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LOCALISATION, SPLITTING LEMMA, IRREDUCIBLE VARIETY

1. Let A be a ring § : h g
M be a finitely generated A module and let f M — M be a surJectlve module
homomorphism. Then f is also injective.

Remark: The intended proof did not work, so we give a general proof which does
not need A to be reduced. Many apologies for this inconvenience!

Solution:

One variant of Nakayama says that if NV is a finitely generated A-module and
a C A an ideal such that aN = N, then there is an element x € 1 + a such that
xN = 0. We use this as follows: We consider M as A[X]-module, where X acts as
fon M, ie. for any p(X) € A[X] and m € M we have p(X)-m = p(f)(m). Since
f is surjective, for the ideal a := (X') we have aM = M. Hence there is an element
a € 1+asuch that aM = 0, which implies that there is a polynomial ¢(X) € A[X]
such that 1+ ¢(X)X = a. We conclude that for every element b € ker(f) we have
b= (14 ¢q(X)X)b=ab=0. Hence f is injective.

2. Let A be a ring such that every localisation A, of A with respect to a prime ideal
p C A has no nonzero nilpotent elements. Prove that A has no nonzero nilpotent
elements. Is the same true for zero-divisors?

Solution: We have 0 = nil(A,) = nil(A), for all prime ideals p C A. Since being
zero is a local property of an A-module, we conclude that nil(A) = 0. For zero-
divisors this is not true as the following example shows: consider Q x Q as ring.
It certainly has zero-divisors and the only prime ideals are {0} x Q and Q x {0}.
Denote by R the localisation at {0} x Q. Assume that [(a,b) : (0,¢)] is a zero-
divisor in R. Then there is an element [(d,e) : (0, f)] in R such that their product
[(ad,eb) : (0,cf)] is zero, so by definition of the localisation there is an element
(9,h) ¢ {0} x Q such that (adg,ebh) = (ad,eb)(g,h) = 0. Since g is non-zero,
either a or d is zero. But then (a,b)(1,0) = 0 or (d,e)(1,0) = 0 and so one of the
elements [(a,b) : (0,¢)] or [(d,e) : (0, f)] must be zero in R already and thus is no
non-zero zero-divisor.

3. Let A be aring. Let T',.S be two multiplicatively closed subsets and let U be the
image of T in S™'A. Prove that (ST)™'A is isomorphic to U 'S~ A.

Solution: Consider the canonical map f : A — (ST)™'A. Since S C ST, the
elements of the subset f(S) C (ST)"'A are invertible and thus f factors through



a unique homomorphism g : S7'A — (ST)"'A by the universal property. But
as T C ST, we see that the elements of g(U) = f(T) C (ST) A are invertible
and by the universal property ¢ factors through a unique homomorphism h :
U-1S71A — (ST) 'A. Conversely consider the map f': A — U 'S7tA. We see
that the elements of f/(ST') are invertible and thus f’ factors through a unique
homomorphism A’ : (ST)™'A — U~'S~'A. By using the uniqueness we conclude
that ho A’ and h' o h are both the respective identity homomorphisms. Thus A is
an isomorphism with inverse h’.

. Let A be an integral domain and M an A-module. Prove that the following are
equivalent:

(a) M is torsion-free.
(b) M, is torsion-free for all prime ideals p C A.

(¢) M, is torsion-free for all maximal ideals m C A.

Solution: ”(a)=>(b)”: Assume that there is a prime ideal p C A such that M, has
a torsion element [m,s] € M,, where m € M is non-zero and s ¢ p. Thus there
is a non-zero element a € A such that a[m,s| = [am,s] = 0. By definition of
localisation there is an element r € p such that ram = 0. Since A is an integral
domain we conclude that am = 0 and hence M has torsion.

”(b)=(c)”: Immediate.

