Commutative Algebra

Solutions Sheet 2

EXTENSIONS AND CONTRACTIONS, MODULES, SPECTRUM OF A RING

1. Consider rings A, B and a ring homomorphism $\varphi : A \to B$. As in the lecture, denote:

$$C := \{ \varphi^*(\mathfrak{b}) \mid \mathfrak{b} \subset B \} \subset A$$
$$E := \{ \varphi_*(\mathfrak{a}) \mid \mathfrak{a} \subset A \} \subset B$$

for the set of contracted ideals and extended ideals, respectively. Show that C is closed under intersections, taking radicals and ideal quotients of ideals and E is closed under sums and products of ideals. More precisely, show that:

- (a) for all $\mathfrak{a}, \mathfrak{b} \in C$ we have $\mathfrak{a} \cap \mathfrak{b} \in C$, $r(\mathfrak{a}) \in C$ and $(\mathfrak{a} : \mathfrak{b}) \in C$.
- (b) for all $\mathfrak{a}, \mathfrak{b} \in E$ we have $\mathfrak{a} + \mathfrak{b} \in E$ and $\mathfrak{a}\mathfrak{b} \in E$.

Solution:

(a) Let $\mathfrak{c}, \mathfrak{d} \subset B$ be two ideals. The identity $\varphi^*(\mathfrak{c} \cap \mathfrak{d}) = \varphi^*(\mathfrak{c}) \cap \varphi^*(\mathfrak{d})$ follows by set theory and implies that the intersection of two contracted ideals is again contracted.

Next, we show that $\varphi^*(r(\mathfrak{c})) = r(\varphi^*(\mathfrak{c}))$. An element $f \in A$ is in $\varphi^*(r(\mathfrak{c}))$ if and only if there is an integer n > 0 such that $\varphi(f)^n = \varphi(f^n) \in \mathfrak{c}$. This is the case if and only if $f^n \in \varphi^*(\mathfrak{c})$ for some n > 0 which is equivalent to $f \in r(\varphi^*(\mathfrak{c}))$. This proves that the radical of a contracted ideal is again a contracted ideal.

Finally, we show that $\varphi^*((\mathfrak{c}:\varphi_*\varphi^*(\mathfrak{d}))) = (\varphi^*(\mathfrak{c}):\varphi^*(\mathfrak{d}))$. Let $f \in \varphi^*((\mathfrak{c}:\varphi_*\varphi^*(\mathfrak{d})))$. Then $\varphi(f)\varphi_*\varphi^*(\mathfrak{d}) \subset \mathfrak{c}$, so by the property $\varphi^*\varphi_*\varphi^*(\mathfrak{d}) = \varphi^*(\mathfrak{d})$ we conclude $f\varphi^*(\mathfrak{d}) \subset \varphi^*(\mathfrak{c})$ and thus $f \in (\varphi^*(\mathfrak{c}):\varphi^*(\mathfrak{d}))$. Conversely let $f \in (\varphi^*(\mathfrak{c}):\varphi^*(\mathfrak{d}))$. Then $f\varphi^*(\mathfrak{d}) \subset \varphi^*(\mathfrak{c})$, which implies that $\varphi(f)\varphi(\varphi^*(\mathfrak{d})) \subset \mathfrak{c}$. Since \mathfrak{c} is an ideal we conclude $\varphi(f)\varphi_*(\varphi^*(\mathfrak{d})) \subset \mathfrak{c}$. Hence $f \in \varphi^*((\mathfrak{c}:\varphi_*\varphi^*(\mathfrak{d})))$. This proves that the ideal quotient of contracted ideals is a contracted ideal.

(b) Let $\mathfrak{c}, \mathfrak{d} \subset A$ be ideals. We show that $\varphi_*(\mathfrak{c} + \mathfrak{d}) = \varphi_*(\mathfrak{c}) + \varphi_*(\mathfrak{d})$. We have the inclusion $\varphi(\mathfrak{c} + \mathfrak{d}) \subset \varphi_*(\mathfrak{c}) + \varphi_*(\mathfrak{d})$. Since the right hand side is an ideal we conclude that $\varphi_*(\mathfrak{c} + \mathfrak{d}) \subset \varphi_*(\mathfrak{c}) + \varphi_*(\mathfrak{d})$. Conversely we note that $\varphi_*(\mathfrak{c} + \mathfrak{d}) \supset \varphi(\mathfrak{c} + \mathfrak{d}) \supset \varphi(\mathfrak{c})$ and since the left hand side is an ideal also $\varphi_*(\mathfrak{c} + \mathfrak{d}) \supset \varphi_*(\mathfrak{c})$ and similarly $\varphi_*(\mathfrak{c} + \mathfrak{d}) \supset \varphi_*(\mathfrak{d})$. Since the sum of two ideals is the smallest ideal containing both ideals, we conclude that

 $\varphi_*(\mathfrak{c} + \mathfrak{d}) \supset \varphi_*(\mathfrak{c}) + \varphi_*(\mathfrak{d})$. This shows that the sum of two extended ideals is again an extended ideal.

