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Prof. Paul Nelson

Solutions Sheet 4

Localisation, Splitting Lemma, Irreducible Variety

1. Let A be a ring reduced ring (i.e. without any nonzero nilpotent elements). Let
M be a finitely generated A-module and let f : M → M be a surjective module
homomorphism. Then f is also injective.

Remark: The intended proof did not work, so we give a general proof which does
not need A to be reduced. Many apologies for this inconvenience!

Solution:

One variant of Nakayama says that if N is a finitely generated A-module and
a ⊂ A an ideal such that aN = N , then there is an element x ∈ 1 + a such that
xN = 0. We use this as follows: We consider M as A[X]-module, where X acts as
f on M , i.e. for any p(X) ∈ A[X] and m ∈M we have p(X) ·m = p(f)(m). Since
f is surjective, for the ideal a := (X) we have aM = M . Hence there is an element
a ∈ 1+a such that aM = 0, which implies that there is a polynomial q(X) ∈ A[X]
such that 1 + q(X)X = a. We conclude that for every element b ∈ ker(f) we have
b = (1 + q(X)X)b = ab = 0. Hence f is injective.

2. Let A be a ring such that every localisation Ap of A with respect to a prime ideal
p ⊂ A has no nonzero nilpotent elements. Prove that A has no nonzero nilpotent
elements. Is the same true for zero-divisors?

Solution: We have 0 = nil(Ap) = nil(A)p for all prime ideals p ⊂ A. Since being
zero is a local property of an A-module, we conclude that nil(A) = 0. For zero-
divisors this is not true as the following example shows: consider Q × Q as ring.
It certainly has zero-divisors and the only prime ideals are {0} ×Q and Q× {0}.
Denote by R the localisation at {0} × Q. Assume that [(a, b) : (0, c)] is a zero-
divisor in R. Then there is an element [(d, e) : (0, f)] in R such that their product
[(ad, eb) : (0, cf)] is zero, so by definition of the localisation there is an element
(g, h) 6∈ {0} × Q such that (adg, ebh) = (ad, eb)(g, h) = 0. Since g is non-zero,
either a or d is zero. But then (a, b)(1, 0) = 0 or (d, e)(1, 0) = 0 and so one of the
elements [(a, b) : (0, c)] or [(d, e) : (0, f)] must be zero in R already and thus is no
non-zero zero-divisor.

3. Let A be a ring. Let T, S be two multiplicatively closed subsets and let U be the
image of T in S−1A. Prove that (ST )−1A is isomorphic to U−1S−1A.

Solution: Consider the canonical map f : A → (ST )−1A. Since S ⊂ ST , the
elements of the subset f(S) ⊂ (ST )−1A are invertible and thus f factors through
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a unique homomorphism g : S−1A → (ST )−1A by the universal property. But
as T ⊂ ST , we see that the elements of g(U) = f(T ) ⊂ (ST )−1A are invertible
and by the universal property g factors through a unique homomorphism h :
U−1S−1A → (ST )−1A. Conversely consider the map f ′ : A → U−1S−1A. We see
that the elements of f ′(ST ) are invertible and thus f ′ factors through a unique
homomorphism h′ : (ST )−1A → U−1S−1A. By using the uniqueness we conclude
that h ◦ h′ and h′ ◦ h are both the respective identity homomorphisms. Thus h is
an isomorphism with inverse h′.

4. Let A be an integral domain and M an A-module. Prove that the following are
equivalent:

(a) M is torsion-free.

(b) Mp is torsion-free for all prime ideals p ⊂ A.

(c) Mm is torsion-free for all maximal ideals m ⊂ A.

Solution: ”(a)⇒(b)”: Assume that there is a prime ideal p ⊂ A such that Mp has
a torsion element [m, s] ∈ Mp, where m ∈ M is non-zero and s 6∈ p. Thus there
is a non-zero element a ∈ A such that a[m, s] = [am, s] = 0. By definition of
localisation there is an element r 6∈ p such that ram = 0. Since A is an integral
domain we conclude that am = 0 and hence M has torsion.

”(b)⇒(c)”: Immediate.

”(c)⇒(a)”: Let m ∈ M be a non-zero torsion element. Consider the annihilator
Ann(m) := {a ∈ A | am = 0} of m. It is an ideal which clearly does not contain
1. Hence there is a maximal ideal m ⊂ A containing Ann(m). The element [m, 1]
is non-zero in Mm because there is no element s 6∈ m such that sm = 0. But [m, 1]
is still annihilated by a non-zero element of A and hence Mm has torsion.

