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• J-F. Quint, Systèmes dynamiques dans les espaces homogènes (Lecture notes, février
2012)

· §3.2 Mesure de Haar

• T. Tao, 245C, Notes 2: The Fourier transform
(https://terrytao.wordpress.com/2009/04/06/the-fourier-transform/#gelfand,
viewed 16 October 2017)

· In particular Exercise 2

• Course: Introduction to Lie Groups

1 Recap left-invariant Haar measures

Theorem 1 (Haar). For all locally compact groups G, there exists a non-zero, left-invariant
Radon measure mG on the Borel σ-algebra BG. That means that it has the following
properties:

• ∀A ∈ BG,∀g ∈ G : mG(gA) = mG(A) (left-invariance)

• It is finite on compact sets (locally finite)

• ∀A ∈ BG : mG(A) = sup {mG(K) : A ⊃ K,K ⊂ G compact} (inner regularity)

• ∀A ∈ BG : mG(A) = inf {mG(B) : A ⊂ B,B ⊂ G open} (outer regularity)

We have seen that such measures are positive on non-empty open sets.

The following theorem characterises measures with the above properties:

Theorem 2 (Part of Theorem C.4 (Haar) p. 431, see also Theorem (Haar) p. 243). Let
G be as in Theorem 1. Then left-invariant measures that are positive on non-empty open
sets and bounded on compact sets are unique up to scalingby a C ∈ R>0. 1

“Uniqueness” will be proved below, for the existence we refer to Folland Section 2.2 (or
one of the other references). 2

1In addition, it can be shown that mG(G) < ∞ if and only if G is compact (homework exercise). For
compact G it is usual to use the normalisation mG(G) = 1.

2For existence §8.3 in Einsiedler-Ward sketches the following argument, referring to Folland for details.
Existence is based on a covering argument: fix a compact set K0 and take an arbitrary open set V . Now
one can calculate the minimal amount of translations of V needed to cover K resp. K0. For carefully
chosen, small open sets V it can be shown that the ratio of these two numbers behaves nicely. In particular,
one can show that the limit of this ratio for arbitrarily small open sets V exists, which is then used to
define a measure on the Borel σ-algebra and to show the desired properties. The scaling of this Haar
measure depends on the choice of K0, which by construction has measure 1.
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2 Proof of uniqueness up to scaling

We will now prove the second part of Theorem 2. First we derive some results from
the theorem of Fubini–Tonelli for non-negative, measurable functions. The second step
uses the existence and uniqueness of Radon-Nikodym derivatives for absolutely continuous
measures. 3

With slight abuse of notation we write “Haar measure” for a measure satisfying the prop-
erties described in Theorem 2. Once we have proved the “uniqueness” we know that both
notions are equivalent.

Proposition 3 (Part of Corollary 8.6 pp. 246–247). Let G be a σ-locally compact group
with left-invariant Haar measure mG. Then for any two Borel sets B1, B2 ∈ BG with
mG(B1),mG(B2) > 0 we define O ..= {g ∈ G : mG(gB1∩B2) > 0} and find that mG(O) > 0.
4Moreover,

∀B ∈ BG : mG(B) > 0⇔ mG(B−1) > 0.

Proof. We note the following:
h ∈ gB1 ⇔ g ∈ hB−11

Together with the theorem of Fubini–Tonelli we find: 5∫
mG(gB1 ∩B2) dmG(g) =

∫∫
χgB1(h)χB2(h) dmG(h) dmG(g)

=

∫
χB2(h)

∫
χhB−1

1
(g) dmG(g) dmG(h)

= mG(hB−11 )

∫
χB2(h) dmG(h)

= mG(B−11 )mG(B2)

It proves the last part of the proposition: with B2 = G, mG(G) > 0 and 0∞ = 0 we find:

mG(B1)mG(G) = mG(B−11 )mG(G)

⇒ ∀B1 ∈ BG : mG(B1) > 0⇔ mG(B−11 ) > 0

Using that we get:∫
mG(gB1 ∩B2) dmG(g) = mG(B−11 )mG(B2) > 0 ⇒ mG(O) > 0

3Here we only use σ-finiteness of G, and left-invariance of mG 6≡ 0. See Hewitt-Ross Section 15 for a
proof of “uniqueness” that only uses local compactness of G. One could hope that Haar measures exist on
a larger class of spaces than the ones we study. A result in this direction is due to Weil, see Bekka–de la
Harpe–Valette Remark A.3.1.