7(c)=(a)”: Let m € M be a non-zero torsion element. Consider the annihilator
Ann(m) :={a € A | am =0} of m. It is an ideal which clearly does not contain
1. Hence there is a maximal ideal m C A containing Ann(m). The element [m, 1]

is non-zero in My, because there is no element s ¢ m such that sm = 0. But [m, 1]
is still annihilated by a non-zero element of A and hence M, has torsion.

. (Splitting Lemma) Let A be a ring and 0 — M’ — M — M"” — 0 a short exact
sequence of A-modules. The sequence is called split if there is an isomorphism
M — M’ & M” such that the diagram

0 M —= M s M’ 0
O_>M/é'M/ @ Ml/ M/I O

commutes, where the homomorphisms in the lower row are the inclusion and pro-
jection respectively.

Prove the splitting lemma, i.e. that the following are equivalent:

(a) The short exact sequence splits.

(b) There is a homomorphism ¢ : M"” — M such that v o7 =idym».



(c¢) There is a homomorphism s : M — M’ such that s ou = idyy.

Solution: Denote 71 : M' & M"” — M’ and my : M’ & M"” — M" for the respective
projections, and ¢ : M — M’ ® M" and ¢y : M" — M’ & M" for the respective
inclusions.

”(a)=(b)”: Denote f: M — M’ @& M" for the given isomorphism. We define the
homomorphism i : M” — M tobei := f~togp,. Then voi = myofof towy = idym.

”(a)=(c)”: Denote f : M — M'@ M" for the given isomorphism. We define the
homomorphism s : M — M’ tobe s ;=m0 f. Then sou =m0 fo fly; =idyp.

”(b)=-(a)”: We define a homomorphism g : M'@&M"” — M as g := u+i. Note that
(0bv)og = 04idyw. Thus for any element (m’,m”) € M'&M" with g(m',m") =0
we conclude that m” = 0. Hence u(m’) = 0. Since u is injective we conclude that
m' = 0. This shows that ¢ is injective. On the other hand, let m € M and consider
the element n := m — i owv(m). This element is in the kernel of v and thus lifts
to an element n’ € M’. We conclude that g(n',v(m)) = u(n’) +iov(m) = m
and hence ¢ is surjective and therefore an isomorphism. The commutativity of the
diagram holds by design.

”(c)=(a)”: Define a homomorphism f: M — M’ @& M" by f := s @ v. Note that
fou= (idyr @0). Hence any non-zero element m € M with f(m) = 0 cannot lie
in the image of u. But then v(m) # 0 and so f is injective. On the other hand,
for every element (m’,m"”) € M' @ M" we can choose a lift n € M of m" € M"
and so we have f(u(m') +n) = (m’,m”). Hence f is surjective and therefore an
isomorphism.

. A topological space is called irreducible if it is non-empty and every two non-empty
open subsets have a non-empty intersection. Prove that for spec(A) the following
are equivalent:

(a) spec(A) is irreducible.
(b) The nilradical of A is a prime ideal.
(¢) There is a dense point = € spec(A), i.e. the closure of {z} is {x} = spec(A).

Remark: We call such a point as in (c) a generic point.

Solution: ”(a)=>(b)”: If the nilradical is not a prime ideal, then there are elements
a,b which are not in the nilradical but such that ab is in the nilradical. Hence
D(a)ND(b) = D(ab) = & by using exercise 5 on exercise sheet 3. But a and b are
both not in the nilradical and thus there are prime ideals which do not contain
a or b, respectively. Thus D(a) and D(b) are both non-empty. Hence spec(A) is
reducible.

”(b)=(c)”: By assumption, the nilradical is itself a point in spec(A). Let V(.5)
be a closed set that contains the nilradical nil(A). Thus S C nil(A). Since nil(A)



is the intersection of all prime ideals, we conclude that S C p for all prime ideals
p C A and thus V(S) = spec(A).

”(c)=(a)”: If there exists a dense point, then every non-empty open subset has
to contain it. In particular spec(A) is non-empty. Then the intersection of every
two non-empty open subsets is non-empty because it contains the dense point.



