Solutions Sheet 9

DIMENSION AND HEIGHT

1. Let A be a ring. Prove the following statements:

- (a) For every prime ideal $\mathfrak{p} \subset A$ we have $\operatorname{ht}(\mathfrak{p}) + \operatorname{coht}(\mathfrak{p}) \leq \dim(A)$.
- (b) For every ideal $\mathfrak{a} \subset A$ we have $ht(\mathfrak{a}) + coht(\mathfrak{a}) \leq dim(A)$. (Recall that $ht(\mathfrak{a}) = \inf_{\mathfrak{p} \supset \mathfrak{a} \text{ prime}} ht(\mathfrak{p})$)

Solution:

- (a) Let φ : A → A_p and ψ : A → A/p be the canonical homomorphisms. By definition we have ht(p) = dim(A_p) and coht(p) = dim(A/p). For all chains of prime ideals p₀ ⊊ … ⊊ p_n = p in A_p and p = q₀ ⊊ … ⊊ q_r in A/p we have the chain φ^{*}(p₀) ⊊ … ⊊ φ^{*}(p_n) = ψ^{*}(q₀) ⊊ … ⊊ ψ^{*}(q_r) of prime ideals of A. The length of this chain is thus n + r ≤ dim(A). Taking the supremum over all such pairs of chains yields the result.
- (b) Let $\mathfrak{p} \subset A$ be a prime ideal. Then by definition of $ht(\mathfrak{a})$ and (a) above we have

 $\operatorname{ht}(\mathfrak{a}) + \operatorname{coht}(\mathfrak{p}) \leq \operatorname{ht}(\mathfrak{p}) + \operatorname{coht}(\mathfrak{p}) \leq \dim(A)$

Taking the supremum of the left hand side over all prime ideals \mathfrak{p} which contain \mathfrak{a} yields the result:

$$\operatorname{ht}(\mathfrak{a}) + \operatorname{coht}(\mathfrak{a}) = \operatorname{ht}(\mathfrak{a}) + \sup_{\mathfrak{p} \supset \mathfrak{a} \text{ prime}} \operatorname{coht}(\mathfrak{p}) \leqslant \dim(A)$$

- 2. Give an example of a
 - (a) non-Noetherian local ring A with maximal ideal \mathfrak{m} and dim $A > \dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$.
 - (b) Noetherian non-local ring A with a maximal ideal \mathfrak{m} such that dim $A > ht(\mathfrak{m})$.

Solution: Let k be a field.

- (a) The localisation A of the ring $k[X^{\alpha}|_{\alpha \in \mathbb{Q}^{>0}}]$ at the prime ideal $(X^{\alpha}|_{\alpha \in \mathbb{Q}^{>0}})$ satisfies dim $(A) = 1 > 0 = \dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$.
- (b) Since the dimension of a ring is the supremum of the heights of maximal ideals it is enough to find a ring with two maximal ideals of different heights. Exercise 4 gives an example.

3. Let A be a ring and consider the polynomial ring in one variable A[X]. Let $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subset A[X]$ be two prime ideals such that their contraction to A is equal $\mathfrak{p} := \mathfrak{p}_1 \cap A = \mathfrak{p}_2 \cap A$. Prove that $\mathfrak{p}_1 = \mathfrak{p}A[X]$. Deduce that for any three subsequent prime ideals $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subset A[X]$ their contractions $\mathfrak{p}_1 \cap A, \mathfrak{p}_2 \cap A, \mathfrak{p}_3 \cap A$ cannot all be equal.

[Hint: Take a ring of fractions and use that $\dim(K[X]) = 1$ for every field K]

