Solutions Sheet 8

ARTINIAN RINGS AND MODULES, KRULL INTERSECTION THEOREM

- 1. Let k be a field and A a finitely generated k-algebra. Prove that the following are equivalent:
 - (a) A is an Artinian ring.
 - (b) A is a finite dimensional k-vector space.

Solution: "(a) \Rightarrow (b)": If A is Artinian, then it is isomorphic to a product $A \cong \prod_{i=1}^{n} A_i$ of local Artinian rings A_i by the classification theorem. So without loss of generality we assume that A is a local Artinian ring with maximal ideal $\mathfrak{m} \subset A$. By Hilbert's Nullstellensatz we know that $L := A/\mathfrak{m}$ is a finite field extension of k. From one Proposition we know that $\mathfrak{m}^n = 0$ for some integer n > 0. For every $1 \leq i \leq n$ we have $L \otimes_A \mathfrak{m}^i \cong \mathfrak{m}^i/\mathfrak{m}^{i+1}$. Since A is also Noetherian, \mathfrak{m}^i is finitely generated as A-module and thus $L \otimes_A \mathfrak{m}$ is finitely generated as L-vector space and hence also as k-vector space. For $1 \leq i \leq n$ we have the exact sequences

$$\mathfrak{m}^i/\mathfrak{m}^{i+1} \to A/\mathfrak{m}^{i+1} \to A/\mathfrak{m}^i$$

where the left term is a finite dimensional k-vector space. For i = 1, the right hand side is L and thus also finite dimensional as k-vector space, so the middle term A/\mathfrak{m}^2 is finite dimensional as k-vector space. By induction and the fact that $\mathfrak{m}^n = 0$ we conclude that $A/\mathfrak{m}^n = A$ is finite dimension as k-vector space.

"(b) \Rightarrow (a)": If A is a finite dimensional k-vector space, then it is Artinian as k-vector space. But every ideal of A is a k-vector space and thus they satisfy the descending chain condition, which proves that A is Artinian as ring.

- 2. Let A be a Noetherian ring. Prove the equivalence of the following statements:
 - (a) A is an Artinian ring.
 - (b) $\operatorname{spec}(A)$ is discrete and finite.
 - (c) $\operatorname{spec}(A)$ is discrete.

Solution: "(a) \Rightarrow (b)": If A is Artinian, we know that every prime ideal is maximal. Hence every point of spec(A) is closed. We also know, that there are only finitely many distinct maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ of A. Hence spec(A) is finite. Furthermore spec(A) $\smallsetminus V(\bigcap_{i\neq k} \mathfrak{m}_i) = \mathfrak{m}_k$ and thus every point is also closed. We conclude that spec(A) is a discrete finite space.

"(b) \Rightarrow (c)": Immediate.

"(c) \Rightarrow (a)": We show that dim(A) = 0. Assume otherwise. Then there are two prime ideals $\mathfrak{p}_1, \mathfrak{p}_2 \subset A$ such that $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq A$. But then $\mathfrak{p}_1 \in \text{spec}(A)$ is not a closed point, since its closure contains \mathfrak{p}_2 . A contradiction to spec(A) being discrete. Since A is Noetherian of dimension 0 we conclude that A is Artinian.

3. Let R be the ring of germs at 0 of C^{∞} -functions on \mathbb{R} and let $\mathfrak{m} = (x)$ denote the ideal generated by the coordinate function x. It is the unique maximal ideal of R. Show by elementary calculus that if f is a C^{∞} -function such that all its derivatives vanish at the origin, then f/x is also such a function. Conclude that $\mathfrak{m}\left(\bigcap_{j\geq 1}\mathfrak{m}^{j}\right) = \bigcap_{j\geq 1}\mathfrak{m}^{j}$. Moreover, recall that the intersection $\bigcap_{j\geq 1}\mathfrak{m}^{j}$ is nonzero. It contains for instance the function $e^{-\frac{1}{x^{2}}}$. This example therefore shows that the finiteness conditions are necessary in both Nakayama's Lemma and Krull's Intersection Theorem.

Solution (sketch): We only sketch the proof, which is purely analytic. Firstly, one can show by induction on k and using Bernoulli de l'Hopital that for any such f and any $k \ge 0$ the first derivative of f/x^k at 0 exists and equals 0. Secondly, one can show that the same is true for any j-th derivative, where $j \ge 1$, which can be done by induction on j using the first part. This implies $f/x \in \mathfrak{m}^j$ for any $j \ge 1$ and consequently $f \in \mathfrak{m}(\bigcap_{j\ge 1} \mathfrak{m}^j)$. As all of the derivatives at 0 of any $f \in \bigcap_{j\ge 1} \mathfrak{m}^j$ vanish, we deduce $\bigcap_{j\ge 1} \mathfrak{m}^j \subset \mathfrak{m}(\bigcap_{j\ge 1} \mathfrak{m}^j)$.

- 4. Consider the monoid ring $R := K[\mathbb{Q}^{\geq 0}] = K[\{X^{\alpha} \mid \alpha \in \mathbb{Q}^{\geq 0}\}]$ over a field K.
 - (a) Find a maximal ideal $\mathfrak{m} \neq 0$ of R such that $\mathfrak{m}^n = \mathfrak{m}$ for all $n \ge 1$.
 - (b) Use R to construct a ring \overline{R} with $r(0)^n \neq 0$ for all $n \ge 1$.

Solution: (a) Let \mathfrak{m} be the ideal generated by the elements X^{α} for all $\alpha \in \mathbb{Q}^{>0}$. It is maximal, because the factor ring is isomorphic to K. Since $X^{\alpha} = (X^{\alpha/n})^n \in \mathfrak{m}^n$ for each $n \ge 1$, we have $\mathfrak{m}^n = \mathfrak{m}$.

(c) For any rational number $\alpha > 0$ with denominator n we have $(X^{\alpha})^n \in (X)$. Thus for $\overline{R} := R/(X)$ we have $r(0) = \mathfrak{m}/(X)$. From (a) it follows that $r(0)^n = r(0) \neq 0$ for all $n \ge 1$.