5. (Splitting Lemma) Let A be a ring and 0 → M ′ → M → M ′′ → 0 a short exact
sequence of A-modules. The sequence is called split if there is an isomorphism
M →M ′ ⊕M ′′ such that the diagram

0 //M ′ u //M v //

∼=
��

M ′′ // 0

0 //M ′ //M ′ ⊕M ′′ //M ′′ // 0

commutes, where the homomorphisms in the lower row are the inclusion and pro-
jection respectively.

Prove the splitting lemma, i.e. that the following are equivalent:

(a) The short exact sequence splits.

(b) There is a homomorphism i : M ′′ →M such that v ◦ i = idM ′′ .
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(c) There is a homomorphism s : M →M ′ such that s ◦ u = idM ′ .

Solution: Denote π1 : M ′ ⊕M ′′ →M ′ and π2 : M ′ ⊕M ′′ →M ′′ for the respective
projections, and ϕ1 : M ′ →M ′ ⊕M ′′ and ϕ2 : M ′′ →M ′ ⊕M ′′ for the respective
inclusions.

”(a)⇒(b)”: Denote f : M → M ′ ⊕M ′′ for the given isomorphism. We define the
homomorphism i : M ′′ →M to be i := f−1◦ϕ2. Then v◦i = π2◦f◦f−1◦ϕ2 = idM ′′ .

”(a)⇒(c)”: Denote f : M → M ′ ⊕M ′′ for the given isomorphism. We define the
homomorphism s : M →M ′ to be s := π1 ◦ f . Then s ◦u = π1 ◦ f ◦ f−1ϕ1 = idM ′ .

”(b)⇒(a)”: We define a homomorphism g : M ′⊕M ′′ →M as g := u+i. Note that
(0⊕v)◦g = 0⊕idM ′′ . Thus for any element (m′,m′′) ∈M ′⊕M ′′ with g(m′,m′′) = 0
we conclude that m′′ = 0. Hence u(m′) = 0. Since u is injective we conclude that
m′ = 0. This shows that g is injective. On the other hand, let m ∈M and consider
the element n := m − i ◦ v(m). This element is in the kernel of v and thus lifts
to an element n′ ∈ M ′. We conclude that g(n′, v(m)) = u(n′) + i ◦ v(m) = m
and hence g is surjective and therefore an isomorphism. The commutativity of the
diagram holds by design.

”(c)⇒(a)”: Define a homomorphism f : M →M ′ ⊕M ′′ by f := s⊕ v. Note that
f ◦ u = (idM ′ ⊕0). Hence any non-zero element m ∈M with f(m) = 0 cannot lie
in the image of u. But then v(m) 6= 0 and so f is injective. On the other hand,
for every element (m′,m′′) ∈ M ′ ⊕M ′′ we can choose a lift n ∈ M of m′′ ∈ M ′′

and so we have f(u(m′) + n) = (m′,m′′). Hence f is surjective and therefore an
isomorphism.

6. A topological space is called irreducible if it is non-empty and every two non-empty
open subsets have a non-empty intersection. Prove that for spec(A) the following
are equivalent:

(a) spec(A) is irreducible.

(b) The nilradical of A is a prime ideal.

(c) There is a dense point x ∈ spec(A), i.e. the closure of {x} is {x} = spec(A).

Remark: We call such a point as in (c) a generic point.

Solution: ”(a)⇒(b)”: If the nilradical is not a prime ideal, then there are elements
a, b which are not in the nilradical but such that ab is in the nilradical. Hence
D(a)∩D(b) = D(ab) = ∅ by using exercise 5 on exercise sheet 3. But a and b are
both not in the nilradical and thus there are prime ideals which do not contain
a or b, respectively. Thus D(a) and D(b) are both non-empty. Hence spec(A) is
reducible.

”(b)⇒(c)”: By assumption, the nilradical is itself a point in spec(A). Let V (S)
be a closed set that contains the nilradical nil(A). Thus S ⊂ nil(A). Since nil(A)
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is the intersection of all prime ideals, we conclude that S ⊂ p for all prime ideals
p ⊂ A and thus V (S) = spec(A).

”(c)⇒(a)”: If there exists a dense point, then every non-empty open subset has
to contain it. In particular spec(A) is non-empty. Then the intersection of every
two non-empty open subsets is non-empty because it contains the dense point.
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