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Prof. Paul Nelson .
Solutions Sheet 3

TENSOR PrODUCT, MODULES, SPECTRUM OF A RING

1. Let A be a local ring and M, N two finitely generated A-modules. Prove that
M ®4 N = 0 implies M = 0 or N = 0. Give an example of modules over a
non-local ring which do not have this property.

Solution: Denote by m the maximal ideal of A and by k := A/mA the residue field.
Assume that M ® 4 N = 0. Naturally M/mM and N/mN are not only A-modules
but also k-vector spaces. First we prove that (M/mM) ®; (N/mN) = 0. Look
at the surjective map M — M/mM. By right exactness of the tensor product
we conclude that M ® 4 N — M/mM ®4 N is surjective. Similarly we find that
(M/mM) @4 N — (M/mM) @4 (N/mN) is surjective. Hence the composite
map is surjective, which proves that (M/mM) ®4 (N/mN) = 0. We note that
the tensor map (M/mM) x (N/mN) — (M/mM) ®; (N/mN) is k-bilinear and
thus in particular A-bilinear. Hence it factors through (M/mM) ®4 (N/mN)
by the universal property. We conclude that the tensor map is zero and thus
(M/mM) ®; (N/mN) = 0. Now by the dimension formula of tensor products of
vector spaces (or by considering an explicit basis) we conclude that M/mM = 0
or N/mN = 0 and thus M = mM or N = mN. By Nakayama’s Lemma it follows
that M =0 or N =0.

An example where this is not true over a non-local ring is Z/27 ®gz 7/3Z = 0.
This is zero because for every elementary tensor a ® b we have a ® b = (3a) ® b =
a® (3b) =a®0=0.

2. Let A be a ring. Prove the following:

(a) If M and N are flat A-modules, then so is M ®4 N.
(b) If Bis a flat A-algebra and M a flat B-module, then M is flat as an A-module.

Solution:

(a) Let L < L' be an injective homomorphism of A-modules. Since M and N are
flat and using a proposition from the lecture we conclude that the induced
homomorphism L ®4 M — L' ® 4 M is injective. Using this proposition
again we conclude that (L ®4 M) @4 N — (L' ®4 M) ®4 N is injective.
By associativity of the tensor product we conclude that L ®4 (M ®4 N) —
L'®4(M®aN) is injective and hence M ® 4 N is flat, by using the proposition
again.



(b) Let L < L' be an injective homomorphism of A-modules. We use the A-
isomorphism (L ®4 B) @ g M = L ®4 M given by L @ b@ m +— £ ® (bm)
and the analogue for L’. That this is indeed well-defined can be checked
using the universal property of the tensor product in the following way: for
every element m € M we have an A-bilinear map L X B — L ®4 M given
by (I,b) — [ ® (bm). Hence it factors through the tensor product L ®4 B.
Varying m € M we get a homomorphism (L ®4 B) x M — L ® 4 M which
is not only A-bilinear, but also B-bilinear. It thus factors through the tensor
product (L ®4 B) ®p M. Conversely the map L x M — (L ®4 B) @ M
given by (I, m) — (I®1)®@m is A-bilinear and thus factors through the tensor
product L ® 4 M. It is not hard to see that this provides an inverse for the
mentioned map and thus we have an isomorphism.

We get a commutative diagram

L®a M L'®@s M

- :

(L®aB)®@p M — (L'®4 B)®p M

The A-homomorphism at the bottom is injective because of the flatness of B
as an A-module and the flatness of M as a B-module. Hence the upper A-
homomorphism is injective. By the proposition from the lecture this implies
that M is flat as an A-module.

3. Let A be a ring. Consider a short exact sequence of A-modules and homomor-
phisms 0 — M’ — M — M" — 0. Prove that if M’ and M" are finitely generated,
then so is M.

Solution: Let m),...,m. € M" and nf,... ,n” € M" be generators of the respec-
tive A-modules. Denote by my,...,m, € M the images of m/},...,m. in M and
by ni,...,ns € M lifts of nf,...,n” in M. We claim that mq,...,m,,ny, ..., ng
generate M. Let a € M. By assumption its image a” € M" can be written as
>r L ayn! for some coefficients «y, ..., a5 € A. But then a — )7, a;n; is in the
kernel of the map M — M"” and thus is the image of an element b € M’. By
assumption b = 25:1 ﬁjmg for some coefficients g1, ..., 3, € A. We conclude that
a=) ;. an;+ 5 Bym;. This proves the claim.

