
Chapter 1

Measure-Theoretic Entropy,
Introduction

... nobody knows what entropy
really is, so in a debate you will
always have the advantage.

attr. von Neumann

Let (X,B, µ) be a probability space, and let T : X → X be a measurable map
which we will frequently also refer to as a transformation. We say that T is
measure-preserving, or equivalently that µ is T -invariant , if µ(T−1B) = µ(B)
for every B ∈ B. In this case we also say that (X,B, µ, T ) is a measure-
preserving system. A measure-preserving system is called ergodic if a mod-
ulo µ invariant set B must have measure µ(B) ∈ {0, 1}, where B ∈ B is
called invariant modulo µ if µ(B△T−1B) = 0. We refer to Appendix A for
a brief introduction to these and further concepts of ergodic theory and for
some important examples, and refer to [52] for a more thorough background.

Measure-theoretic entropy is a numerical invariant associated to a measure-
preserving system. The early part of the theory described here is due essen-
tially to Kolmogorov, Sinăı and Rokhlin, and dates(1) from the late 1950s. As
we will see in this chapter and even more so in Chapter 3 there is also a close
connection to information theory and the pioneering work of Shannon [184]
from 1948. The name ‘entropy’ for Shannon’s measure of information carry-
ing capacity was apparently suggested by von Neumann: Shannon is quoted
by Tribus and McIrvine [198] as recalling that

“My greatest concern was what to call it. I thought of calling it information, but the
word was overly used, so I decided to call it uncertainty. When I discussed it with
John von Neumann, he had a better idea. Von Neumann told me, ‘You should call it
entropy, for two reasons. In the first place your uncertainty function has been used
in statistical mechanics under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy really is, so in a debate you
will always have the advantage.’ ”

The purpose of this volume is to extend this advantage to the reader, who
will learn throughout these notes that entropy is a multifaceted notion of
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6 1 Measure-Theoretic Entropy, Introduction

great importance to ergodic theory, dynamical systems, and its applications.
For instance entropy can be used in order to distinguish special measures like
Haar measure from other invariant measures.

However, let us not jump ahead too much and note that one of the ini-
tial motivations for entropy theory was the following kind of question. The
Bernoulli shift on 2 symbols

σ(2) : {0, 1}Z → {0, 1}Z

defined by (σ(2)(x))n = xn+1 for every n ∈ Z and x ∈ {0, 1}Z preserves

the (12 ,
1
2 ) Bernoulli measure µ2 which is defined to be the product mea-

sure
∏

Z(
1
2 ,

1
2 ) on {0, 1}Z (see also Appendix A.4 for more general examples

of this type). Similarly, the Bernoulli shift on 3 symbols

σ(3) : {0, 1, 2}Z→ {0, 1, 2}Z

preserves the (1
3 ,

1
3 ,

1
3 ) Bernoulli measure µ3. Those two measure-preserving

systems share many properties, and in particular are unitarily equivalent in
the following sense. To any invertible measure-preserving system (X,B, µ, T )
one can associate a unitary operator UT : L2

µ(X) defined by UT (f) = f ◦ T
for all f ∈ L2

µ(X) (see also Section A.1.1). The two shift maps σ2 and σ3
are unitarily equivalent in the sense that there is an invertible linear opera-
tor W : L2

µ3
→ L2

µ2
with 〈Wf,Wg〉µ2

= 〈f, g〉µ3
and Uσ2 = WUσ3W

−1 (see
Exercise 2.4.4 for a description of a much larger class of measure-preserving
systems that are all spectrally indistinguishable).

Are σ(2) and σ(3) isomorphic as measure-preserving transformations? To
see that this is not out of the question, we note that Mešalkin [135] showed
that the (14 ,

1
4 ,

1
4 ,

1
4 ) Bernoulli shift is isomorphic to the one defined by the

probability vector (12 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ), see Section 1.7 for a brief description of the

isomorphism between these two maps.
It turns out that entropy is preserved by measurable isomorphism, and

the (12 ,
1
2 ) Bernoulli shift and the (13 ,

1
3 ,

1
3 ) Bernoulli shift have different en-

tropies and so they cannot be isomorphic.
The basic machinery of entropy theory will take some effort to develop,

but their interpretation in terms of information theory makes these very easy
to remember and highly intuitive.

1.1 Entropy of a Partition

Recall that a partition of a probability space (X,B, µ) is a finite or countably
infinite collection of disjoint (and, by assumption, always) measurable subsets
of X whose union is X , ξ = {A1, . . . , Ak} or ξ = {A1, A2, . . . }. We will
often think of a partition as being given with an explicit enumeration of its
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elements: that is, as a list of disjoint measurable sets that cover X . We will
use the word ‘partition’ both for a collection of sets and for an enumerated list
of sets. This is usually a matter of notational convenience but, for example,
in Sections 1.2, 1.4 and 1.7 it is essential that we work with an enumerated
list. For any partition ξ we define σ(ξ) to be the smallest σ-algebra containing
the elements of ξ. We will call the elements of ξ the atoms of the partition,
and write [x]ξ for the atom of ξ containing x. If the partition ξ is finite, then
the σ-algebra σ(ξ) is also finite and comprises the unions of elements of ξ.

If ξ and η are partitions, then η is said to be a refinement of ξ, written ξ 6 η
if each atom of ξ is a union of atoms of η. The common refinement of two
partitions ξ = {A1, A2, . . . } and η = {B1, B2, . . . }, denoted ξ ∨ η, is the
partition into all sets of the form Ai ∩Bj .

Notice that σ(ξ ∨ η) = σ(ξ) ∨ σ(η) where the right-hand side denotes
the σ-algebra generated by σ(ξ) and σ(η), equivalently the intersection of
all sub–σ–algebras of B containing both σ(ξ) and σ(η). This allows us to
move from partitions to sub-algebras with impunity. The notation

∨∞
n=0 ξn

will always mean the smallest σ-algebra containing σ(ξn) for all n > 0, and
we will also write ξn ր B as a shorthand for σ(ξn) ր B for an increasing
sequence of partitions that generate the σ-algebra B of X .

For a measurable map T : X → X and a partition ξ = {A1, A2, . . . } we
write T−1ξ for the partition {T−1A1, T

−1A2, . . . } obtained by taking pre-
images.

1.1.1 Basic Definition

A partition ξ = {A1, A2, . . . } may be thought of as giving the possible
outcomes 1, 2, . . . of an experiment, with the probability of outcome i be-
ing µ(Ai). The first step is to associate a number H(ξ) to ξ which describes
the amount of uncertainty about the outcome of the experiment, or equiv-
alently the amount of information gained by learning the outcome of the
experiment. Two extremes are clear: if one of the sets Ai has µ(Ai) = 1 then
there is no uncertainty about the outcome, and no information to be gained
by performing it, so H(ξ) = 0. At the opposite extreme, if each atom Ai of a
partition with k elements has µ(Ai) =

1
k , then we have maximal uncertainty

about the outcome, and H(ξ) should take on its maximum value (for given k)
for such a partition.

Definition 1.1. The entropy of a partition ξ = {A1, A2, . . . } is

Hµ(ξ) = H(µ(A1), . . . ) = −
∑

i>1

µ(Ai) logµ(Ai) ∈ [0,∞]

where 0 log 0 is defined to be 0. If ξ = {A1, . . . } and η = {B1, . . . } are
partitions, then the conditional entropy of the outcome of ξ once we have
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been told the outcome of η (briefly, the conditional entropy of ξ given η) is
defined to be

Hµ(ξ|η) =
∞∑

j=1

µ(Bj)H

(
µ(A1 ∩Bj)

µ(Bj)
,
µ(A2 ∩Bj)

µ(Bj)
, . . .

)
. (1.1)

The formula in (1.1) may be viewed as a weighted average of entropies
of the partition ξ conditioned (that is, restricted to each atom and then
normalized by the measure of that atom) on individual atoms Bj ∈ η.

Under the correspondence between partitions and σ-algebras, we may also
view Hµ as being defined on any σ-algebra corresponding to a countably
infinite or finite partition.

1.1.2 Essential Properties

Notice that the quantity Hµ(ξ) depends on the partition ξ only via the proba-
bility vector (µ(A1), µ(A2), . . . ). Restricting to finite probability vectors, the
entropy function H is defined on the space of finite-dimensional simplices

∆ =
⋃

k

∆k

where ∆k = {(p1, . . . , pk) | pi > 0,
∑
pi = 1}, by

H(p1, . . . , pk) = −
k∑

i=1

pi log pi.

Remarkably, the function in Definition 1.1 is essentially the only function
obeying a natural set of properties reflecting the idea of quantifying the
uncertainty about the outcome of an experiment. We now list some basic
properties of Hµ(·), H(·), and Hµ(·

∣∣·). Of these properties, (1) and (2) are
immediate consequences of the definition, and (3) and (4) will be shown later.

(1) H(p1, . . . , pk) > 0, and H(p1, . . . , pk) = 0 if and only if some pi = 1.
(2) H(p1, . . . , pk, 0) = H(p1, . . . , pk).
(3) For each k > 1, H restricted to ∆k is continuous, independent under

permutation of the variables, and attains the maximum value log k at
the point ( 1

k , . . . ,
1
k ).

(4) Hµ(ξ ∨ η) = Hµ(η) +Hµ(ξ|η).
Khinchin [102, p. 9] showed that Hµ as defined in Definition 1.1 is the only
function with these properties. In this chapter all these properties of the
entropy function will be derived, but Khinchin’s characterization of entropy
in terms of the properties (1) to (4) above will not be used and will not be
proved here.
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1.1.3 Convexity

Many of the most fundamental properties of entropy are a consequence of
convexity, and we now recall some elementary properties of convex functions.

Definition 1.2. A function ψ : (a, b)→ R is convex if

ψ

(
n∑

i=1

tixi

)
6

n∑

i=1

tiψ(xi)

for all xi ∈ (a, b) and ti ∈ [0, 1] with
∑n

i=1 ti = 1, and is strictly convex if

ψ

(
n∑

i=1

tixi

)
<

n∑

i=1

tiψ(xi)

unless xi = x for some x ∈ (a, b) and all i with ti > 0.

Let us recall a simple consequence of this definition. Suppose that

a < s < t < u < b.

Then convexity of ψ implies that

ψ(t) = ψ

(
u− t
u− ss+

t− s
u− su

)
6
u− t
u− sψ(s) +

t− s
u− sψ(u),

which is equivalent to the following monotonicity of slopes

ψ(t)− ψ(s)
t− s 6

ψ(u)− ψ(t)
u− t . (1.2)

Note that strict convexity would give a strict inequality in (1.2).

Lemma 1.3 (Jensen’s inequality). Let ψ : (a, b) → R be a convex func-
tion and let f : X → (a, b) be a measurable function in L1

µ on a probability
space (X,B, µ). Then

ψ

(∫
f(x) dµ(x)

)
6

∫
ψ (f(x)) dµ(x). (1.3)

If in addition ψ is strictly convex, then

ψ

(∫
f(x) dµ(x)

)
<

∫
ψ (f(x)) dµ(x) (1.4)

unless f(x) = t for µ-almost every x ∈ X for some fixed t ∈ (a, b).

