Solutions Sheet 4

LOCALISATION, SPLITTING LEMMA, IRREDUCIBLE VARIETY

1. Let A be a ring reduced ring (i.e. without any nonzero nilpotent elements). Let M be a finitely generated A-module and let $f: M \to M$ be a surjective module homomorphism. Then f is also injective.

Remark: The intended proof did not work, so we give a general proof which does not need A to be reduced. Many apologies for this inconvenience!

Solution:

One variant of Nakayama says that if N is a finitely generated A-module and $\mathfrak{a} \subset A$ an ideal such that $\mathfrak{a}N = N$, then there is an element $x \in 1 + \mathfrak{a}$ such that xN = 0. We use this as follows: We consider M as A[X]-module, where X acts as f on M, i.e. for any $p(X) \in A[X]$ and $m \in M$ we have $p(X) \cdot m = p(f)(m)$. Since f is surjective, for the ideal $\mathfrak{a} := (X)$ we have $\mathfrak{a}M = M$. Hence there is an element $a \in 1 + \mathfrak{a}$ such that aM = 0, which implies that there is a polynomial $q(X) \in A[X]$ such that 1 + q(X)X = a. We conclude that for every element $b \in \ker(f)$ we have b = (1 + q(X)X)b = ab = 0. Hence f is injective.

2. Let A be a ring such that every localisation $A_{\mathfrak{p}}$ of A with respect to a prime ideal $\mathfrak{p} \subset A$ has no nonzero nilpotent elements. Prove that A has no nonzero nilpotent elements. Is the same true for zero-divisors?

Solution: We have $0 = \mathfrak{nil}(A_p) = \mathfrak{nil}(A)_p$ for all prime ideals $\mathfrak{p} \subset A$. Since being zero is a local property of an A-module, we conclude that $\mathfrak{nil}(A) = 0$. For zerodivisors this is not true as the following example shows: consider $\mathbb{Q} \times \mathbb{Q}$ as ring. It certainly has zero-divisors and the only prime ideals are $\{0\} \times \mathbb{Q}$ and $\mathbb{Q} \times \{0\}$. Denote by R the localisation at $\{0\} \times \mathbb{Q}$. Assume that [(a, b) : (0, c)] is a zerodivisor in R. Then there is an element [(d, e) : (0, f)] in R such that their product [(ad, eb) : (0, cf)] is zero, so by definition of the localisation there is an element $(g, h) \notin \{0\} \times \mathbb{Q}$ such that (adg, ebh) = (ad, eb)(g, h) = 0. Since g is non-zero, either a or d is zero. But then (a, b)(1, 0) = 0 or (d, e)(1, 0) = 0 and so one of the elements [(a, b) : (0, c)] or [(d, e) : (0, f)] must be zero in R already and thus is no non-zero zero-divisor.

3. Let A be a ring. Let T, S be two multiplicatively closed subsets and let U be the image of T in $S^{-1}A$. Prove that $(ST)^{-1}A$ is isomorphic to $U^{-1}S^{-1}A$. Solution: Consider the canonical map $f : A \to (ST)^{-1}A$. Since $S \subset ST$, the elements of the subset $f(S) \subset (ST)^{-1}A$ are invertible and thus f factors through a unique homomorphism $g: S^{-1}A \to (ST)^{-1}A$ by the universal property. But as $T \subset ST$, we see that the elements of $g(U) = f(T) \subset (ST)^{-1}A$ are invertible and by the universal property g factors through a unique homomorphism $h: U^{-1}S^{-1}A \to (ST)^{-1}A$. Conversely consider the map $f': A \to U^{-1}S^{-1}A$. We see that the elements of f'(ST) are invertible and thus f' factors through a unique homomorphism $h': (ST)^{-1}A \to U^{-1}S^{-1}A$. By using the uniqueness we conclude that $h \circ h'$ and $h' \circ h$ are both the respective identity homomorphisms. Thus h is an isomorphism with inverse h'.

- 4. Let A be an integral domain and M an A-module. Prove that the following are equivalent:
 - (a) M is torsion-free.
 - (b) $M_{\mathfrak{p}}$ is torsion-free for all prime ideals $\mathfrak{p} \subset A$.
 - (c) $M_{\mathfrak{m}}$ is torsion-free for all maximal ideals $\mathfrak{m} \subset A$.

Solution: "(a) \Rightarrow (b)": Assume that there is a prime ideal $\mathfrak{p} \subset A$ such that $M_{\mathfrak{p}}$ has a torsion element $[m, s] \in M_{\mathfrak{p}}$, where $m \in M$ is non-zero and $s \notin \mathfrak{p}$. Thus there is a non-zero element $a \in A$ such that a[m, s] = [am, s] = 0. By definition of localisation there is an element $r \notin \mathfrak{p}$ such that ram = 0. Since A is an integral domain we conclude that am = 0 and hence M has torsion.

"(b) \Rightarrow (c)": Immediate.