4. Let A be a ring. Prove that for any three A-modules M, My, M and homo-

morphisms M, Iom & M, there exists an A-module P and homomorphisms
M, & P 25 M, such that the diagram

P—" M,

-

My ——M
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commutes and with the following universal property: for any A-module N and
homomorphisms M; <~ N - M, such that f ou = g o v there exists a unique
homomorphism h : N — P making the whole diagram commute:

M, —L M

Finally, show that P is unique up to a unique isomorphism.
[Hint: Look at a submodule of M; x M,.]|

Solution: We define P := {(mq,my) € My & My | f(m1) = g(ms) }. Since it is the
kernel of the homomorphism M; @& My — M given by (mq,mg) — f(mq) — g(ms)
it is an A-module. We define 71 : P — M; and my : P — M5 to be the respective
projections of My @ M, restricted to P. By the very definition of P the diagram

P—"2 M,

-

M1—>M

commutes. We show that (P, m,ms) satisfies the required universal property. Let
N be an A-module and let v : N — M; and v : N — My be homomorphisms
such that fowu = gowv. We construct a homomorphism h : N — P by h(n) :=
(u(n),v(n)). By the requirement f ou = g o v this is indeed well-defined. And it
is a homomorphism, since u and v are homomorphisms. Furthermore, we see that
the diagram

My~ M

commutes. The uniqueness of h follows directly from the construction. Now let
(P, 7, 7)) be another module with the same universal property. Then by the
universal property of P we have a unique homomorphism A : P’ — P such that



the diagram

M, —L M

commutes. Using the universal property for P’ we analogously get a homomor-
phism A’ : P — P’. Composing those homomorphisms we get a homomorphism
h'oh : P — P such that the diagram

M, —L M

commutes. By the uniqueness statement of the universal property of P we conclude
that A’ o h is the identity. Hence h is a unique isomorphism.

. Let A be aring. Recall the definition of the prime spectrum of a ring from exercise
sheet 2. For every element f € A denote D(f) for the open complement of V((f))
in spec(A). Show that these sets form a basis of open sets for the Zariski topology

on spec(A). Furthermore, prove:
(a) Vf,g € A we have D(f) N D(g) = D(f9g)
(b) D(
(c) D(
)

(d) spec(A) is quasicompact

f) = @ if and only if f is nilpotent
f) = spec(A) if and only if f is a unit

These open sets are called basic open sets of spec(A).

Solution: By definition we can write D(f) = {p € spec(A) | f &€ p} for f € A.
We need to show that the basic open sets cover spec(A) and that for every two
basic open sets Bj, B, and every point x € By N B, there is a basic open set B3
such that © € By C By N By. The first property is true because of D(1) = spec(A).
For the second one let D(f), D(g) with f,g € A be basic open sets. By (a) below
we have D(f) N D(g) = D(fg) and thus the second property of being a basis for
the topology is also satisfied. Hence the basic open sets form indeed a basis for
the topology.



(a) For every prime ideal p C A we have fg & p if and only if f & p and g & p.
Thus the equality.

(b) Since the nilradical is the intersection of all prime ideals, every prime ideal
contains all nilpotent elements. Thus D(f) = & for all nilpotent elements

feA

(c¢) By definition a prime ideal cannot contain a unit, hence D(f) = spec(A) for
every unit f € A.

(d) Since the basic open sets form a basis of the topology it is enough to con-
sider covers by basic open sets. Let (fi)iesr € A be elements such that
Uier D(fi) = spec(A). By taking the complement and using de Morgans
law we get (),c; V((fi)) = @. By exercise sheet 2, exercise 6(c) and 6(a) we
conclude that V(3_,.,(fi)) = @. Hence the ideal ), ,(f;) must contain 1.
Thus there is a finite subset J C I such that jes(fj) contains 1. But then
by the above argument in reverse, we have (J,c; D(f;) = spec(A). Hence the
finite subcover already covers spec(A).