In this lemma we permit a = −∞ and b =∞. Similar conclusions hold on
half-open and closed intervals.
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Proof of Lemma 1.3. Let t =

∫
f dµ, so that t ∈ (a, b). Let

β = sup
a<s<t

{
ψ(t)− ψ(s)

t− s

}
,

so that, by (1.2),

β 6 inf
t<u<b

{
ψ(u)− ψ(t)

u− t

}
.

It follows that ψ(s) > ψ(t) + (s− t)β for any s with a < s < b, so

ψ (f(x))− ψ(t)− (f(x)− t)β > 0 (1.5)

for every x ∈ X . Since ψ is continuous,† the map x 7→ ψ (f(x)) is measurable
and so we may integrate (1.5) to get

∫
ψ ◦ f dµ− ψ

(∫
f dµ

)
− β

∫
f dµ+ β

∫
f dµ > 0,

showing (1.3).
If ψ is strictly convex, then ψ(s) > ψ(t) + β(s − t) for all s > t and for

all s < t. If f is not equal almost everywhere to a constant, then f(x)−t takes
on both negative and positive values on sets of positive measure, proving (1.4).

�

We note that only (1.2) was needed to prove Lemma 1.3, which shows
that φ′′ > 0 implies convexity and φ′′ > 0 implies strict convexity only using
the mean value theorem of analysis.

We now apply this to the function x 7→ x log x in the definition of entropy.
Define the function φ : [0,∞)→ R by

φ(x) =

{
0 if x = 0;

x log x if x > 0.
(1.6)

Clearly the choice of φ(0) means that φ is continuous at 0. The graph of φ is
shown in Figure 1.1; the minimum value occurs at x = 1/e.

Since φ′′(x) = 1
x > 0 and (x 7→ − log x)′′ = 1

x2 > 0 on (0, 1], we get the
following fundamental lemma.

Lemma 1.4 (Convexity). The function x 7→ φ(x) is strictly convex on [0,∞)
and the function x 7→ − logx is strictly convex on (0,∞).

A consequence of this is that the maximum amount of information in a
partition arises when all the atoms of the partition have the same measure.

† On open sub-intervals, this is a consequence of the monotonicity of slopes in (1.2). On half-
open intervals, continuity may fail at an end point, but this does not affect measurability.
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11/e

Fig. 1.1: The graph of x 7→ φ(x).

Proposition 1.5 (Maximal entropy). If ξ is a partition with k atoms,
then

Hµ(ξ) 6 log k,

with equality if and only if µ(P ) = 1
k for each atom P of ξ.

This establishes property (3) of the function H : ∆→ [0,∞) from page 8.
We also note that this proposition is a precursor of many characterizations of
‘uniform measures’ as being those with ‘maximal entropy’ (see Example 1.28
for the first instance of this phenomenon).

Proof of Proposition 1.5. By Lemma 1.4, if some atom P has µ(P ) 6= 1
k ,

then
− 1

k log k = φ
(
1
k

)
= φ

( ∑

P∈ξ

1
kµ(P )

)
<
∑

P∈ξ

1
kφ (µ(P )) ,

so
−
∑

P∈ξ

µ(P ) logµ(P ) < log k.

If µ(P ) = 1
k for all P ∈ ξ, then Hµ(ξ) = log k. �

1.1.4 Proof of Essential Properties

It will be useful to introduce a function associated to a partition ξ closely
related to the entropy Hµ(ξ).

Definition 1.6. The information function of a partition ξ is defined by

Iµ(ξ)(x) = − logµ ([x]ξ) ,
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where [x]ξ ∈ ξ is the partition element with x ∈ [x]ξ. Moreover, if η is another
partition, then the conditional information function of ξ given η is defined
by

Iµ
(
ξ
∣∣η
)
(x) = − log

µ([x]ξ∨η)

µ([x]η)
.

In the next proposition we give the remaining main properties of the en-
tropy function, and in particular we prove property (4) from page 8.

Proposition 1.7 (Additivity and Monotonicity). Let ξ and η be count-
able partitions of (X,B, µ). Then

(1) Hµ (ξ) =

∫
Iµ (ξ) dµ and Hµ

(
ξ
∣∣η
)
=

∫
Iµ
(
ξ
∣∣η
)
dµ;

(2) Iµ(ξ ∨ η) = Iη(ξ) + Iµ(ξ
∣∣η), Hµ(ξ ∨ η) = Hµ(η) + Hµ(ξ

∣∣η) and so,
if Hµ(ξ) <∞, then

Hµ(ξ
∣∣η) = Hµ(ξ ∨ η)−Hµ(η);

(3) Hµ(ξ ∨ η) 6 Hµ(ξ) +Hµ(η);
(4) if η and ζ are partitions of finite entropy, then Hµ(ξ

∣∣η ∨ ζ) 6 Hµ(ξ
∣∣ζ).

We note that all the properties in Proposition 1.7 fit very well with the
interpretation of Iµ(ξ)(x) as the information gained about the point x by
learning which atom of ξ contains x, and of Hµ(ξ) as the average informa-
tion. Thus (2) says that the information gained by learning which element of
the refinement ξ∨η contains x is equal to the information gained by learning
which atom of ξ contains x added to the information gained by learning in
addition which atom of η contains x given the earlier knowledge about which
atom of ξ contains x. The reader may find it helpful to give similar inter-
pretations of the various entropy and information identities and inequalities
that come later.

Example 1.8. Notice that the relation Hµ(ξ
∣∣η) 6 Hµ(ξ) for entropy (see

property (4) above) does not hold for the information function Iµ
(
·
∣∣·
)
. For

example, let ξ and η denote the partitions of [0, 1]2 shown in Figure 1.2, and
let m denote the two-dimensional Lebesgue measure on [0, 1]2. Then

Im (ξ) = log 2

while

Im
(
ξ
∣∣η
)
is

{
> log 2 in the shaded region;
< log 2 outside the shaded region.

Proof of Proposition 1.7. Write ξ = {A1, A2, . . . } and η = {B1, B2, . . . };
then
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η ξ ξ ∨ η

Fig. 1.2: Partitions ξ and η and their refinement.

∫
Iµ(ξ

∣∣η) dµ = −
∑

Ai∈ξ,

Bj∈η

(
log

µ(Ai ∩Bj)

µ(Bj)

)
µ(Ai ∩Bj)

= −
∑

Bj∈η

µ(Bj)
∑

Ai∈ξ

µ(Ai ∩Bj)

µ(Bj)
log

(
µ(Ai ∩Bj)

µ(Bj)

)

=
∑

Bj∈η

µ(Bj)H

(
µ(A1 ∩Bj)

µ(Bj)
, . . .

)
= Hµ(ξ

∣∣η),

showing the second formula in (1), and hence the first by setting η = {X}.
Notice that

Iµ(ξ ∨ η)(x) = − logµ([x]ξ ∩ [x]η)

= − logµ([x]η)− log
µ([x]η ∩ [x]ξ)

µ([x]η)

= Iµ(η)(x) + Iµ(ξ
∣∣η)(x),

which gives (2) by integration.
By convexity of φ,

Hµ(ξ
∣∣η) = −

∑

Ai∈ξ

∑

Bj∈η

µ(Bj)φ

(
µ(Ai ∩Bj)

µ(Bj)

)

6 −
∑

Ai∈ξ

φ


∑

Bj∈η

µ(Bj)
µ(Ai ∩Bj)

µ(Bj)




6 −
∑

Ai∈ξ

φ(µ(Ai)) = Hµ(ξ),

showing (3).
Finally, using the above and the already established additivity property (2)

we get
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Hµ(ξ
∣∣η ∨ ζ) = Hµ(ξ ∨ η ∨ ζ) −Hµ(η ∨ ζ)

= Hµ(ζ) +Hµ(ξ ∨ η
∣∣ζ)−Hµ(ζ)−Hµ(η

∣∣ζ)
=
∑

C∈ζ

µ(C)
(
Hµ(C)−1µ|C (ξ ∨ η)−Hµ(C)−1µ|C (η)

)

=
∑

C∈ζ

µ(C)Hµ(C)−1µ|C (ξ
∣∣η)

6
∑

C∈ζ

µ(C)Hµ(C)−1µ|C (ξ) = Hµ(ξ
∣∣ζ).

�

Exercises for Section 1.1

Exercise 1.1.1. Find countably infinite partitions ξ, η of [0, 1] with Hm(ξ) finite and
with Hm(η) infinite, where m is Lebesgue measure.

Exercise 1.1.2. Show that the function d(ξ, η) = Hµ(ξ
∣∣η) + Hµ(η

∣∣ξ) defines a metric
on the space of all partitions (considered up to sets of measure zero) of a probability
space (X,B, µ) with finite entropy.

Exercise 1.1.3. Two partitions ξ, η are independent, denoted ξ ⊥ η, if

µ(A ∩B) = µ(A)µ(B)

for all A ∈ ξ and B ∈ η. Prove that ξ and η with finite entropy are independent if and
only if Hµ(ξ ∨ η) = Hµ(ξ) +Hµ(η).

Exercise 1.1.4. Extend Proposition 1.7(2) to a conditional form by showing that

Hµ(ξ ∨ η
∣∣ζ) = Hµ(ξ

∣∣ζ) +Hµ(η
∣∣ξ ∨ ζ) (1.7)

for countable partitions ξ, η, ζ.

Exercise 1.1.5. For partitions ξ = {A1, . . . , An}, η = {B1, . . . , Bn} of fixed cardinality
(and thought of as ordered lists), show that (ξ, η) 7→ Hµ(ξ

∣∣η) = Hµ(ξ ∨ η) − Hµ(η) is a
continuous function of ξ and η with respect to the metric

d(ξ, η) =

n∑

i=1

µ(Ai△Bi).

Exercise 1.1.6. Define sets Ψk(X) = {partitions of X with k or fewer atoms},

Ψ<∞(X) =
⋃

k>1

Ψk

and Ψ(X) = {partitions of X with finite entropy}. Prove that Ψk(X) and Ψ(X) are com-
plete metric spaces under the entropy metric from Exercise 1.1.2. Prove that Ψ<∞(X) is
dense in Ψ(X).
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1.2 Compression Algorithms

In this section we discuss a clearly related but slightly different point of view
on the notions of information and entropy for finite or countably infinite
partitions.(2) It will be important here to think of a finite or countably infinite
partition ξ = (A1, A2, . . . ) as an ordered list rather than a set of subsets. We
will refer to the indices 1, 2, . . . in the chosen enumeration of ξ as symbols or
source symbols in the alphabet, which is a subset of N.

We wish to encode each symbol by a finite binary sequence d1 . . . dℓ of
length ℓ > 1 with d1, . . . , dℓ ∈ {0, 1} with the following properties:

(1) every finite binary sequence is the code of at most one symbol

i ∈ {1, 2, . . .};

(2) if d1 . . . dℓ is the code of some symbol then for every k < ℓ the binary
sequence d1 . . . dk is not the code of a symbol.