Solution: Since \mathfrak{p}_1 is an ideal we have $\mathfrak{p}A[X] \subset \mathfrak{p}_1$. We localise A[X] at the multiplicative set $S := A \setminus \mathfrak{p}$ and get $S^{-1}A[X] = A_\mathfrak{p}[X]$ and the two prime ideals $S^{-1}\mathfrak{p}_1 \subsetneq S^{-1}\mathfrak{p}_2$ with contractions $S^{-1}\mathfrak{p}_1 \cap A_\mathfrak{p} = S^{-1}\mathfrak{p}_2 \cap A_\mathfrak{p} = \mathfrak{p}A_\mathfrak{p}$. Now consider the quotient $R := A_\mathfrak{p}[X]/\mathfrak{p}A_\mathfrak{p}[X] \cong (A_\mathfrak{p}/p)[X]$. Since $A_\mathfrak{p}/\mathfrak{p}$ is a field we know that the dimension of R is equal to 1. We conclude that therefore the image of $S^{-1}\mathfrak{p}_1$ in R is the zero ideal (because it cannot be equal to the image of $S^{-1}\mathfrak{p}_2$) and thus $S^{-1}\mathfrak{p}_1 = \mathfrak{p}A_\mathfrak{p}[X]$. By the correspondence of ring of fractions we conclude that $\mathfrak{p}_1 = \mathfrak{p}A[X]$.

Assume we have three subsequent prime ideals $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \mathfrak{p}_3 \subset A[X]$ such that all of their contractions to A are equal to the prime ideal $\mathfrak{p} \subset A$. By using the previous proof twice we conclude that $\mathfrak{p}_2 = \mathfrak{p}A[X] = \mathfrak{p}_1$ which is a contradiction.

4. Consider the ring $R := \mathbb{C}[X, Y, Z]/(XY, XZ)$. Compute the height of the two maximal ideals $\mathfrak{m}_1 := (X - 1, Y, Z) \subset R$ and $\mathfrak{m}_2 := (X, Y - 1, Z) \subset R$. Interpret your result geometrically on the variety $V(XY, XZ) \subset \mathbb{C}^3$.

Solution: Note that the ideals are maximal by the correspondence of ideals in R and ideals in $\mathbb{C}[X, Y, Z]$ containing (XY, XZ). Furthermore note that $(XY, XZ) = (X) \cap (Y, Z)$ in the ring $\mathbb{C}[X, Y, Z]$ and thus every prime ideal of R corresponds to a prime ideal in $\mathbb{C}[X, Y, Z]$ containing (X) or (Y, Z).

We have the chain of prime ideals $\mathfrak{m}_1 = (X - 1, Y, Z) \supseteq (Y, Z)$. Every prime ideal $\mathfrak{p} \subset \mathfrak{m}_1$ must contain (Y, Z) because $X \notin \mathfrak{m}_1$. Furthermore, there is no prime ideal in between \mathfrak{m}_1 and (Y, Z), since every $f \in \mathfrak{m}_1 \smallsetminus (Y, Z)$ must be divisible by (X - 1), say f = a(X - 1) for some $a \in R \smallsetminus (Y, Z)$. If (X - 1) is contained in the ideal, then we are done, if not, then $a \in \mathfrak{m}_1$ and we can use induction on the degree. Hence the chain is maximal and we conclude that $ht(\mathfrak{m}_1) = 1$.

Consider the chain of prime ideals $\mathfrak{m}_2 = (X, Y - 1, Z) \supseteq (X, Z) \supseteq (X)$. We conclude that $ht(\mathfrak{m}_2) \ge 2$. Since $Y \notin \mathfrak{m}_2$ we conclude that every prime ideal of R contained in \mathfrak{m}_2 corresponds to a prime ideal in $\mathbb{C}[X, Y, Z]$ which contains X. Thus $ht(\mathfrak{m}_2) \le \dim(R/(X)) = \dim(\mathbb{C}[Y, Z]) = 2$. Hence $ht(\mathfrak{m}_2) = 2$.

For the geometric interpretation note that V(XZ, YZ) is the union of the X-axis and the YZ-plane in \mathbb{C}^3 . The point which corresponds to \mathfrak{m}_1 is a point on the X-axis and thus there is only one irreducible subspace which contains that point, namely the X-axis itself which corresponds to the ideal (Y, Z). On the other hand, the point which corresponds to \mathfrak{m}_2 lies on the YZ-plane and more precisely on the Y-axis. Thus there is the irreducible variety of the Y-axis (corresponding to the ideal (X, Z) and the irreducible variety of the YZ-plane (corresponding to the ideal (X)) which contains the Y.axis and thus the point. This also shows geometrically the results $ht(\mathfrak{m}_1) = 1$ and $ht(\mathfrak{m}_2) = 2$.