We show that $\varphi_*(\mathfrak{cd}) = \varphi_*(\mathfrak{c})\varphi_*(\mathfrak{d})$. By definition of the product of ideals we have $\varphi(\mathfrak{cd}) \subset \varphi_*(\mathfrak{c})\varphi_*(\mathfrak{d})$ and thus $\varphi_*(\mathfrak{cd}) \subset \varphi_*(\mathfrak{c})\varphi_*(\mathfrak{d})$. Conversely every element in $\varphi_*(\mathfrak{c})\varphi_*(\mathfrak{d})$ can be written as a finite sum of products ab with $a \in \varphi_*(\mathfrak{c})$ and $b \in \varphi_*(\mathfrak{d})$. These elements can again be expressed as finite linear combinations of elements in $\varphi(\mathfrak{c})$ and $\varphi(\mathfrak{d})$, respectively. Multiplying all out and using that φ is a homomorphism we get a finite linear combination of elements $\varphi(cd)$ with $c \in \mathfrak{c}$ and $d \in \mathfrak{d}$. Hence it is contained in $\varphi_*(\mathfrak{cd})$. This proves that the product of extended ideals is an extended ideal.

2. Let A be a ring and $\mathfrak{a} \subset A$ be an ideal that is contained in the Jacobson radical of A. Let M, N be A-modules, where N is finitely generated, and let $\varphi : M \to N$ be an A-module homomorphism. Consider the induced homomorphism

$$\varphi_{\mathfrak{a}}: M/_{\mathfrak{a}M} \to N/_{\mathfrak{a}N}$$

Prove that if $\varphi_{\mathfrak{a}}$ is surjective, then φ is surjective.

Solution: We first show that $\mathfrak{a}\left(N_{\varphi(M)}\right) = N_{\varphi(M)}$. Clearly, the left hand side is contained in the right hand side. Conversely, let $n \in N$. Because $\varphi_{\mathfrak{a}}$ is surjective, there is an element $m \in M$ such that $\varphi(m) - n \in \mathfrak{a}N$. Choose $a \in \mathfrak{a}$ and $n' \in N$ such that $\varphi(m) - n = an'$. Hence $n + an' \in \varphi(M)$. We conclude that [n] = [an'] = a[n'] in $N_{\varphi(M)}$ and thus the equality $\mathfrak{a}\left(N_{\varphi(M)}\right) = N_{\varphi(M)}$. By the fact that a quotient module of a finitely generated module is still finitely generated we can use Nakayama's lemma to conclude that $N_{\varphi(M)} = 0$ and hence φ is surjective.

3. Let k be a field and $0 \to M_0 \to \cdots \to M_n \to 0$ be an exact sequence of finite dimensional k-vector spaces and k-linear maps. Prove that

$$\sum_{i=0}^{n} (-1)^{i} \dim_{k}(M_{i}) = 0$$

Solution: Denote d_i for the map $d_i : M_i \to M_{i+1}$, where we denote $M_k = 0$ for k > n. The long exact sequence splits into short exact sequences $0 \to \ker(d_i) \to M_i \to \operatorname{im}(d_i) \to 0$. By using the dimension formula for linear maps of finite dimensional vector spaces and the fact $\ker(d_{i+1}) = \operatorname{im}(d_i)$ we conclude that $\dim_k(\ker(d_i)) + \dim_k(\ker(d_{i+1})) = \dim_k(M_i)$. Thus

$$\sum_{k=0}^{n} (-1)^{i} \dim_{k}(M_{i}) = \dim_{k}(\ker(d_{0})) + (-1)^{n} \dim_{k}(\ker(d_{n+1})) = 0$$

4. Prove the 4-Lemma by diagram chasing: If the rows of the commutative diagram of A-modules and A-module homomorphisms

are exact, then the following holds:

- (a) If α is surjective, and β and δ are injective, then γ is injective;
- (b) if δ is injective, and α and γ are surjective, then β is surjective.