A code, which, (because of the second condition) is also referred to as a
prefix-free code, is then a map

S : {1, 2, . . .} →
⋃

ℓ>1

{0, 1}ℓ

with these two properties.
These two properties allow the code to be decoded: given a code d1 . . . dℓ

the symbol encoded by the sequence can be deduced, and if the code is read
from the beginning it is possible to work out when the whole sequence for
that symbol has been read. Clearly the last requirement is essential if we
want to successfully encode and decode not just a single symbol i but a list
of symbols w = i0i1 . . . ir. We will call such a list of symbols a name in the
alphabet {1, 2, . . .}. Because of the properties assumed for a code S we may
extend the code from symbols to names by simply concatenating the codes
of the symbols in the name to form one binary sequence S(i0)S(i1) . . .S(ir)
without needing separators between the codes for individual symbols. The
properties of the code mean that there is well-defined decoding map defined
on the set of codes of names.

Example 1.9. (1) A simple example of a code defined on the alphabet {1, 2, 3}
is given by S(1) = 0, S(2) = 10, S(3) = 11. In this case the binary se-
quence 100011 is the code of the name 2113, because property (2) means
that the sequence 100011 may be parsed into codes of symbols uniquely
as 10

∣∣0
∣∣0
∣∣11 = S(2)S(1)S(1)S(3).

(2) Consider the set of all words appearing in a given dictionary. The goal of
encoding names might be to find binary representations of sentences consist-
ing of English words chosen from the dictionary appearing in this book.
(3) A possible code for the infinite alphabet {1, 2, 3, · · · } is given by
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1 7−→ 10

2 7−→ 110

3 7−→ 1110

and so on. Clearly this also gives a code for any finite alphabet.

Given that there are many possible codes, a natural question is to ask
for codes that are optimal with respect to some notion of weight or cost. To
explore this we need additional structure, and in particular need to make
assumptions about how frequently different symbols appear. Assume that
every symbol has an assigned probability vi ∈ [0, 1], so that

∑∞
i=1 vi = 1. In

Example 1.9(2), we may think of vi as the relative frequency of the English
word represented by i in this book.

Let |S(i)| denote the length of the codeword S(i). Then the average length
of the code is

L(S) =
∑

i

vi|S(i)|,

which may be finite or infinite depending on the code.
We wish to think of a code S as a compression algorithm, and in this

viewpoint a code S is better (on average more efficient) than another code S′

if the average length of the code S is smaller than the average length of
the code S′. This allows us to give a new interpretation of the entropy of
a partition in terms of the average length of an optimal code for a given
distribution of relative frequencies.

Lemma 1.10 (Lower bound on average code length). For any code S
the average length satisfies

L(S) log 2 > H(v1, v2, . . . ) = −
∑

i

vi log vi.

In other words the entropyH(v1, v2, . . . ) of a probability vector (v1, v2, . . . )
gives a lower bound on the average effectiveness of any possible compression
algorithm for the symbols (1, 2, . . . ) with relative frequencies (v1, v2, . . . ).

Proof of Lemma 1.10. We claim that the requirements on the code S imply
Kraft’s inequality(3) ∑

i

2−|S(i)| 6 1. (1.8)

To see this relation, interpret a binary sequence d1 . . . dℓ as the address of the
binary interval

I(d1 . . . dℓ) =
(
d1

2 + d2

22 + · · ·+ dℓ

2ℓ ,
d1

2 + d2

22 + · · ·+ dℓ+1
2ℓ

)
(1.9)

of length 1
2ℓ . The requirements on the code mean precisely that all the inter-

vals I(S(i)) for i = 1, 2, . . . are disjoint, which proves (1.8). The lemma now
follows by convexity of x 7→ − log x (see Lemma 1.4):
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L(S) log 2−H(v1, v2, . . . ) =
∑

i

vi|S(i)| log 2 +
∑

i

vi log vi

= −
∑

i

vi log

(
2−|S(i)|

vi

)
> − log

∑

i

1

2|S(i)|
> 0.

�

Lemma 1.10 and its proof suggest that there might always be a code that
is as efficient as entropy considerations allow. As we show next, this is true
if the algorithm is allowed a small amount of wastage.

Starting with the probability vector (v1, v2, . . . ) we may assume, by re-
ordering if necessary, that v1 > v2 > · · · . Define ℓi = ⌈− log2 vi⌉ (where ⌈t⌉
denotes the smallest integer greater than or equal to t), so that ℓi is the
smallest integer with 1

2ℓi
6 vi. Starting with the first digit, associate to i = 1

the interval I1 =
(
0, 1

2ℓ1

)
, to i = 2 the interval I2 =

(
1

2ℓ1
, 1
2ℓ1

+ 1
2ℓ2

)
, and in

general associate to i the interval

Ii =




i−1∑

j=1

1

2ℓj
,

i∑

j=1

1

2ℓj




of length 1
2ℓi

. We claim that every such interval is the interval I(S(i)) for a
unique address S(i) = d1 . . . d|S(i)| as in (1.9).

Lemma 1.11 (Near optimal code). Given a probability vector (v1, v2, . . . )
(permuting the indices if neccessary to assume v1 > v2 > · · · ), there exists a
code S, called the Shannon code, such that

Ii =




i−1∑

j=1

1

2ℓj
,

i∑

j=1

1

2ℓj


 = I(S(i)) =




|S(i)|∑

k=1

dk
2k
,

|S(i)|∑

k=1

dk
2k

+
1

2|S(i)|


 .

is the interval with the address S(i) = d1 · · · d|S(i)|. The Shannon code satisfies

|S(i)| = ⌈− log2 vi⌉

and hence L(S) log 2 6 H(v1, v2, . . . ) + log 2.

That is, the entropy (divided by log 2) is, to within one digit, the best
possible average length of a code encoding the alphabet with the given prob-
ability vector describing its relative frequency distribution.

Proof of Lemma 1.11. The requirement that a binary interval I =
(

a
2m ,

b
2n

)

with a, b ∈ N0 and m,n ∈ N has an address d1 . . . dℓ in the sense of (1.9) is
precisely the requirement that we can choose to represent the endpoints a

2m

and b
2n in such a way that a

2m = a′

2ℓ
, b

2n = b′

2ℓ
and b′ − a′ = 1. In other

words, the length of the interval must be a power 1
2ℓ

of 2 with ℓ > m,n.
The ordering of ξ chosen and the construction of the intervals ensures this
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property. It follows that every interval Ii constructed coincides with I(S(i))
for some binary sequence S(i) of length |S(i)|. The disjointness of the intervals
ensures that S is a code.

The average length of the code S is, by definition,

L(S) =
∑

i

vi|S(i)| = −
1

log 2

∑

i

vi log
1

2|S(i)|

6 − 1

log 2

∑

i

vi log
(vi
2

)
=

1

log 2
H(v1, v2, . . . ) + 1.

�

Lemmas 1.10 and 1.11 together comprise the source coding theorem of
information theory.

Using the Shannon code, we interpret the information (measured by the
information function) up to one digit as the number of digits needed to encode
a symbol.

1.3 Entropy of a Measure-Preserving Transformation

In the last two sections we introduced and studied in some detail the notions
of entropy and conditional entropy for partitions. In this section we start to
apply this theory to the study of measure-preserving transformations, starting
with the simple observation that such a transformation preserves conditional
entropy in the following sense.

Lemma 1.12 (Invariance). Let (X,B, µ, T ) be a measure-preserving sys-
tem and let ξ, η be partitions. Then

Hµ

(
ξ
∣∣η
)
= Hµ

(
T−1ξ

∣∣T−1η
)

and
Iµ
(
ξ
∣∣η
)
◦ T = Iµ

(
T−1ξ

∣∣T−1η
)
. (1.10)

Proof. It is enough to show (1.10). Notice that T−1[Tx]η = [x]T−1η for all x,
so

Iµ
(
ξ
∣∣η
)
(Tx) = − log

µ([Tx]ξ ∩ [Tx]η)

µ([Tx]η)

= − log
µ([x]T−1ξ ∩ [x]T−1η)

µ([x]T−1η)
= Iµ

(
T−1ξ

∣∣T−1η
)
(x).

�
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We are going to define the notion of entropy of a measure-preserving trans-
formation; in order to do this a standard(4) result about convergence of sub-
additive sequences is needed.

Lemma 1.13 (Fekete). Let (an) be a sequence of elements of R ∪ {−∞}
with the sub-additive property

am+n 6 am + an

for all m,n > 1. Then ( 1nan) converges (possibly to −∞), and

lim
n→∞

1

n
an = inf

n>1

1

n
an.

Proof. If an = −∞ for some n > 1 then by the sub-additive property we
have an+k = −∞ for all k > 1, so the result holds (with limit −∞).

Assume now that an > −∞ for all n, and let a = infn∈N{an

n }, so an

n > a
for all n > 1. We assume here that a > −∞ and leave the case a = −∞ as
an exercise. In our applications, we will always have an > 0 for all n > 1 and
hence a > 0. Given ε > 0, pick k > 1 such that ak

k < a + 1
2ε. Now by the

sub-additive property, for any m > 1 and j, 0 6 j < k,

amk+j

mk + j
6

amk

mk + j
+

aj
mk + j

6
amk

mk
+

aj
mk

6
mak
mk

+
ja1
mk

6
ak
k

+
a1
m

< a+
1

2
ε+

a1
m
.

So, if n is chosen large enough and we apply division with remainder to
write n = mk + j, then we may assume that a1

m < 1
2ε, then

an

n < a + ε as
required. �

This simple lemma will be applied in the following way. Let T be a
measure-preserving transformation of (X,B, µ), and let ξ be a partition of X
with finite entropy. Recall that we can think of ξ as an experiment with at
most countably many possible outcomes, represented by the atoms of ξ. The
entropy Hµ(ξ) measures the average amount of information conveyed about
the points of the space by learning the outcome of this experiment. This
quantity could be any non-negative number (or infinity) and of course has
nothing to do with the transformation T .

If we think of T : X → X as representing evolution in time, then the
partition T−1ξ corresponds to the same experiment one time unit later. In this
sense the partition ξ∨T−1ξ represents the joint outcome of the experiment ξ
carried out now and in one unit of time, soHµ(ξ∨T−1ξ) measures the average



20 1 Measure-Theoretic Entropy, Introduction

amount of information obtained by learning the outcome of the experiment
applied twice in a row.

Assume for a moment that the partition T−kξ is independent (see the
definition in Exercise 1.1.3) of

ξ ∨ T−1ξ ∨ · · · ∨ T−(k−1)ξ

for all k > 1. Then

Hµ(ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ) = Hµ(ξ) + · · ·+Hµ(T
−(n−1)ξ) = nHµ(ξ)

for all n > 1 by an induction using Exercise 1.1.3 and the invariance property
in Lemma 1.12. In general, subadditivity of entropy (Proposition 1.7(3)) and
Lemma 1.12 show that

Hµ(ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ) 6 Hµ(ξ) + · · ·+Hµ(T
−(n−1)ξ) = nHµ(ξ),

so the quantityHµ(ξ∨T−1ξ∨· · ·∨T−(n−1)ξ) grows at most linearly in n. This
asymptotic linear growth rate will in general depend on the partition ξ, but
once this dependence is eliminated the resulting rate is an invariant associated
to T , the (dynamical) entropy of T with respect to µ.

By the same argument as above, one sees that the sequence (an) defined
by

an = Hµ(ξ ∨ T−1ξ ∨ · · · ∨ T−(n−1)ξ)

is sub-additive in the sense of Lemma 1.13, which shows the claimed conver-
gence and the second equality in the next definition.

