
Chapter 2

Conditional Measure-Theoretic
Entropy

The basic entropy theory from Chapter 1 will become a more powerful and
flexible tool after we extend the theory from partitions to σ-algebras.

However, infinite sub-σ-algebras do not share all the properties of finite
ones, and in particular the correspondence between partitions and sub-σ-
algebras is less straightforward. If ξ is a countably infinite partition, then σ(ξ)
is in general an uncountable σ-algebra. However, σ-algebras of the form σ(ξ)
where ξ is a countable partition are rather special, and should not be confused
with the much larger class of countably-generated σ-algebras.

2.1 Conditional Measures, Factors, and Invariant

σ-Algebras

The material in this chapter (and the later use of conditional entropy) uses
some less standard material in measure theory, so in order to make this
volume reasonably self-contained we collect the results needed from [52].
Throughout this section, let (X,B, µ, T ) be a measure-preserving system,
where (X,B, µ) is a Borel probability space. We recall that a Borel proba-
bility space is a dense Borel subset X of a compact metric space X, with
a probability measure µ defined on the restriction of the Borel σ-algebra B

to X . We remark only that this restriction in generality could be avoided
in most statements by using the conditional expectation instead of condi-
tional measures. However, we feel that the intuition of this more geometric
approach provided by conditional measures outweighs the slight restriction
in generality.

If A ⊆B is a countably generated sub-σ-algebra in (X,B, µ), then there
exists a family of conditional measures {µA

x | x ∈ X} which decompose µ into
probability measures that give full measure to the corresponding atom [x]A ,
where the atom

47



48 2 Conditional Measure-Theoretic Entropy

[x]A =
⋂

x∈A∈A

A

is the smallest element of A containing x. In a sense which we will make
precise below, µA

x describes µ restricted to the atom [x]A in a way that
makes sense even if the atoms are null set. We also note that if A = σ(ξ)
for a partition ξ, then the atoms are just the elements of the partition and
the conditional measures are simply the renormalized restriction of µ to the
atoms. However, if A is a general countably-generated σ-algebra, then X
decomposes† into uncountably many atoms [x]A for x ∈ X that typically
have zero measure for µ, and so the construction of the conditional measures
requires some care.

2.1.1 Defining properties of conditional measures

We refer to [52, Ch. 5] for the details of this construction, but recall the main
results and properties of these measures. We begin by recalling the conditional
expectation as this will in turn characterize the conditional measures.

Theorem 2.1 (Conditional expectation). Let (X,B, µ) be a probability
space, and let A ⊆B be a sub-σ-algebra. Then there is a map

Eµ(·
∣∣A ) : L1(X,B, µ) −→ L1(X,A , µ),

called the conditional expectation, that satisfies the following properties.

(1) For f ∈ L1(X,B, µ), the image function Eµ(f
∣∣A ) is characterized al-

most everywhere by the two properties

• Eµ(f
∣∣A ) is A -measurable;

• for any A ∈ A ,
∫
AEµ(f

∣∣A ) dµ =
∫
A f dµ.

(2) Eµ(·
∣∣A ) is a linear operator of norm 1. Moreover, Eµ(·

∣∣A ) is positive

(that is, Eµ(f
∣∣A ) > 0 almost everywhere whenever f ∈ L1(X,B, µ)

has f > 0).
(3) For f ∈ L1(X,B, µ) and g ∈ L∞(X,A , µ),

Eµ(gf
∣∣A ) = gEµ(f

∣∣A )

almost everywhere.
(4) If A ′ ⊆ A is a sub-σ-algebra, then

† In that sense a countably generated σ-algebra also gives rise to a (potentially uncount-
able) measurable partition of X. For that reason some authors also speak of a measurable
partition when discussing a countably generated σ-algebra. However, for us the word par-
tition will always mean a finite or countable decomposition of X.
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Eµ

(
Eµ(f

∣∣A )|A ′
)
= Eµ(f

∣∣A ′)

almost everywhere.