4Below it is shown that O is open. In addition, the statement also holds for O = {g ∈ G : mG(B1g ∩
B2) > 0}.

5This is Fubini for non-negative, not necessarily integrable functions, a.k.a. the theorem of Fubini–
Tonelli. Note that Theorem A.13 p. 409 is also called Fubini–Tonelli, but covers the case of integrable
functions.
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Proof of Theorem 2. (this is part of the proof of Corollary 8.8 pp. 248–249)

Let m1,m2 be two left-invariant Haar measures and let m ..= m1 +m2, which is then also
a left-invariant Haar measure. In addition, m1,m2 are absolutely continuous with respect
to m. 6This implies that m1,m2 have (unique) densities f1, f2 : G → R≥0 (measurable)
such that dmi = fi dm for i ∈ {1, 2} (Theorem A.15). 7

What rests to be shown is that f1, f2 are constant m-a.e. Proof by contradiction: assume
f1 is not. Then there exist B1, B2 ∈ BG with m(B1),m(B2) > 0 and 8

∀x1 ∈ B1, x2 ∈ B2 : f1(x1) < f1(x2).

Proposition 3 for mG = m gives a g ∈ G such that 0 < m(gB1 ∩ B2) = m(B1 ∩ g−1B2).
For x ∈ B1 ∩ g−1B2 we have f1(x) < f1(gx).

On the other hand, we can use the left-invariance of m1 and m to find (for g as before):

∀E ∈ BG :

∫
E

f1(x) dm(x) = m1(E) = m1(g
−1E) =

∫
g−1E

f1 dm =

∫
E

f1(gx) dm(x)

The fact that it holds for all E and the uniqueness of Radon-Nikodym derivatives gives
f1(x) = f1(gx) m-a.e. This contradicts the fact that f1(·) < f1(g ·) on a set of positive
measure, and thus shows that f1 is constant m-a.e. The same holds for f2. Together we
find m1 = f1

f2
m2, where f1, f2 ∈ R>0.

3 The modular function (§C.2)

Given a left-invariant Haar measure mG and a g ∈ G, we can look at the following:

∀A ∈ BG : µ(A) ..= mG(Ag)

Note that µ is a left-invariant Haar measure as well, by Theorem 2 we know that ∃∆(g) ∈
R>0 : ∀A ∈ BG : mG(Ag) = ∆(g)mG(A). This defines the modular function:

∆ : G→ R>0

Theorem 2 implies that this definition is independent of the choice of left-invariant Haar
measure mG. It can be shown that ∆ is continuous, here we just highlight that it is a
homomorphism:

∆(hg) =
mG(Ahg)

mG(A)
=
mG(Ahg)

mG(Ah)
· mG(Ah)

mG(A)
=..

mG(Bg)

mG(B)
· mG(Ah)

mG(A)
= ∆(g)∆(h)

for any A ∈ BG with 0 < mG(A) <∞ and B ..= Ah.

G is called unimodular if ∆ ≡ 1, which is equivalent to left-invariant Haar measures also
being right-invariant.

6Absolutely continuous means that all m-null sets are also m1,m2-null.
7These are called Radon-Nikodym derivatives of mi with respect to m.
8To see this, look at the pre-images f−11 ([ kn ,

k+1
n )), the fact that f1 is not constant implies that for

suitable n two of them have non-zero measure.
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Examples of unimodular groups:

• Abelian groups

• Discrete groups 9

• Compact groups 10

• Semi-simple Lie groups 11

4 Specific examples of Haar measures

Example 4 (Partly corresponds to Example C.5).

• The Lebesgue measure λ on (Rn,+). 12

• The same is true for the torus (Tn,+).

• For discrete groups (groups with the discrete topology) the counting measure is a Haar
measure. 13

Example 5 (Partly corresponds to Example C.5).

• GLd(R) ⊂ Rd2 with the relative topology. We identify an element x ∈ GLd(R) with
the vector containing its components (x11, x12, . . . , xdd) ∈ Rd2. Up to scaling Haar
measures on GLd(R) are defined by:

dmG(x) ..=
dx11 dx12 · · · dxdd

| detx|d

We try the following Ansatz:

dx11 dx12 · · · dxdd
F (x)

= dmG(x)

= dmG(gx)

=
d(gx)11 d(gx)12 · · · d(gx)dd

F (gx)

=
dx11 dx12 · · · dxdd

F (gx)
| det Jac |

It rests to find the function F . The Jacobian of the coordinate change y = g • x is

9On which the counting measure is a Haar measure.
10The only compact subgroup of R > 0 is {1}, so the image of the compact group G under the continuous

map ∆ is {1}, which shows that ∆ ≡ 1.
11Shown in courses on Lie groups.
12The Lebesgue measure is regular, locally finite and invariant under translations.
13For example (Zn,+).
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(det g)d, which shows that F (x) = (det x)d. 14

• Note that GLd(R) is not abelian, not discrete and not compact, but nevertheless
unimodular. The proof of right-invariance is analogous to that of left-invariance. 15

Example 6 (Part of Example C.5).