Definition 1.14. Let (X,B, µ, T ) be a measure-preserving system and let ξ
be a partition of X with finite entropy. Then the entropy of T with respect
to ξ is

hµ(T, ξ) = lim
n→∞

1

n
Hµ

(
n−1∨

i=0

T−iξ

)
= inf

n>1

1

n
Hµ

(
n−1∨

i=0

T−iξ

)
.

The entropy of T is
hµ(T ) = sup

ξ:Hµ(ξ)<∞

hµ(T, ξ).

One fact that might explain why entropy is such a useful notion is that
there are many possible ways to define entropy. Let us give immediately a
second possible definition. As always we ask the reader to find reasonable
descriptions of the entropy expressions in terms of information gain (instead
of just relying on our formal manipulations of the entropy expressions).

Proposition 1.15 (Entropy conditioned on future). If (X,B, µ, T ) is a
measure-preserving system and ξ is a countable partition with finite entropy,
then
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hµ(T, ξ) = lim
n→∞

Hµ

(
ξ
∣∣

n∨

i=1

T−iξ

)
.

Proof. The limit exists by monotonicity of entropy (Proposition 1.7(4)). By
additivity of entropy (Proposition 1.7(2)) we also have for any n > 1 that

Hµ

(n−1∨

i=0

T−iξ

)
= Hµ

(
T−(n−1)ξ

)
+Hµ

(
T−(n−2)ξ

∣∣T−(n−1)ξ
)

+ · · ·+Hµ

(
ξ
∣∣
n−1∨

i=1

T−iξ

)

= Hµ (ξ) +Hµ

(
ξ
∣∣T−1ξ

)
+ · · ·+Hµ

(
ξ
∣∣
n−1∨

i=1

T−iξ

)
,

where we used invariance (Lemma 1.12) in the last step. Thus

1

n
Hµ

(n−1∨

i=0

T−iξ

)
=

1

n

(
Hµ (ξ) +

n−1∑

j=1

Hµ

(
ξ
∣∣

j∨

i=1

T−iξ

))
,

showing the result since the Césaro limit of a convergent sequence coincides
with the limit of the original sequence. �

Example 1.16. Let X(2) = {0, 1}Z with the Bernoulli (1
2 ,

1
2 ) measure µ(2),

preserved by the shift σ(2). Consider the state partition

ξ = {[0]0, [1]0}

where [0]0 = {x ∈ X(2) | x0 = 0} and [1]0 = {x ∈ X(2) | x0 = 1} are cylinder

sets. The partition σ−k
(2) (ξ) is independent of

∨k−1
j=0 σ

−j
(2)ξ for all k > 1, so

hµ(2)
(σ(2), ξ) = lim

n→∞

1

n
Hµ(2)

(
n−1∨

i=0

σ−i
(2)ξ

)
= lim

n→∞

1

n
log 2n = log 2.

1.3.1 Elementary Properties

Notice that we are not yet in a position to compute hµ(2)
(σ(2)) from Exam-

ple 1.16, since this is defined as the supremum over all partitions in order
to make the definition independent of the choice of ξ. In order to calcu-
late hµ(2)

(σ(2)) the basic properties of entropy need to be developed further.
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Proposition 1.17. Let (X,B, µ, T ) be a measure-preserving system on a
probability space, and let ξ and η be countable partitions of X with finite
entropy. Then we have

(1) (Trivial bound) hµ(T, ξ) 6 Hµ(ξ);
(2) (Subadditivity) hµ(T, ξ ∨ η) 6 hµ(T, ξ) + hµ(T, η);
(3) (Continuity bound) hµ(T, η) 6 hµ(T, ξ) +Hµ(η

∣∣ξ).

Proof. In this proof we will make use of Proposition 1.7 without particular
reference. These basic properties of entropy will be used repeatedly later.

(1): For any n > 1,

1

n
Hµ

(
n−1∨

i=0

T−iξ

)
6

1

n

n−1∑

i=0

Hµ(T
−iξ) =

1

n

n−1∑

i=0

Hµ(ξ) = Hµ(ξ).

(2): For any n > 1,

1

n
Hµ

(
n−1∨

i=0

T−i(ξ ∨ η)
)

6
1

n
Hµ

(
n−1∨

i=0

T−iξ

)
+

1

n
Hµ

(
n−1∨

i=0

T−iη

)
.

Subadditivity follows by taking n→∞.

(3): For any n > 1,

hµ(T, η) = lim
n→∞

1

n
Hµ

(
n−1∨

i=0

T−iη

)

6 lim
n→∞

1

n
Hµ

(
n−1∨

i=0

T−i(ξ ∨ η)
)

(= hµ(T, ξ ∨ η))

= lim
n→∞

[
1

n
Hµ

(
n−1∨

i=0

T−iξ

)
+

1

n
Hµ

(
n−1∨

i=0

T−iη
∣∣
n−1∨

i=0

T−iξ

)]

6 hµ(T, ξ) + lim
n→∞

1

n

n−1∑

i=0

Hµ(T
−iη
∣∣T−iξ)

︸ ︷︷ ︸
=Hµ(η|ξ)

by the invariance property in Lemma 1.12. Taking n → ∞ we obtain the
continuity bound. �

Proposition 1.18 (Iterates). Let (X,B, µ, T ) be a measure-preserving sys-
tem on a probability space and ξ a countable partition of X with finite entropy.
Then

(1) hµ(T, ξ) = hµ
(
T,
∨k

i=0 T
−iξ
)
for all k > 1;
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(2) for invertible T ,

hµ(T, ξ) = hµ(T
−1, ξ) = hµ

(
T,

k∨

i=−k

T−iξ

)

for all k > 1;
(3) hµ(T

k) = khµ(T ) for k > 1; and
(4) hµ(T ) = hµ(T

−1) if T is invertible.

Proof. (1): For any k > 1,

hµ

(
T,

k∨

i=0

T−iξ
)
= lim

n→∞

1

n
Hµ

(n−1∨

j=0

T−j

( k∨

i=0

T−iξ

))

= lim
n→∞

1

n
Hµ

(k+n−1∨

i=0

T−iξ

)

= lim
n→∞

(
k + n

n

)
1

k + n
Hµ

(k+n−1∨

i=0

T−iξ

)
= hµ(T, ξ).

(2): For any n > 1, the invariance property (Lemma 1.12) shows that

Hµ

(n−1∨

i=0

T iξ

)
= Hµ

(
T−(n−1)

n−1∨

i=0

T iξ

)
= Hµ

(n−1∨

i=0

T−iξ

)
.

Dividing by n and taking the limit gives the first statement, and the second
equality follows easily along the lines of (1).

(3): For any partition ξ with finite entropy,

lim
n→∞

1

n
Hµ

(n−1∨

j=0

T−kj

(k−1∨

i=0

T−iξ

))
= lim

n→∞

k

nk
Hµ

(nk−1∨

i=0

T−iξ

)
=khµ(T, ξ).

It follows that

hµ

(
T k,

k−1∨

i=0

T−iξ

)
= khµ(T, ξ),

so khµ(T ) 6 hµ(T
k).

For the reverse inequality, notice that

hµ
(
T k, η

)
6 hµ

(
T k,

k−1∨

i=0

T−iη

)
= khµ (T, η) ,

so hµ(T
k) 6 khµ(T ).
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(4): This follows from (2). �

Lemma 1.19 (Finite vs. finite entropy). Entropy can be computed using
finite partitions only, in the sense that

sup
η finite

hµ(T, η) = sup
ξ:Hµ(ξ)<∞

hµ(T, ξ).

In fact, for every countable partition ξ with finite entropy and ε > 0 there
exists a finite partition η (measurable with respect to σ(ξ)) with Hµ(ξ|η) < ε.

Proof. Any finite partition has finite entropy, so

sup
η finite

hµ(T, η) 6 sup
ξ:Hµ(ξ)<∞

hµ(T, ξ).

For the reverse inequality, let ξ be any partition with Hµ(ξ) < ∞. By the
continuity bound in Proposition 1.17(3) it suffices to show the last claim in
the lemma. To see this, let ξ = {A1, A2, . . . } and define

η =

{
A1, A2, . . . , AN , BN = Xr

N⋃

n=1

An

}
,

so that µ(BN )→ 0 as N →∞. Then

Hµ(ξ
∣∣η) = µ(BN )Hµ

(
µ(AN+1)

µ(BN )
,
µ(AN+2)

µ(BN )
, . . .

)

= −
∞∑

j=N+1

µ(Aj) log
µ(Aj)

µ(BN )

= −
∞∑

j=N+1

µ(Aj) log µ(Aj) + µ(BN ) logµ(BN )︸ ︷︷ ︸
φ(BN )

.

Hence, by the assumption thatHµ(ξ) <∞ and since φ(BN ) < 0, it is possible
to choose N large enough to ensure that Hµ(ξ

∣∣η) < ε. �

1.3.2 Entropy as an Invariant

Recall that (Y,BY , ν, S) is a factor of (X,B, µ, T ) if there is a measure-
preserving map φ : X → Y with φ(Tx) = S(φx) for µ-almost every x ∈ X .

Theorem 1.20 (Entropy of factor). If (Y,BY , ν, S) is a factor of the sys-
tem (X,B, µ, T ), then hν(S) 6 hµ(T ). In particular, entropy is an invariant
of measurable isomorphism.
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Proof. Let φ : X → Y be the factor map. Then any partition ξ of Y defines
a partition φ−1(ξ) of X , and since φ preserves the measure,

Hν(ξ) = Hµ(φ
−1(ξ)).

This immediately implies that hµ(T, φ
−1(ξ)) = hν(S, ξ), and hence the result.

�

The definition of the entropy of a measure-preserving transformation in-
volves a supremum over the set of all (finite) partitions. In order to compute
the entropy, it is easier to work with a single partition. The next result —
the Kolmogorov–Sinăı Theorem — gives a sufficient condition on a partition
to allow this.

Theorem 1.21 (Kolmogorov–Sinăı). Let (X,B, µ, T ) be a measure-pre-
serving system on a probability space, and let ξ be a partition of finite entropy
that is a one-sided generator under T in the sense that

∞∨

n=0

T−nξ=B. (1.11)

Then hµ(T ) = hµ(T, ξ). If T is invertible and ξ is a partition with finite
entropy that is a generator under T in the sense that

∞∨

n=−∞

T−nξ=B.

Then once again hµ(T ) = hµ(T, ξ).

Theorem 1.21 transfers some of the difficulty inherent in computing en-
tropy onto the problem of finding a generator. We note that if a partition
is found satisfying (1.11) modulo µ then (under the assumption that B is
countably generated, which we will have whenever this is used) there is an
isomorphic copy of the system for which we have found a generator satis-
fying (1.11) as stated. There are general results(5) showing that generators
always exist under suitable conditions (notice that the existence of a gener-
ator with k atoms means the entropy cannot exceed log k), but these are of
little direct help in constructing a generator. In Section 1.6 a generator will
be found for a non-trivial example, and in Chapter 4 we will give a proof of
the existence of finite generators for any finite entropy ergodic system.

Lemma 1.22 (Continuity). Let (X,B, µ, T ) be a measure-preserving sys-
tem, let ξ be a partition satisfying (1.11), and let η be any partition of X with
finite entropy. Then

Hµ

(
η
∣∣

n∨

i=0

T−iξ

)
−→ 0

as n→∞.



