
D-MATH Commutative Algebra HS 2017
Prof. Paul Nelson

Solutions Sheet 3

Tensor Product, Modules, Spectrum of a Ring

1. Let A be a local ring and M,N two finitely generated A-modules. Prove that
M ⊗A N = 0 implies M = 0 or N = 0. Give an example of modules over a
non-local ring which do not have this property.

Solution: Denote by m the maximal ideal of A and by k := A/mA the residue field.
Assume that M ⊗AN = 0. Naturally M/mM and N/mN are not only A-modules
but also k-vector spaces. First we prove that (M/mM) ⊗k (N/mN) = 0. Look
at the surjective map M � M/mM . By right exactness of the tensor product
we conclude that M ⊗A N � M/mM ⊗A N is surjective. Similarly we find that
(M/mM) ⊗A N � (M/mM) ⊗A (N/mN) is surjective. Hence the composite
map is surjective, which proves that (M/mM) ⊗A (N/mN) = 0. We note that
the tensor map (M/mM) × (N/mN) → (M/mM) ⊗k (N/mN) is k-bilinear and
thus in particular A-bilinear. Hence it factors through (M/mM) ⊗A (N/mN)
by the universal property. We conclude that the tensor map is zero and thus
(M/mM) ⊗k (N/mN) = 0. Now by the dimension formula of tensor products of
vector spaces (or by considering an explicit basis) we conclude that M/mM = 0
or N/mN = 0 and thus M = mM or N = mN . By Nakayama’s Lemma it follows
that M = 0 or N = 0.

An example where this is not true over a non-local ring is Z/2Z ⊗Z Z/3Z = 0.
This is zero because for every elementary tensor a⊗ b we have a⊗ b = (3a)⊗ b =
a⊗ (3b) = a⊗ 0 = 0.

2. Let A be a ring. Prove the following:

(a) If M and N are flat A-modules, then so is M ⊗A N .

(b) If B is a flat A-algebra and M a flat B-module, then M is flat as an A-module.

Solution:

(a) Let L ↪→ L′ be an injective homomorphism of A-modules. Since M and N are
flat and using a proposition from the lecture we conclude that the induced
homomorphism L ⊗A M → L′ ⊗A M is injective. Using this proposition
again we conclude that (L ⊗A M) ⊗A N → (L′ ⊗A M) ⊗A N is injective.
By associativity of the tensor product we conclude that L ⊗A (M ⊗A N) →
L′⊗A(M⊗AN) is injective and hence M⊗AN is flat, by using the proposition
again.
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(b) Let L ↪→ L′ be an injective homomorphism of A-modules. We use the A-
isomorphism (L ⊗A B) ⊗B M ∼= L ⊗A M given by ` ⊗ b ⊗ m 7→ ` ⊗ (bm)
and the analogue for L′. That this is indeed well-defined can be checked
using the universal property of the tensor product in the following way: for
every element m ∈ M we have an A-bilinear map L × B → L ⊗A M given
by (l, b) 7→ l ⊗ (bm). Hence it factors through the tensor product L ⊗A B.
Varying m ∈ M we get a homomorphism (L ⊗A B) ×M → L ⊗A M which
is not only A-bilinear, but also B-bilinear. It thus factors through the tensor
product (L ⊗A B) ⊗B M . Conversely the map L ×M → (L ⊗A B) ⊗B M
given by (l,m) 7→ (l⊗1)⊗m is A-bilinear and thus factors through the tensor
product L ⊗A M . It is not hard to see that this provides an inverse for the
mentioned map and thus we have an isomorphism.

We get a commutative diagram

L⊗AM //

∼=
��

L′ ⊗AM
∼=
��

(L⊗A B)⊗B M // (L′ ⊗A B)⊗B M

The A-homomorphism at the bottom is injective because of the flatness of B
as an A-module and the flatness of M as a B-module. Hence the upper A-
homomorphism is injective. By the proposition from the lecture this implies
that M is flat as an A-module.

3. Let A be a ring. Consider a short exact sequence of A-modules and homomor-
phisms 0→M ′ →M →M ′′ → 0. Prove that if M ′ and M ′′ are finitely generated,
then so is M .

Solution: Let m′1, . . . ,m
′
r ∈ M ′ and n′′1, . . . , n

′′
s ∈ M ′′ be generators of the respec-

tive A-modules. Denote by m1, . . . ,mr ∈ M the images of m′1, . . . ,m
′
r in M and

by n1, . . . , ns ∈ M lifts of n′′1, . . . , n
′′
s in M . We claim that m1, . . . ,mr, n1, . . . , ns

generate M . Let a ∈ M . By assumption its image a′′ ∈ M ′′ can be written as∑s
i=1 αin

′′
i for some coefficients α1, . . . , αs ∈ A. But then a −

∑s
i=1 αini is in the

kernel of the map M → M ′′ and thus is the image of an element b ∈ M ′. By
assumption b =

∑r
j=1 βjm

′
j for some coefficients β1, . . . , βr ∈ A. We conclude that

a =
∑s

i=1 αini +
∑r

j=1 βjmj. This proves the claim.

