affine variety introduced in the
lecture. Let A be a ring. We denote by spec(A) the set of all prime ideals of A.
For a subset S C A define

V(S):={p €spec(A) | SCp}
Show that:

(a) If a C A is the ideal generated by S, then V(S) =V (a) = V(r(a)).

(b) V(0) =spec(A) and V(1) =

(c) For a family of subsets (Sz)zel C A we have V(U,c; Si) = Nier V(S5).

(d) For finitely many ideals ay,...,a, C A we have V((_, a;) = U, V().
This shows that the subsets (V(S5))sca form the closed sets of a topology on

spec(A), called Zariski topology. We call the topological space spec(A) the (prime)
spectrum of A.

Solution:

(a) Every prime ideal that containes S also contains a and vice versa. Thus
V(S) = V(a). The radical of a is the intersection of all prime ideals containing
a. Thus every prime ideal that contains a contains r(a) and the converse is

clear. Hence V(a) = V(r(a)).



(b) Every prime ideal contains the zero ideal and no prime ideal contains the unit
ideal, hence V(0) = spec(A) and V(1) = @.

(c) This follows by set theory.

(d) We use a proposition from the lecture. If a prime ideal p contains (), a;, then
it contains one of the a; by the proposition. Thus V((_, a;) C U, V().
The converse is true by set theory.