26 1 Measure-Theoretic Entropy, Introduction

Proof. By the last statement in Lemma 1.19 it suffices to consider a finite
partition η. By assumption, the partitions

∨n
j=0 T

−jξ for n = 1, 2, . . . to-
gether generate B. This in particular shows that for any δ > 0 and B ∈ B,
there exists some n > 1 and some set

A ∈ σ
( n∨

j=0

T−jξ

)

for which µ(A△B) < δ. In fact, it is not hard to see that the set of all
measurable sets B with this property is a σ-algebra containing T−nξ for
all n > 0, which gives the claim. Alternatively, this follows quickly from the
increasing martingale theorem ([52, Th. 5.5]).

Applying the above to all the elements of η = {B1, . . . , Bm}, we can find
one n with the property that there is a collection of sets

A′
i ∈ σ

( n∨

j=0

T−jξ

)

with µ(A′
i△Bi) < δ/m2 for i = 1, . . . ,m− 1. Write

A1 = A′
1, A2 = A′

2
rA′

1, A3 = A′
3
r(A′

1 ∪A′
2) , . . . ,

Am−1 = A′
m−1

r
m−2⋃

j=1

A′
j , and Am = Xr

m−1⋃

j=1

A′
j .

Now notice for i = 1, . . . ,m− 1 that

µ(Ai△Bi) = µ(AirBi) + µ(BirAi)

6 µ(A′
i
rBi) + µ(BirA′

i) + µ
(
Bi ∩

i−1⋃

j=1

A′
j

)

6
δ

m2
+

i−1∑

j=1

µ(A′
j
rBj) 6

δ

m

by construction and since η = {B1, . . . , Bm} forms a partition. Using that
both η and ζ = {A1, . . . , Am} form partitions we also get

µ(Am△Bm) = µ
(m−1⋃

i=1

Ai△
m−1⋃

i=1

Bi

)
6

m−1∑

j=1

µ(Ai△Bi) 6 δ.

To summarize, the two partitions η and ζ have the property that

µ(Ai△Bi) < δ
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for i = 1, . . . ,m. Thus

Hµ

(
η
∣∣

n∨

i=0

T−iξ

)
6 Hµ

(
η
∣∣ζ
)

(by monotonicity (Prop. 1.7(4)))

= −
m∑

i=1

µ(Ai ∩Bi) log
µ(Ai ∩Bi)

µ(Ai)

−
m∑

i,j=1,i6=j

µ(Ai ∩Bj) log
µ(Ai ∩Bj)

µ(Ai)
.

The terms in the first sum are close to zero because µ(Ai∩Bi)
µ(Ai)

is close to 1,

and the terms in the second sum are close to zero because µ(Ai ∩Bj) is close
to zero. In other words, given any ε > 0, by choosing δ small enough (and
hence n large enough) we can ensure that

Hµ

(
η
∣∣

n∨

i=0

T−iξ

)
< ε

as needed. �

Proof of Theorem 1.21. Let ξ be a one-sided generator under T . For any
partition η, continuity of entropy (Proposition 1.17 and Lemma 1.22) shows
that

hµ(T, η) 6 hµ

(
T,

n∨

i=0

T−iξ

)

︸ ︷︷ ︸
=hµ(T,ξ)

+Hµ

(
η
∣∣

n∨

i=0

T−iξ

)

︸ ︷︷ ︸
→0 as n→∞

so h(T, η) 6 h(T, ξ) as required. The proof for a generator under an invert-
ible T is similar. �

Corollary 1.23. If (X,B, µ, T ) is an invertible measure-preserving system
on a probability space with a one-sided generator, then hµ(T ) = 0.

Proof. Let ξ be a partition with

∞∨

n=0

T−nξ=B,

so that

hµ(T ) = hµ(T, ξ) = lim
n→∞

Hµ

(
ξ
∣∣

n∨

i=1

T−iξ

)

by the Kolmogorov–Sinăı theorem (Theorem 1.21) and since entropy can be
expressed by conditioning on the future (Proposition 1.15). On the other
hand, since T is invertible we may consider the partition Tξ and obtain
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hµ(T ) = lim
n→∞

Hµ

(
ξ
∣∣

n∨

i=1

T−iξ

)
= lim

n→∞
Hµ

(
Tξ
∣∣
n−1∨

i=0

T−iξ

)
= 0

since T−1 preserves the measure and by continuity of entropy (Lemma 1.22).
�

The Kolmogorov–Sinăı theorem allows the entropy of simple examples to
be computed. The next examples will indicate how positive entropy arises,
and gives some indication that the entropy of a transformation is related to
the complexity of its orbits. In Examples 1.26 and 1.27 the positive entropy
reflects the way in which the transformation moves nearby points apart and
thereby using the partition chops up the space in a complicated way; in
Examples 1.24 and 1.25 the transformation moves points around in a very
orderly way, and this is reflected(6) in the zero entropy.

Example 1.24. The identity map I : X → X has zero entropy on any proba-
bility space (X,B, µ). This is clear, since for any partition ξ,

∨n−1
i=0 I

−iξ = ξ,
so hµ(I, ξ) = 0.

Example 1.25. The circle rotation Rα : T→ T has zero entropy with respect
to Lebesgue measure. If α is rational, then there is some q > 1 with Rq

α = I,
so hmT

(Rα) = 0 by Proposition 1.18(3) and Example 1.24. If α is irrational,
then ξ = {[0, 1

2 ), [
1
2 , 1)} is a one-sided generator since the point 0 has dense

orbit under Rα. In fact, if x1, x2 ∈ T with x1 < x2 ∈ [0, 12 ) as real numbers,
then there is some n ∈ N with Rn

α(0) ∈ (x1, x2), or since Rα is just a trans-
lation this also gives x2 ∈ R−n

α [0, 12 ) but x1 ∈ R−n
α [ 12 , 1). This implies that

the elements of
∨n

i=0 T
−iξ are intervals whose maximal length decreases to 0

as n→∞. Therefore the smallest σ-algebra containing
∨∞

n=0 T
−nξ contains

all open sets, and so it follows that hmT
(Rα) = 0 by Corollary 1.23.

Example 1.26. The state partition for the Bernoulli 2-shift in Example 1.16 is
a two-sided generator, so we deduce that hµ2(σ2) = log 2. In fact

∨n
i=−n T

−iξ
consists of the 22n+1 distinct cylinder sets

[w]n−n = {x ∈ X(2) | xi = wi for i = −n, . . . , n}

for w ∈ X(2). It follows that
∨∞

n=−∞ T−nξ contains all metric balls (see
Example A.5 for an explicit description of the metric).

The state partition

{
{x ∈ X(3) | x0 = 0}, {x ∈ X(3) | x0 = 1}, {x ∈ X(3) | x0 = 2}

}

of the Bernoulli 3-shift X(3) = {0, 1, 2}Z with the (13 ,
1
3 ,

1
3 ) measure µ(3) is

a two-sided generator under the left shift σ(3), so the same argument shows
that hµ(3)

(σ(3)) = log 3. Thus the Bernoulli 2- and 3-shifts are not measurably
isomorphic.
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Example 1.27. The partition ξ = {[0, 1
2 ), [

1
2 , 1)} is a one-sided generator for

the circle-doubling map T2 : T → T. It is easy to check that
∨n−1

i=0 T
−iξ is

the partition
{[0, 1

2n ), . . . , [
2n−1
2n , 1)},

so HmT

(∨n−1
i=0 T

−iξ
)

= log 2n. The Kolmogorov–Sinăı theorem (Theo-

rem 1.21) shows that hmT
(T2) = log 2.

Example 1.28. Just as in Example 1.27, the partition

ξ = {[0, 1p ), [ 1p , 2p ), . . . , [
p−1
p , 1)}

is a generator for the map Tp(x) = px (mod 1) with p > 2 on the circle, and
a similar argument shows that hmT

(Tp) = log p.
Now consider an arbitrary Tp-invariant probability measure µ on the circle.

Since ξ is a generator, we have

hµ(Tp) = hµ(Tp, ξ) 6 Hµ(ξ) 6 log p (1.12)

by the trivial bound in Proposition 1.17(1) and Proposition 1.5, since ξ has
only p elements.

Let us now characterize those measures for which we have equality in the
estimate (1.12). By Lemma 1.13,

hµ(Tp, ξ) = inf
n>1

1

n
Hµ

(
ξ ∨ T−1

p ξ ∨ · · · ∨ T−(n−1)
p ξ

)
6

1

n
log pn,

where the last inequality holds again by Proposition 1.5. Hence

hµ(Tp) = log p

implies, using the equality case in Proposition 1.5, that each of the inter-

vals [ j
pn ,

j+1
pn ) of the partition ξ∨T−1

p ξ∨· · ·∨T−(n−1)
p ξ must have µ-measure

equal to 1
pn . This implies that µ = mT, thus characterizingmT as the only Tp-

invariant Borel probability measure with entropy equal to log p.

The phenomenon seen in Example 1.28, where maximality of entropy can
be used to characterize particular measures is important, and it holds in
other situations too. In this case, the geometry of the generating partition is
very simple. In other contexts, it is often impossible to pick a generator that
is so convenient. Apart from these complications arising from the geometry
of the space and the transformation, the phenomenon that maximality of
entropy can be used to characterize certain measures always utilizes the strict
convexity of the map x 7→ x log x or the map x 7→ − log x. We will see other
instances of this in Chapter 8.
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Example 1.29. Let (X,µ, σ) = (X
(v)
G , µp,P , σ) be the Markov shift defined in

Section A.4.2. Then

hµ(σ) = −
∑

i,j

pipi,j log pi,j .

To see this, notice that the state partition ξ = {[i]0} is a generator, so we
may apply the Kolmogorov–Sinăı theorem (Theorem 1.21). We have

µ
(
[i0]0 ∩ σ−1[i1]0 ∩ · · · ∩ σ−(n−1)[in−1]0

)
= pi0pi0,i1 · · · pin−2,in−1 ,

which gives the result using the properties of the logarithm, since by assump-
tion we have

∑
i pipi,j = pj for all j and

∑
j pi,j = 1 for all i.

Exercises for Section 1.3

Exercise 1.3.1. For a sequence of finite partitions (ξn) with σ(ξn) ր B, prove that h(T )
can be expressed as limn→∞ h(T, ξn).

Exercise 1.3.2. Prove that hµ×ν(T × S) = hµ(T ) + hν(S).

Exercise 1.3.3. Show that there exists a shift-invariant measure µ of full support on the
shift space X = {0, 1}Z with hµ(σ) = 0.

Exercise 1.3.4. Let (X,B, µ, T ) be a measure-preserving system, and let ξ be a countable
partition of X with finite entropy. Show that 1

n
Hµ
(∨n−1

i=0 T−iξ
)
decreases to hµ(T, ξ) by

the following steps.

(1) Recall that

Hµ

(n−1∨

i=0

T−iξ

)
= Hµ(ξ) +

n−1∑

j=1

Hµ

(
ξ
∣∣
j∨

i=1

T−iξ

)

from the proof of Proposition 1.15, and deduce that

Hµ

(n−1∨

i=0

T−iξ

)
> nHµ

(
ξ
∣∣
n∨

i=1

T−iξ

)
.