"(c) \Rightarrow (a)": Let $m \in M$ be a non-zero torsion element. Consider the annihilator Ann $(m) := \{a \in A \mid am = 0\}$ of m. It is an ideal which clearly does not contain 1. Hence there is a maximal ideal $\mathfrak{m} \subset A$ containing Ann(m). The element [m, 1] is non-zero in $M_{\mathfrak{m}}$ because there is no element $s \notin \mathfrak{m}$ such that sm = 0. But [m, 1] is still annihilated by a non-zero element of A and hence $M_{\mathfrak{m}}$ has torsion.

5. (Splitting Lemma) Let A be a ring and $0 \to M' \to M \to M'' \to 0$ a short exact sequence of A-modules. The sequence is called *split* if there is an isomorphism $M \to M' \oplus M''$ such that the diagram

commutes, where the homomorphisms in the lower row are the inclusion and projection respectively.

Prove the splitting lemma, i.e. that the following are equivalent:

- (a) The short exact sequence splits.
- (b) There is a homomorphism $i: M'' \to M$ such that $v \circ i = \mathrm{id}_{M''}$.

(c) There is a homomorphism $s: M \to M'$ such that $s \circ u = \mathrm{id}_{M'}$.

Solution: Denote $\pi_1 : M' \oplus M'' \to M'$ and $\pi_2 : M' \oplus M'' \to M''$ for the respective projections, and $\varphi_1 : M' \to M' \oplus M''$ and $\varphi_2 : M'' \to M' \oplus M''$ for the respective inclusions.

"(a) \Rightarrow (b)": Denote $f: M \to M' \oplus M''$ for the given isomorphism. We define the homomorphism $i: M'' \to M$ to be $i:=f^{-1}\circ\varphi_2$. Then $v \circ i = \pi_2 \circ f \circ f^{-1}\circ\varphi_2 = \mathrm{id}_{M''}$. "(a) \Rightarrow (c)": Denote $f: M \to M' \oplus M''$ for the given isomorphism. We define the homomorphism $s: M \to M'$ to be $s := \pi_1 \circ f$. Then $s \circ u = \pi_1 \circ f \circ f^{-1}\varphi_1 = \mathrm{id}_{M'}$. "(b) \Rightarrow (a)": We define a homomorphism $g: M' \oplus M'' \to M$ as g := u+i. Note that $(0 \oplus v) \circ g = 0 \oplus \mathrm{id}_{M''}$. Thus for any element $(m', m'') \in M' \oplus M''$ with g(m', m'') = 0 we conclude that m'' = 0. Hence u(m') = 0. Since u is injective we conclude that m' = 0. Hence u(m') = 0. Since u is injective we conclude that m' = 0. This shows that g is injective. On the other hand, let $m \in M$ and consider the element $n := m - i \circ v(m)$. This element is in the kernel of v and thus lifts to an element $n' \in M'$. We conclude that $g(n', v(m)) = u(n') + i \circ v(m) = m$ and hence g is surjective and therefore an isomorphism. The commutativity of the diagram holds by design.

"(c) \Rightarrow (a)": Define a homomorphism $f: M \to M' \oplus M''$ by $f := s \oplus v$. Note that $f \circ u = (\operatorname{id}_{M'} \oplus 0)$. Hence any non-zero element $m \in M$ with f(m) = 0 cannot lie in the image of u. But then $v(m) \neq 0$ and so f is injective. On the other hand, for every element $(m', m'') \in M' \oplus M''$ we can choose a lift $n \in M$ of $m'' \in M''$ and so we have f(u(m') + n) = (m', m''). Hence f is surjective and therefore an isomorphism.

- 6. A topological space is called *irreducible* if it is non-empty and every two non-empty open subsets have a non-empty intersection. Prove that for spec(A) the following are equivalent:
 - (a) $\operatorname{spec}(A)$ is irreducible.
 - (b) The nilradical of A is a prime ideal.
 - (c) There is a dense point $x \in \operatorname{spec}(A)$, i.e. the closure of $\{x\}$ is $\overline{\{x\}} = \operatorname{spec}(A)$.

Remark: We call such a point as in (c) a *generic point*.

Solution: "(a) \Rightarrow (b)": If the nilradical is not a prime ideal, then there are elements a, b which are not in the nilradical but such that ab is in the nilradical. Hence $D(a) \cap D(b) = D(ab) = \emptyset$ by using exercise 5 on exercise sheet 3. But a and b are both not in the nilradical and thus there are prime ideals which do not contain a or b, respectively. Thus D(a) and D(b) are both non-empty. Hence spec(A) is reducible.

"(b) \Rightarrow (c)": By assumption, the nilradical is itself a point in spec(A). Let V(S) be a closed set that contains the nilradical $\mathfrak{nil}(A)$. Thus $S \subset \mathfrak{nil}(A)$. Since $\mathfrak{nil}(A)$

is the intersection of all prime ideals, we conclude that $S \subset \mathfrak{p}$ for all prime ideals $\mathfrak{p} \subset A$ and thus $V(S) = \operatorname{spec}(A)$.

"(c) \Rightarrow (a)": If there exists a dense point, then every non-empty open subset has to contain it. In particular spec(A) is non-empty. Then the intersection of every two non-empty open subsets is non-empty because it contains the dense point.