Solution: We will denote $d_i: M_i \to M_{i+1}$ and $d'_i: M'_i \to M'_{i+1}$.

- (a) Let $m_3 \in M_3$ with $\gamma(m_3) = 0$. By commutativity of the right square and injectivity of δ we conclude that $d_3(m_3) = 0$. Thus there is an element $m_2 \in M_2$ such that $d_2(m_2) = m_3$. Consider the element $\beta(m_2)$. We have $d'_2(\beta(m_2)) = \gamma(m_3) = 0$. We conclude that there is an element $m'_1 \in M'_1$ such that $d'_1(m'_1) = \beta(m_2)$. Since α is surjective, there is an element $m_1 \in M_1$ such that $\alpha(m_1) = m'_1$. By injectivity of β and using $\beta(d_1(m_1)) = d'_1(\alpha(m_1)) =$ $\beta(m_2)$ we conclude that $d_1(m_1) = m_2$. Hence $m_3 = d_2(m_2) = d_2(d_1(m_1)) = 0$. This proves that γ is injective.
- (b) Let $m'_2 \in M'_2$ and look at $d'_2(m'_2)$. Since γ is surjective there is an element $m_3 \in M_3$ such that $\gamma(m_3) = d'_2(m'_2)$. We have $\delta(d_3(m_3)) = d'_3(\gamma(m_3)) = d'_3(d'_2(m'_2)) = 0$. Since δ is injective this implies that $d_3(m_3) = 0$. Thus there is an element $m_2 \in M_2$ such that $d_2(m_2) = m_3$. By commutativity of the middle square we conclude that $d'_2(\beta(m_2) m'_2) = 0$. Hence there is an element $a' \in M'_1$ such that $d'_1(a') = \beta(m_2) m'_2$. Since α is surjective we can lift this to an element $a \in M_1$ such that $\alpha(a) = a'$. Finally we conclude that $\beta(m_2 d_1(a)) = d'_1(a') + m'_2 d'_1(\alpha(a)) = m'_2$, which proves that β is surjective.

5. Prove the 3×3 -lemma: If

is a commutative diagram of A-modules and A-module homomorphisms, and all columns and the middle row are exact, then the top row is exact if and only if the bottom row is exact.

Solution: This follows directly from the snake lemma: if the bottom row is exact, look at the morphisms $M_i \to M''_i$ and use the snake lemma. If the top row is exact, use the snake lemma for the morphisms $M'_i \to M_i$.

6. In this exercise, we generalize the notion of an affine variety introduced in the lecture. Let A be a ring. We denote by $\operatorname{spec}(A)$ the set of all prime ideals of A. For a subset $S \subset A$ define

$$V(S) := \{ \mathfrak{p} \in \operatorname{spec}(A) \mid S \subset \mathfrak{p} \}$$

Show that:

- (a) If $\mathfrak{a} \subset A$ is the ideal generated by S, then $V(S) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
- (b) $V(0) = \operatorname{spec}(A)$ and $V(1) = \emptyset$.
- (c) For a family of subsets $(S_i)_{i \in I} \subset A$ we have $V(\bigcup_{i \in I} S_i) = \bigcap_{i \in I} V(S_i)$.
- (d) For finitely many ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \subset A$ we have $V(\bigcap_{i=1}^n \mathfrak{a}_i) = \bigcup_{i=1}^n V(\mathfrak{a}_i)$.

This shows that the subsets $(V(S))_{S \subset A}$ form the closed sets of a topology on $\operatorname{spec}(A)$, called Zariski topology. We call the topological space $\operatorname{spec}(A)$ the *(prime)* spectrum of A.

Solution:

(a) Every prime ideal that containes S also contains a and vice versa. Thus V(S) = V(a). The radical of a is the intersection of all prime ideals containing a. Thus every prime ideal that contains a contains r(a) and the converse is clear. Hence V(a) = V(r(a)).

- (b) Every prime ideal contains the zero ideal and no prime ideal contains the unit ideal, hence $V(0) = \operatorname{spec}(A)$ and $V(1) = \emptyset$.
- (c) This follows by set theory.
- (d) We use a proposition from the lecture. If a prime ideal \mathfrak{p} contains $\bigcap_{i=1}^{n} \mathfrak{a}_i$, then it contains one of the \mathfrak{a}_i by the proposition. Thus $V(\bigcap_{i=1}^{n} \mathfrak{a}_i) \subset \bigcup_{i=1}^{n} V(\mathfrak{a}_i)$. The converse is true by set theory.