(2) Use (1) and additivity of entropy (Proposition 1.7(2)) to show that

nHµ

( n∨

i=0

T−iξ

)
6 (n+ 1)Hµ

(n−1∨

i=0

T−iξ

)

and deduce the result.

Exercise 1.3.5. Consider finite enumerated partitions of (X,B, µ) with k elements. Show
that hµ(T, ξ) is a continuous function of ξ in the L1

µ norm on ξ.

Exercise 1.3.6. Show that for any h ∈ [0,∞], there is an ergodic measure-preserving
transformation with entropy h.
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Exercise 1.3.7. (7)Let (X,B, µ, T ) be a measure-preserving system, and let ξ be a finite
partition (or a countably infinite partition with Hµ(ξ) < ∞). Prove that

hµ(T, ξ) = inf
F⊆N

1

|F |
Hµ

( ∨

n∈F

T−nξ

)
,

where the infimum is taken over all finite subsets F ⊆ N.

1.4 Defining Entropy using Names

†We mentioned in Section 1.1 that the entropy formula in Definition 1.1
is the unique formula satisfying the basic properties of information from
Section 1.1.2. In this section we describe another way in which Definition 1.1
is forced on us, by computing a quantity related to entropy for a Bernoulli
shift.

1.4.1 Decay Rate

For a measure-preserving system (X,B, µ, T ) and a partition ξ = (A1, A2, . . .)
(thought of as an ordered list), define the (ξ, n)-name wξ

n(x) of a point x ∈ X
to be the vector

(a0, a1, . . . , an−1)

with the property that T i(x) ∈ Aai
for 0 6 i < n. We also denote by wξ

n(x)
the set of all points that share the (ξ, n)-name of x, which is clearly the atom

of x with respect to
∨n−1

i=0 T
−iξ. By definition, the entropy of a measure-

preserving transformation is related to the distribution of the measures of
the names. We claim that this relationship goes deeper: the logarithmic rate
of decay of the volume of the set associated to a typical name is the entropy.

In this section we compute the rate of decay of the measure of names
for a Bernoulli shift, which will serve both as another motivation for Defini-
tion 1.1 and as a forerunner of Theorem 3.1. This link between the decay rate
and the entropy is the content of the Shannon–McMillan–Breiman theorem
(Theorem 3.1).

Lemma 1.30 (Decay for the Bernoulli shift). Let (X,B, µ, T ) be the
Bernoulli shift defined by the probability vector p = (p1, . . . , ps), which means
that X =

∏
Z{1, . . . , s}, µ =

∏
Z(p1, . . . , ps), and let T = σ be the left shift.

Let ξ be the state partition defined by the 0th coordinate of the points in X.
Then

† This section has motivational character, both for definitions already made and for up-
coming results, but will not be needed later.
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1

n
logµ

(
wξ

n(x)
)
−→ H(p) =

s∑

i=1

pi log pi

as n→∞ for µ-almost every x.

Proof. The set of points with the name wξ
n(x) is the cylinder set

{y ∈ X | y0 = x0, . . . , yn−1 = xn−1},

so
µ
(
wξ

n(x)
)
= px0 · · · pxn−1 . (1.13)

Now for 1 6 j 6 s, write 1j = 1[j]0 (where [j]0 denotes the cylinder set of
points with 0 coordinate equal to j) and notice that

n−1∑

i=0

1j(T
ix) = |{i | 0 6 i 6 n− 1, xi = j}| ,

so we may rearrange (1.13) to obtain

µ
(
wξ

n(x)
)
= p

∑n−1
i=0 11(T

ix)
1 p

∑n−1
i=0 12(T

ix)
2 · · · p

∑n−1
i=0 1s(T

ix)
s . (1.14)

Now, by the ergodic theorem, for any ε > 0 and for almost every x ∈ X there
is an N so that for every n > N and j = 1, . . . , s we have

∣∣∣∣∣
1

n

n−1∑

i=0

1j(T
ix)− pj

∣∣∣∣∣ < ε. (1.15)

Taking the logarithm in (1.14) and dividing by n we see — to within a small
error — the familiar entropy formula in Definition 1.1. More precisely, we
combine (1.14)–(1.15) and conclude that

∣∣logµ
(
wξ

n(x)
)
− n log(pp1

1 · · · pps
s )
∣∣ 6 εn| log(p1 · · · ps)|,

so
1

n
log µ

(
wξ

n(x)
)
−→

s∑

i=1

pi log pi

as n→∞. �

1.4.2 Name Entropy

In fact the entropy theory for measure-preserving transformations can be
built up entirely in terms of names, and this is done in the elegant monograph
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by Rudolph [180, Chap. 5]. We only discuss this approach briefly, and will not
use the following discussion in the remainder of the book (entropy is such a
fecund notion that similar alternative entropy notions will arise several times:
see Theorem 3.1, the definition of topological entropy using open covers in
Section 5.2, and Section 6.3).

Let (X,B, µ, T ) be an ergodic† measure-preserving transformation, and
define for each finite partition ξ = {A1, . . . , Ar}, ε > 0 and n > 1 a quan-
tity N(ξ, ε, n) as follows. For each (ξ, n)-name wξ ∈ {1, . . . , r}n write µ(wξ)
for the measure µ

(
{x ∈ X | wξ

n(x) = wξ}
)
of the set of points in X whose

name is wξ, where wξ
n(x) = (a0, . . . , an−1) with T

j(x) ∈ Aaj
for 0 6 j < n.

Starting with the names of least measure in {1, . . . , r}n, remove as many
names as possible compatible with the condition that the total measure of
the remaining names exceeds (1 − ε). Write N(ξ, ε, n) for the cardinality of
the set of remaining names. Then one may define

hµ,name(T, ξ) = lim
ε→0

lim inf
n→∞

1

n
logN(ξ, ε, n)

and
hµ,name(T ) = sup

ξ
hµ,name(T, ξ)

where the supremum is taken over all finite partitions. Using this definition
and the assumption of ergodicity, it is possible to prove directly the following
basic theorems:

(1) The Shannon–McMillan–Breiman theorem (Theorem 3.1) in the form

− 1

n
logµ

(
wξ

n(x)
)
−→ hµ,name(T, ξ) (1.16)

for µ-almost every x.
(2) The Kolmogorov–Sinăı theorem: if

∨∞
i=−∞ T−iξ = B, then

hµ,name(T, ξ) = hµ,name(T ). (1.17)

We shall see later that hµ,name(T, ξ) = hµ(T, ξ) as a corollary of Theorem 3.1
(see Exercise 3.1.2).

In contrast to the development in Sections 1.1–1.3, the formula in Defini-
tion 1.1 is not used in defining hµ,name. Instead it appears as a consequence of
the combinatorics of counting names as in Lemma 1.30 (see Exercise 1.4.1).

† To obtain an independent and equivalent definition in the way described here, ergodicity
needs to be assumed initially.
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Exercises for Section 1.4

Exercise 1.4.1. Show that hµ,name(σ, ξ) = H(p) (using both the notation and the state-
ment of Lemma 1.30).

1.5 Compression Rate

Recall from Section 1.2 the interpretation of the entropy 1
log 2Hµ(ξ) as the op-

timal average length of binary codes compressing the possible outcomes of the
experiment represented by the partition ξ (ignoring the failure of optimality
by one digit, as in Lemma 1.11).

This interpretation also helps to interpret some of the results of Section 1.3.
For example, the subadditivity

Hµ

(
n−1∨

i=0

T−iξ

)
6 nHµ(ξ)

can be interpreted to mean that the almost optimal code as in Lemma 1.11
for ξ = (A1, A2, . . . ) can be used to code

∨n−1
i=0 T

−iξ as follows. The parti-

tion
∨n−1

i=0 T
−iξ has as a natural alphabet the names i0 . . . in−1 of length n in

the alphabet of ξ. The requirements on codes ensures that the optimal Shan-
non code s for ξ induces in a natural way a code sn on names of length n by
concatenation,

sn(i0 . . . in−1) = s(i0)s(i1) . . . s(in−1). (1.18)

The average length of this code is nHµ(ξ). However (unless the parti-
tions ξ, T−1ξ, . . . , T−(n−1)ξ are independent), there might be better codes
for names of length n than the code sn constructed by (1.18), giving the
subadditivity inequality by Lemma 1.10.

Thus
1

n
Hµ

(
n−1∨

i=0

T−iξ

)

is the average length of the optimal code for
∨n−1

i=0 T
−iξ averaged both over

the space and over a time interval of length n. Moreover, hµ(T, ξ) is the
lowest averaged length of the code per time unit describing the outcomes
of the experiment ξ on long pieces of trajectories that could possibly be
achieved. Since hµ(T, ξ) is defined as an infimum in Definition 1.14, this
might not be attained, but any slightly worse compression rate would be at-
tainable by working with sufficiently long blocks T−km

∨m−1
i=0 T−iξ of a much

longer trajectory in
∨nm−1

i=0 T−iξ. Notice that the slight lack of optimality
in Lemmas 1.10 and 1.11 vanishes on average over long time intervals (see
Exercise 1.5.3).
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Example 1.31. Consider the full three shift σ(3) : {0, 1, 2}Z→ {0, 1, 2}Z, with
the generator ξ = {[0]0, [1]0, [2]0} (using the notation from Exercise 1.16 for
cylinder sets). A code for ξ is

0 7−→ 00,

1 7−→ 01,

2 7−→ 10,

which gives a rather inefficient coding for names: the length of a ternary
sequence encoded in this way doubles. Using blocks of ternary sequences of
length 3 (with a total of 27 sequences) gives binary codes of length 5 (out
of a total 32 possible codes), showing the greater efficiency in longer blocks:
Defining a code by some injective map {0, 1, 2}3 → {0, 1}5 allows a ternary
sequence of length 3k to be encoded to a binary sequence of length 5k, giving
the better ratio of 5

3 . Clearly these simple codes will never give a better ratio

than log 3
log 2 , but can achieve any slightly larger ratio at the expense of working

with very long blocks of sequences.
One might wonder whether more sophisticated codes could, on average,

be more efficient on long sequences. The results of this chapter say precisely
that this is not possible if we assume that the digits in the ternary sequences
considered are identically independently distributed; equivalently if we work
with the system (X(3), µ3, σ(3)) with entropy hµ3(σ(3)) = log 3.

We will develop these ideas further in Section 3.2.

Exercises for Section 1.5

Exercise 1.5.1. Give an interpretation of the finiteness of the entropy of an infinite prob-
ability vector (v1, v2, . . . ) in terms of codes.

Exercise 1.5.2. Give an interpretation of conditional entropy and information in terms
of codes.

Exercise 1.5.3. Fix a finite partition ξ with corresponding alphabet A in an ergodic
measure-preserving system (X,B, µ, T ), and for each n > 1 let sn be an optimal prefix-
free code for the blocks of length n over A. Use the source coding theorem in Section 1.2
to show that

lim
n→∞

log 2

n
L(sn) = h(T, ξ).
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1.6 An Entropy Calculation for a Group Automorphism

†An illuminating example of a compact group automorphism is the map

T = TA : T2 → T2

defined by

T :

(
x
y

)
7−→

(
y

x+ y

)
(mod 1).