4. Let A be a ring. Prove that for any three A-modules M1,M2,M and homo-

morphisms M1
f−→ M

g←− M2 there exists an A-module P and homomorphisms
M1

π1←− P
π2−→M2 such that the diagram

P
π2 //

π1
��

M2

g

��
M1

f //M
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commutes and with the following universal property: for any A-module N and
homomorphisms M1

u←− N
v−→ M2 such that f ◦ u = g ◦ v there exists a unique

homomorphism h : N → P making the whole diagram commute:

N

u

��

v

$$
h
!!
P

π1
��

π2
//M2

g

��
M1

f //M

Finally, show that P is unique up to a unique isomorphism.

[Hint: Look at a submodule of M1 ×M2.]

Solution: We define P := {(m1,m2) ∈M1 ⊕M2 | f(m1) = g(m2)}. Since it is the
kernel of the homomorphism M1 ⊕M2 →M given by (m1,m2) 7→ f(m1)− g(m2)
it is an A-module. We define π1 : P → M1 and π2 : P → M2 to be the respective
projections of M1 ⊕M2 restricted to P . By the very definition of P the diagram

P
π2 //

π1
��

M2

g

��
M1

f //M

commutes. We show that (P, π1, π2) satisfies the required universal property. Let
N be an A-module and let u : N → M1 and v : N → M2 be homomorphisms
such that f ◦ u = g ◦ v. We construct a homomorphism h : N → P by h(n) :=
(u(n), v(n)). By the requirement f ◦ u = g ◦ v this is indeed well-defined. And it
is a homomorphism, since u and v are homomorphisms. Furthermore, we see that
the diagram

N

u

��

v

$$
h
!!
P

π1
��

π2
//M2

g

��
M1

f //M

commutes. The uniqueness of h follows directly from the construction. Now let
(P ′, π′1, π

′
2) be another module with the same universal property. Then by the

universal property of P we have a unique homomorphism h : P ′ → P such that

3



the diagram
P ′

π′
1

��

π′
2

$$
h

!!
P

π1
��

π2
//M2

g

��
M1

f //M

commutes. Using the universal property for P ′ we analogously get a homomor-
phism h′ : P → P ′. Composing those homomorphisms we get a homomorphism
h′ ◦ h : P → P such that the diagram

P

π1

��

π2

$$
h′◦h

  
P

π1
��

π2
//M2

g

��
M1

f //M

commutes. By the uniqueness statement of the universal property of P we conclude
that h′ ◦ h is the identity. Hence h is a unique isomorphism.

5. Let A be a ring. Recall the definition of the prime spectrum of a ring from exercise
sheet 2. For every element f ∈ A denote D(f) for the open complement of V ((f))
in spec(A). Show that these sets form a basis of open sets for the Zariski topology
on spec(A). Furthermore, prove:

(a) ∀f, g ∈ A we have D(f) ∩D(g) = D(fg)

(b) D(f) = ∅ if and only if f is nilpotent

(c) D(f) = spec(A) if and only if f is a unit

(d) spec(A) is quasicompact

These open sets are called basic open sets of spec(A).

Solution: By definition we can write D(f) = {p ∈ spec(A) | f 6∈ p} for f ∈ A.
We need to show that the basic open sets cover spec(A) and that for every two
basic open sets B1, B2 and every point x ∈ B1 ∩ B2 there is a basic open set B3

such that x ∈ B3 ⊂ B1∩B2. The first property is true because of D(1) = spec(A).
For the second one let D(f), D(g) with f, g ∈ A be basic open sets. By (a) below
we have D(f) ∩D(g) = D(fg) and thus the second property of being a basis for
the topology is also satisfied. Hence the basic open sets form indeed a basis for
the topology.
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(a) For every prime ideal p ⊂ A we have fg 6∈ p if and only if f 6∈ p and g 6∈ p.
Thus the equality.

(b) Since the nilradical is the intersection of all prime ideals, every prime ideal
contains all nilpotent elements. Thus D(f) = ∅ for all nilpotent elements
f ∈ A.

(c) By definition a prime ideal cannot contain a unit, hence D(f) = spec(A) for
every unit f ∈ A.

(d) Since the basic open sets form a basis of the topology it is enough to con-
sider covers by basic open sets. Let (fi)i∈I ∈ A be elements such that⋃
i∈I D(fi) = spec(A). By taking the complement and using de Morgans

law we get
⋂
i∈I V ((fi)) = ∅. By exercise sheet 2, exercise 6(c) and 6(a) we

conclude that V (
∑

i∈I(fi)) = ∅. Hence the ideal
∑

i∈I(fi) must contain 1.
Thus there is a finite subset J ⊂ I such that

∑
j∈J(fj) contains 1. But then

by the above argument in reverse, we have
⋃
j∈J D(fj) = spec(A). Hence the

finite subcover already covers spec(A).
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