• Affine translations:

G ..=

{(
a b

1

)
: a ∈ R∗, b ∈ R

}
This group is not unimodular, its left-invariant and right-invariant Haar measures
are given by:

µL ..=
da db

|a|2
; µR ..=

da db

|a|
so ∆(a, b) =

1

|a|
14[Footnote continues at the next page] The Jacobian of the coordinate change is the d2 × d2 matrix

g11I g21I · · · gd1I

g12I g22I · · · gd2I
...

...
. . .

...

g1dI g2dI · · · gddI


where I is the d×d identity matrix. We have yij =

∑d
k=1 gikxkj and hence

∂yij
∂xab

= giaδjb. After identifying

y, x with vectors of length d2 we find that the Jacobian is the matrix above. By an even number of row
and column exchanges this matrix can be transformed into

gt

gt

. . .

gt


which has determinant (det g)d. This implies that mG as defined above is invariant under coordinate
changes of the form y = g • x.

15 This time the Jacobian of the coordinate transformation z = x • g is
g

g
. . .

g


as we have zij =

∑d
k=1 xikgkj and hence

∂yij
∂xab

= gjbδia.
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The proof uses the Ansatz from the last example. 16

Example 7 (Part of Example C.5).

• The following observation shows us what the Haar measures on G ..= (R\{0}, ·) are.
We notice that for all a ∈ G:∫

f(ax)

|x|
dx =

∫
f(x)

|x|
dx

This shows that up to scaling:

dmG(x) ..=
dx

|x|

• Similarly, for G ..= (C\{0}, ·) writing G 3 z = x+ iy: 17

dmG(z) =
dx dy

x2 + y2

Haar measures can be used to take G-invariant averages. For example, if G has a linear
structure and a scalar product 〈·, ·〉 we can use a Haar measure to define a G-invariant
scalar product:

(x, y) ..=

∫
〈gx, gy〉 dmG(g)

5 Nice fact

Here we prove that the set O in Proposition 3 is open (Proposition 9). We use this to
derive that mGLd(R)(SLd(R)) = 0, which follows from Corollary 11.

In the proof of Proposition 9 we use the following lemma. 18

16The Jacobian of the coordinate transformation y = g · x with g = (a, b), x = (c, d) is(
a

a

)

with determinant a2, which explains the form of the left-invariant Haar measure. For the right-invariant
Haar measure we use that the Jacobian of the coordinate transformation y = x ·g with g = (a, b), x = (c, d)
is (

a

b 1

)
with determinant a.

17It is easy to see invariance under z 7→ az for a ∈ R>0 and a = eiθ, θ ∈ R.
18The proof of the lemma uses that continuous functions on compact sets are uniformly continuous. In

order to simplify the use of uniform compactness metrisable spaces are used. On topological groups it is
possible to define uniform continuity without using a metric. Instead of the uniform choice of δ > 0 such
that for all x ∈ G and y ∈ Bδ(x) we have the desired inequality, we can fix a neighbourhood B of the
identity and translate it using the group structure to get a neighbourhood xB of x for all x ∈ G. That
neighbourhood takes the role of Bδ(x). This is explained in
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Lemma 8 (Special case of Lemma 8.7 p. 247). Let G be a σ-locally compact metrisable
group acting continuously on a locally compact, σ-compact, metrisable space X. Let µ
be a locally finite measure on X that is invariant under G. Then, for p ∈ [1,∞) and
f ∈ Cc(X) ⊂ Lpµ(X) we get for all g ∈ G a function Ugf ∈ Lpµ(X) defined by

(Ugf)(x) ..= f(g−1 · x)

as there holds ‖Ugf‖p = ‖f‖p by G-invariance of µ. Moreover, the map

G→ Lpµ(X) : g 7→ Ugf

is continuous with respect to the ‖ · ‖p norm.

The proof can be found in the reference, or in next week’s class.