This map is associated to the matrix A =

(
0 1
1 1

)
in a natural way. Since T

is a surjective endomorphism of a compact group, it preserves the Lebesgue
measurem on T2 (see [52, Ex. 2.5]). Alternatively, the invariance of Lebesgue
measure follows from the fact that A−1 is also an integer matrix and so TA
is invertible and A does not distort area locally (both of these observations
follow from the fact that | det(A)| = 1).

In this section we will study (and evaluate) the dynamical entropy of T
with respect to the Lebesgue measure. We will show in Section 8.4 in greater
generality that the Lebesgue measure can be characterized as the only in-
variant measure that achieves the maximal value of the entropy for the au-
tomorphism.

Theorem 1.32 (Golden mean automorphism). The entropy of the au-

tomorphism T = TA of the 2-torus associated to the matrix A =

(
0 1
1 1

)
is

given by hm(T ) = log ρ where ρ = 1.6 . . . is the golden ratio, characterized
by ρ > 1 and ρ2 = ρ+ 1.

Theorem 1.32 is a special case of a general result for automorphisms of the
torus, which will be shown in Theorem 6.9 by other methods. We will prove(8)

Theorem 1.32 by finding a generator reflecting the geometrical action of T on
the torus. This is not the most efficient or general method, but it motivates
other ideas presented later. In order to do this, consider first the action of the
matrix A on the covering space R2 of the torus. There are two eigenvectors:

v+ =

(
1
ρ

)
,

which is dilated by the factor ρ > 1, and

v− =

(
1
−1/ρ

)
,

which is shrunk by the factor −1/ρ < 0.

† While we certainly think it is good to see this example early on, this section is only
discussing a particular measure-preserving system and so could be skipped.
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P1

P2

Rv+

Rv−

e1

e2

−e1

−e2

Fig. 1.3: A partition of T2 adapted to the geometry of the automorphism.

Let ξ = {P1, P2} denote the partition of T2 into the two regions shown
in Figure 1.3. In Figure 1.3 the square drawn in dashed lines is the unit
square in R2, which maps under the quotient map R2 → R2/Z2 onto the 2-
torus (and the quotient map is injective on the interior of the unit square).
The interiors of the bold boxes are the partition elements as labeled, while
the thin drawn boxes are integer translates of the two partition elements
showing that ξ is genuinely a partition of T2. Notice that all the sides of these
boxes are contained in lines parallel to either v+, v− and going through 0
respectively, ±e1 or ±e2 (where e1 = (1, 0) and e2 = (0, 1)). Which element
of the partition ξ contains the boundaries of P1 and P2 is not specified; since
the boundaries are null sets this will not affect the outcome. For now we are
only considering the case of the Lebesgue measure m; in Section 2.7 other
measures and what is needed for this kind of argument will be discussed.

The action of T−1 contracts lengths along lines parallel to the expanding
eigenvector v+ for T by a factor of ρ; along lines parallel to the contracting
eigenvector v−, T−1 expands by a factor of −ρ. Figure 1.4 shows the resulting
three rectangles in ξ∨T−1ξ. It is not a general fact that two rectangles in T2

with parallel sides intersect in a single rectangle, but this happens for all
intersections of rectangles in ξ and in T−1ξ. Notice that, for example, the
rectangle P1 ∩ T−1P1 appears twice on the picture drawn in R2, but only
once in the torus. We suggest that the reader verifies these statements before
reading on. For this, note that one can calculate T−1ξ by finding A−1(±ei)
for i = 1, 2 and then drawing boxes with sides parallel to v+ and v−. We
proceed next to show why ξ is such a convenient partition for the map T .
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−e2 e1 − e2

−e1

e2

e1
P1 ∩ T−1P1

P2 ∩ T−1P1

P1 ∩ T−1P2

P1 ∩ T−1P1
Rv+

Rv−

Fig. 1.4: The three rectangles in ξ ∨ T−1ξ.

Lemma 1.33 (Geometry of partitions). For any n > 1 the elements
of the partition ξ ∨ T−1ξ ∨ · · · ∨ T−nξ are rectangles with edges parallel to
the eigenvectors. The long side of any such rectangle is parallel to v− with
length determined by the element of ξ containing it. The short side of any
such rectangle is parallel to v+ and has length between 1

10ρ
−n and 2ρ−n. In

particular, ξ is a generator for T .

Proof. We start by proving the first statement by induction. The discussion
before the statement of the lemma and Figure 1.4 comprise the case n = 1.
We leave it to the reader to check that the lengths of the edges of P1 and P2

in the direction of v+ are indeed between 1
10 and 2.

Assume therefore that the statement holds for a given n, and consider the
partition

η = T−1ξ ∨ · · · ∨ T−(n+1))ξ = T−1
(
ξ ∨ · · · ∨ T−nξ

)
.

This contains only rectangles with sides parallel to v+ and v− (which will be
understood without mention below) which are thinner in the direction of v+;
indeed the maximal thickness has been divided by ρ > 1. Along the direction
of v− they are as long as the element of T−1ξ containing them. Thus

ξ ∨

η︷ ︸︸ ︷
T−1ξ ∨ · · · ∨ T−(n+1)ξ
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contains sets of the form P ∩ Q ⊆ P ∩ T−1P ′ for Q ⊆ T−1P ′, P, P ′ ∈ ξ,
and Q ∈ η (see Figure 1.5).

T−1P ′
P

Q

Fig. 1.5: An atom in ξ ∨ T−1ξ ∨ · · · ∨ T−(n+1)ξ.

All of the sets P,Q, P ′, T−1P ′ are rectangles, and by assumption Q
and T−1P ′ have the same length in the direction of v−. Also P ∩ T−1P ′

is again a rectangle whose length along the direction of v− is the same as the
corresponding length for P (this is the case n = 1). Finally, notice that T−1P ′

is the injective image of a rectangle in R2. From this we can conclude that

P ∩Q =
(
P ∩ T−1P ′

)
∩
(
T−1P ′ ∩Q

)

may be viewed as the image of the intersection of two rectangles in R2,
so P ∩ Q is a rectangle. The side of P ∩ Q along the direction of v− is the
intersection of the sides of P ∩ T−1P ′ and T−1P ′ ∩ Q, which finishes the
induction.

Recall that ξ is a generator for the invertible map T if

∞∨

k=−∞

T−kξ = BT2 . (1.19)

To see that this is the case, notice first that the partition elements of

n∨

k=−n

T−kξ

consist of rectangles of diameter at most cρ−n for some c > 0. Therefore, every
open set can be written as a union of elements in

∨∞
k=−∞ T−kξ, and (1.19)

follows. �

By the Kolmogorov–Sinăı theorem (Theorem 1.21), Lemma 1.33 reduces
the proof of Theorem 1.32 to calculating hm(T ) = hm(T, ξ).

Proof of Theorem 1.32. By Lemma 1.33, all elements of the partition

ξ ∨ T−1ξ ∨ · · · ∨ T−nξ
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have Lebesgue measure in the interval [c1ρ
−n, c2ρ

−n] for some absolute con-
stants c1, c2 > 0. Using the definition of the information function, this implies
that

− log c2 + n log ρ 6 Im
(
ξ ∨ T−1ξ ∨ · · · ∨ T−nξ

)
6 − log c1 + n log ρ.

After dividing by n and letting n → ∞, we see that hm(T, ξ) = log ρ. By
Lemma 1.33 and the Kolmogorov–Sinăı theorem (Theorem 1.21), we ob-
tain hm(T ) = log ρ. �

1.7 Entropy and Classification

†For our purposes, entropy will be used primarily as a tool to understand
properties of measures in a dynamical system. However, the original motiva-
tion for defining entropy comes about through its invariance properties and
its role in determining the structure of certain kinds of measure-preserving
systems. The most important part of this theory is due to Ornstein, and in
this section we give a short introduction to this,(9) see also the survey arti-
cle of Weiss [207]. We will not be using the results in this section, so proofs
and even exact statements are omitted. In this section partitions are to be
thought of as ordered lists of sets. Before going any further, we mention a
simple example of a family of isomorphisms found by Mešalkin.

Example 1.34. As mentioned on page 6, Mešalkin [135] found some special
cases of isomorphisms between Bernoulli shifts. Let X = (X,B, µ, σ1) be
the Bernoulli shift with a state space of 4 symbols and measure ( 1

4 ,
1
4 ,

1
4 ,

1
4 );

let Y = (Y,C , ν, σ2) be the Bernoulli shift with a state space of 5 symbols
and measure (12 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ). Notice that the state partition is a generator, so

just as in Example 1.26 we can show that

hµ(X) = hν(Y) = log 4.

Mešalkin showed(10) that X and Y are isomorphic, by constructing an invert-
ible measure-preserving map φ : X → Y with φσ1 = σ2φ µ-almost every-
where. The following way of understanding Mešalkin’s isomorphism is due to
Jakobs [89] and we learnt it from Benjamin Weiss. Write the alphabet of the
Bernoulli shift X as

0
0,

1
0,

0
1,

1
1.

For the shift Y, use the alphabet

† The content of this section will not be needed later.
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0,

0
0
1,

0
1
1,

1
0
1,

1
1
1,

with measures 1
2 ,

1
8 ,

1
8 ,

1
8 ,

1
8 respectively. A typical point y = (yn) ∈ Y is

shown in Figure 1.6. View the short blocks 0 as poor people, and the tall
blocks as wealthy ones.

· · · · · ·0 1

0

0

1

1

0

1

0

1

1

1

1

0 0

Fig. 1.6: A typical point in the ( 1
2
, 1
8
, 1
8
, 1
8
, 1
8
) Bernoulli shift.

The shift X is egalitarian: all symbols have equal height. Construct a map
from Y to X by requiring that each wealthy person in y find a poor ‘neighbor’
and give her or him a symbol according to the following procedure.

• If a wealthy person has a poor neighbor immediately to her or his right,
the person donates the top symbol to that neighbor, for example:

0
1
1 0
−→ 1

1
0
0

• If the neighbor to the immediate right is wealthy too, the donation goes
to the first poor person on the right who has not received a donation
from a closer wealthy person in between them. In other words, in a poor
neighbourhood, like . . . 000 . . . , one needs to look left in the sequence y
until a wealthy person is found who has not donated a symbol, and take
the top symbol from her or him.

Elementary properties of the simple random walk (specifically, recurrence of
the one-dimensional random walk; see for example Spitzer [193]) says that
with probability one each poor person finds exactly one wealthy person to
pair up with. This is the key step in proving that the map is an invertible
measurable isomorphism. The inverse map redistributes wealth from the poor
to the wealthy — this uses the fact that after the original redistribution of
wealth one can still reconstruct who had been wealthy and who had been
poor by using the bottom symbol.

Example 1.35. In the same spirit as the construction of Mešalkin above, Ka-
likow and Weiss [95] found an explicit isomorphism between the full shift
on
∏

n∈Z[0, 1] with the infinite product of Lebesgue measure, and the full
shift on

∏
n∈ZN with the infinite product of the discrete measure (p1, p2, . . . )
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for certain probability distributions satisfying the necessary entropy condi-
tion

−
∞∑

n=1

pi log pi =∞.

We refer to their paper [95] for the details of this remarkable construction,
which exploits a code similar to that of Example 1.34 in an infinite iterated
process.

For the following discussion we need to introduce a slight restriction on
the type of measure spaces that we want to consider. A Borel probability
space is a Borel subset X of a compact metric space X, with a probability
measure µ defined on the restriction of the Borel σ-algebra B to X .

Ornstein developed a way of studying partitions for measure-preserving
systems that allowed him to determine when an abstract measure-preserving
system is isomorphic to a Bernoulli shift, and decide when two Bernoulli
shifts are isomorphic. In order to describe this theory, we start by saying a
little more about names. Let (X,B, µ, T ) be an invertible ergodic measure-
preserving system on a Borel probability space, and fix a finite measurable
partition ξ = (A1, . . . , Ar) . The partition ξ defines a map

wξ : X → Y = {1, . . . , r}Z

by requiring that (wξ(x))k = j if and only if T kx ∈ Aj for k ∈ Z. Thus wξ(x)
restricted to the coordinates [0, n−1] is the usual (ξ, n)-name wξ

n(x). Clearly

wξ(Tx) = σ(wξx),

where σ as usual denotes the left shift on Y . Write BY for the Borel σ-
algebra (with the discrete topology on the alphabet {1, . . . r} and the product
topology on Y ), and define a measure ν on Y to be the push-forward of µ, so

ν(A) = µ
(
(wξ)−1(A)

)

for all A ∈ BY . Thus

wξ : X = (X,B, µ, T )→ Y = (Y,BY , ν, σ)

is a factor map. It is easy to show that wξ is an isomorphism if and only if ξ
is a generator.

Definition 1.36. A partition ξ = {A1, . . . , Ar} is independent under T if for
any choice of distinct j1, . . . , jk ∈ Z and any choice of sets Ai1 , . . . , Aik we
have

µ
(
T−j1Ai1 ∩ T−j2Ai2 ∩ · · · ∩ T−jkAik

)
= µ(Ai1 )µ(Ai2 ) · · ·µ(Aik).
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Example 1.37. The state partition ξ = {[1]0, [2]0, . . . , [r]0} in the Bernoulli
shift {1, . . . , r}Z with shift-invariant measure µ =

∏
i∈Z(p1, . . . , pr) is inde-

pendent under the shift.

Lemma 1.38. An invertible measure-preserving system on a Borel probabil-
ity space is isomorphic to a Bernoulli shift if and only if it has an independent
generator.

Notice that if ξ is an independent generator for (X,B, µ, T ) then

hµ(T ) = hµ(T, ξ) (since ξ is a generator)

= Hµ(ξ). (since ξ is independent)

Measure-preserving systems X and Y are said to be weakly isomorphic if
each is a factor of the other. Theorem 1.20 really shows that entropy is an in-
variant of weak isomorphism. It is far from obvious, but true,(11) that systems
can be weakly isomorphic without being isomorphic. Sinăı showed [189] that
weakly isomorphic systems have the same entropy, are spectrally isomorphic,
are isomorphic if they have discrete spectrum, and gave several other prop-
erties that they must share. He also proved in his paper [188] the deep result
that if X is a Bernoulli shift and Y any ergodic system with h(Y) > h(X),
then X is a factor of Y. Thus, for example, Bernoulli shifts of the same entropy
are weakly isomorphic. Ornstein’s isomorphism theorem (proved in [149] for
finite entropy and extended to the infinite entropy case in [150]) strengthens
this enormously by showing that Bernoulli shifts of the same entropy must
be isomorphic.

Theorem (Ornstein). If X = (X,BX , µ, T ) and Y = (Y,BY , ν, S) are
Bernoulli shifts, then X is isomorphic to Y if and only if hµ(T ) = hν(S).

In general it seems very difficult to decide if a given system has an in-
dependent generator, so it is not clear how widely applicable the isomor-
phism theory is. One aspect of Ornstein’s work is a series of strengthenings
of Lemma 1.38 that make the property of being isomorphic to a Bernoulli shift
something that can be checked, allowing a large class of measure-preserving
systems to be shown to be isomorphic to Bernoulli shifts, and a series of
results showing that the property of being isomorphic to a Bernoulli shift
is preserved by taking factors or limits. Using the stronger characterizations
of the property of being isomorphic to a Bernoulli shift, many important
measure-preserving transformations are known to have this property (and
are therefore measurably classified by their entropy). The next example de-
scribes some of these (and some simple examples that cannot be isomorphic
to a Bernoulli shift). For brevity we will say a system “is a Bernoulli auto-
morphism” to mean that it is isomorphic to a Bernoulli shift.

Example 1.39. (1) The automorphism of T2 associated to the matrix

(
0 1
1 1

)

(see Section 1.6) is a Bernoulli automorphism.
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(2) More generally, Katznelson [100] showed that any ergodic toral automor-
phism is a Bernoulli automorphism. One of the critical estimates used in
this argument has been simplified by Lind and Schmidt [122] using the
product formula for global fields.

(3) More generally still, any ergodic automorphism of a compact group is a
Bernoulli automorphism. This was proved independently by Lind [118]
and Miles and Thomas [136], [138], [137]. Some simplifications were made
by Aoki [9].

(4) A mixing Markov shift is a Bernoulli automorphism (see Ornstein and
Shields [152].)

(5) Certain ergodic automorphisms of nilmanifolds are Bernoulli automor-
phisms (see Dani [39]).

(6) The map of geodesic flow for a fixed time on a surface of negative curva-
ture is a Bernoulli automorphism (see Ornstein and Weiss [154]).

(7) The map defined by the flow for a fixed time of one billiard ball mov-
ing on a square table with finitely many convex obstacles is a Bernoulli
automorphism (see Ornstein and Gallavotti [67]).

(8) A generalization of (5) is that any mixing Anosov flow preserving a
smooth measure is a Bernoulli automorphism (see Ratner [170] or Buni-
movič [30]).

(9) The β-transformation Tβ : [0, 1] → [0, 1] is defined for each β > 1
by Tβ(x) = βx modulo 1. There is a Tβ-invariant measure µβ on [0, 1]
absolutely continuous with respect to Lebesgue measure, discovered by
Rényi [172]. Then the invertible extension of the system (Tβ , µβ) is a
Bernoulli automorphism (see [52, Ex. 2.1.7] for the details of the invert-
ible extension construction, and Smorodinsky [192] or Fischer [59] for the
result).

(10) Notice that a Bernoulli automorphism automatically has positive entropy
(we exclude the map on a single point). It follows that a zero entropy
system (for example, a rotation on a compact group, the horocycle flow
for a fixed time, or a unipotent flow for a fixed time on a homogeneous
space) is never isomorphic to a Bernoulli automorphism.

The definitive nature of Ornstein’s Theorem should not mask the scale of
the problem of classifying measure-preserving transformations up to isomor-
phism in general: Bernoulli shifts are a significant class, encompassing many
geometrically natural maps, but the structure of most measure-preserving
systems remains mysterious.(12)

Notes to Chapter 1

(1)(Page 5) The original material may be found in papers of Kolmogorov [108] (corrected
in [107]), Rokhlin [175], and Rokhlin and Sinăı [178]. For an attractive survey of the foun-
dations and later history of entropy in ergodic theory, see the survey article by Katok [98].
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The concept of entropy is due originally to the physicist Clausius [37], who used it in con-
nection with the dispersal of usable energy in thermodynamics in 1854 and coined the term
‘entropy’ in 1868. Boltzmann [18] later developed a statistical notion of entropy for ideal
gases, and von Neumann a notion of entropy for quantum statistical mechanics; it remains
an important concept in thermodynamics and statistical mechanics. The more direct pre-
cursor to the ergodic-theoretic notion of entropy comes from the work of Shannon [184] in
information theory.
(2)(Page 15) The connections between information theory and ergodic theory, many of

which originate with the work of Shannon [184], are pervasive (these will be discussed
further in Sections 3.1 and 3.2).
(3)(Page 16) This inequality, and the converse result that if a list of integers ℓ1, ℓ2 . . .

satisfies the inequality (1.8) then there is a prefix-free code with ℓi = |S(i)|, was obtained
by Kraft [109] and McMillan [133].
(4)(Page 19) This seems to have first been proved by Fekete [56, p. 233] (in multiplicative

form); a more accessible source is Pólya and Szegő [167, Chap. 3, Sect. 1].
(5)(Page 25) The main result concerning the existence of generators is due to Krieger [90]:

if (X,B, µ, T ) has finite entropy, then a generator exists with d atoms, where

eh(T ) 6 d 6 eh(T ) + 1.

Notice that by Proposition 1.5 and Proposition 1.17(1) it is not possible for there to be a
generator with fewer atoms, so this result is optimal.
(6)(Page 28) A transformation which does not separate points widely or moves points

around in a very orderly way has zero entropy, but it is important to understand that
there is definitely no sense in which the converse holds. That is, there are transformations
with zero entropy of great complexity.
(7)(Page 31) This holds more generally for measure-preserving actions of amenable groups,

as stated in Ollagnier [141, Sec. 4.3].
(8)(Page 36) These geometrically natural generators were introduced in work of Adler

and Weiss [6], [7].
(9)(Page 40). The theory described in this section is due to Ornstein, and it is outlined in

his monograph [151]. An elegant treatment using joinings may be found in the monograph
of Rudolph [180].
(10)(Page 40) In fact Mešalkin’s result is more general, requiring only that the state prob-
abilities each be of the form a

pk
for some prime p and a ∈ N (and, by Theorem 1.20, the

additional necessary condition that the two shifts have the same entropy).
(11)(Page 43) This question was answered in the thesis of Polit [166], who constructed
a pair of weakly isomorphic transformations of zero entropy that are not isomorphic.
Rudolph [179] gave a more general approach to constructing examples of this kind, and for
finding counterexamples to other natural conjectures. Other examples of weakly isomorphic
systems were found by Thouvenot [197] using Gaussian processes, and by Lemańczyk [117]
using product cocycles. More recently, Kwiatkowski, Lemańczyk, and Rudolph [113] have
constructed weakly isomorphic C∞ volume-preserving diffeomorphisms of T2 that are not
isomorphic.
(12)(Page 44) Let X denote a subset of the set of all invertible measure-preserving trans-
formations of a Borel probability space, with ∼ the equivalence relation of measurable
isomorphism. A classifying space C is one for which there is a (reasonable) injective
map X/ ∼ → C; Ornstein’s isomorphism theorem constructs such a map with C = R+

when X is the class of Bernoulli shifts, while the Halmos–von Neumann theorem (see [52,
Th. 6.13]) shows that C may be taken to be the set of all countable subgroups of S1 when X

is the class of transformations with discrete spectrum. Feldman [57] interpreted a construc-
tion of many mutually non-isomorphic K-automorphisms by Ornstein and Shields [153] to
show that C certainly cannot be taken to be R+ when X is the class of K automorphisms
(a measure-preserving system (X,B, µ, T ) is called a K-automorphism if hµ(T, ξ) > 0 for
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any partition ξ with Hµ(ξ) > 0; these systems have no zero-entropy factors). More recently,
Foreman and Weiss [62] have used Hjorth’s theory of turbulent equivalence relations [84]
to show that C cannot be taken to be the collection of all isomorphism classes of countable
groups when X is the set of all invertible measure-preserving transformations.