Proposition 9 (Part of Corollary 8.6 pp. 246–247). Let G be a σ-locally compact metris-
able group with left-invariant Haar measure mG. Then for any two Borel sets B1, B2 ∈ BG
with mG(B1),mG(B2) > 0 we have that O ..= {g ∈ G : mG(gB1 ∩ B2) > 0} is open and
non-empty.

Proof. We have shown mG(O) > 0 in Proposition 3.

It rests to show that O is open. Let g ∈ O. By σ-compactness of G we can write:

B1 = ∪n∈NAn

for An all having compact closure and hence finite measure. We get:

∃n ∈ N : 0 < mG(gAn ∩B2)

Moreover, for any g1 ∈ G:

mG(g1An ∩B2) =

∫
χg1AnχB2 dmG =

∫
χAn(g−11 h)χB2(h) dmG(h)

Writing f ..= χAn we have:

|mG(gAn ∩B2)−mG(g1An ∩B2)| ≤
∣∣∣∣∫ (f(g−1h)− f(g−11 h))χB2(h) dmG(h)

∣∣∣∣
≤ ‖f(g−1·)− f(g−11 ·)‖1

It now follows from Lemma 8 that this is arbitrarily small for g1 close enough to g. In
particular, it is smaller than mG(gAn ∩ B2), so 0 < mG(g1An ∩ B2) ≤ mG(g1B1 ∩ B2) ⇒
g1 ∈ O, for g1 close enough to g. 19

19 Actually, the statement also holds for {g ∈ G : mG(B1g∩B2) > 0}. Using that mG(B−11 ),mG(B−12 ) >
0 by Proposition 3 and that

{g ∈ G : mG(B1g ∩B2) > 0} = {h ∈ G : mG(hB−11 ∩B−12 ) > 0}−1

we find that {g ∈ G : mG(B1g ∩B2) > 0} is open and non-empty.
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Corollary 10. If B ∈ BG satisfies mG(B) > 0, then BB−1 ..= {b1b−12 : b1, b2 ∈ B} is a
neighbourhood of e with non-empty interior.

Proof.

[gB ∩B 6= ∅] ⇔ [∃b1, b2 ∈ B : gb1 = b2]⇔ [g = b2b
−1
1 ∈ BB−1]

Hence BB−1 ⊃ O, where O is the non-empty, open set from in Propositions 3 and 9.

Corollary 11. Let G be a locally compact topological group with left-invariant Haar mea-
sure mG. Then all subgroups B ⊂ G with empty interior have zero Haar measure.

Proof. The fact that B is a subgroup implies that BB−1 = B, which has empty interior
in G. The claim now follows from Corollary 10: if B has positive Haar measure, then the
corollary shows it has non-empty interior, which is a contradiction.

An example of this situation is SLd(R) ⊂ GLd(R) with the topology inherited from Rd2 .
With Corollary 11 we find mGLd(R)(SLd(R)) = 0.

6 Haar measures on SLd(R)

We look at G ..= SLd(R) ⊂ Rd2 with the relative topology.

Theorem 12. Up to a constant, the Haar measure of a set A ⊂ SLd(R) is given by the
volume of the cone in Rd2 between A and the origin. More precisely, up to a constant Haar
measures are given by:

∀A ∈ BG : λRd2 (∪t∈[0,1]tA) =.. ν(A)

20where λRd2 is the Lebesgue measure.

Sketch. For disjoint sets in SLd(R) the cones they span are disjoint as well, 21 so it follows
that ν is a measure. For compact A (closed and bounded) the cone is closed an bounded
as well, hence compact and of finite Lebesgue measure, so ν is locally finite.
By definition of the relative topology on SLd(R) it follows for non-empty open sets A ∈ BG
that each point in 1

2
A has positive distance to the boundary. 22 After reducing the radius

we find a ball that is contained in the cone spanned by A, which implies that ν(A) > 0, so
ν is positive on non-empty open sets.
For left-invariance we can use the example above. We found that for the transformation
y = g • x we have det Jac = (det g)d, which in our case is 1. Hence the Lebesgue measure
of ∪t∈[0,1]tA is preserved under g ∈ SLd(R).

20Note that the union ∪t∈[0,1]tA is disjoint, because the determinant of each element in tA equals td.
21For A = tn∈NAn we have tt∈[0,1]tA = tn∈N tt∈[0,1] tAn.
22Per definition ∃B ⊂ Rd2 open such that A = B ∩ SLd(R). Each point in A lies in B, which contains

an open ball around that point. Intersecting with A we find that each point in A has positive distance to
the boundary.
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