The conditional expectation Eµ(·
∣∣A ) may be thought of as the natural

projection map from L1(X,B, µ) to its closed subspace L1(X,A , µ). In fact
the conditional expectation can be constructed (by continuous continuation)
using the orthogonal projection from the Hilbert space L2(X,B, µ) to its
closed subspace L2(X,A , µ) (see [52, Sect. 5.1]). When the underlying mea-
sure µ is understood we will also simply write E(·

∣∣A ) = Eµ(·
∣∣A ) for the

conditional expectation.
We say that two σ-algebras A and C are equivalent modulo µ, denoted

A =
µ

C ,

if for any A ∈ A there exists C ∈ C with µ(A△C) = 0 and for any C ∈ C

there exists A ∈ A with µ(A△C) = 0. Similarly, partitions ξ and η are
equivalent modulo µ,

ξ =
µ
η,

if the σ-algebras they generate are equal modulo µ (see Exercise 2.1.1).
Using the above we can now state the defining property of the conditional

measures.

Theorem 2.2 (Conditional measure). Let (X,B, µ) be a Borel probability
space, and A ⊆ B a σ-algebra. Then there exists an A -measurable conull
set X ′ ⊆ X and a system {µA

x | x ∈ X ′} of measures on X, referred to as
conditional measures, with the following properties.

(1) The measure µA
x is a probability measure on X with

E(f
∣∣A )(x) =

∫
f(y) dµA

x (y) (2.1)

almost everywhere for all f ∈ L 1(X,B, µ). In other words, for any func-
tion† f ∈ L 1(X,B, µ) we have that

∫
f(y) dµA

x (y) exists for all x be-
longing to a conull set in A , that on this set

x 7−→
∫
f(y) dµA

x (y)

depends A -measurably on x, and that

∫

A

∫
f(y) dµA

x (y) dµ(x) =

∫

A

f dµ

† Notice that we are forced to work with genuine functions in L 1 in order to ensure that
the right-hand side of (2.1) is defined. As we said before, µA

x may be singular to µ.
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for all A ∈ A .
(2) If A is countably-generated, then µA

x ([x]A ) = 1 for all x ∈ X ′, where

[x]A =
⋂

x∈A∈A

A

is the atom of A containing x; moreover µA
x = µA

y for x, y ∈ X ′ when-
ever [x]A = [y]A .

(3) Property (1) uniquely determines µA
x for almost every x ∈ X. In fact,

property (1) for a dense countable set of functions in C(X) uniquely
determines µA

x for almost every x ∈ X.
(4) If C is any σ-algebra with A =

µ
C , then µA

x = µC
x almost everywhere.

This is simply [52, Th. 5.14] and we only note that the conditional mea-
sures can be constructed from the conditional expectation applied to suffi-
ciently many continuous functions on X̄ (as in Property (3)). The defining
Property (1) in Theorem 2.2 we sometimes abbreviate by writing

µ =

∫
µA
x dµ

and saying that µA
x depends on x ∈ X in an A -measurable way.

We recall from [52, Lemma 5.17] that for any σ-algebra A ⊆ B and any
probability measure µ there exists a countably generated σ-algebra

C =
µ

A .

This allows us to switch using Property (4) to C and then to talk about its
atoms using Property (2).

We note that for a countably generated σ-algebra A the atoms are indeed
elements of the σ-algebra: If C is a countably generating set of A (which in
general will be uncountable), then we can generate a countable algebra C ′

out of C and obtain that

[x]A = [x]C ′ =
⋂

x∈C∈C ′

C ∈ A

since the latter intersection is a countable intersection.
We finally also recall from [52, Sect. 5.3] the following example which

clarifies why we should think of Theorem 2.2 as a grand generalization of
Fubini’s theorem.

Example 2.3. Let X = [0, 1]2 and A = B×{∅, [0, 1]}. Theorem 2.2 says that
any Borel probability measure µ on X can be decomposed into vertical com-
ponents in the following sense: the conditional measures µA

(x1,x2)
are defined

on the line segments {x1}× [0, 1], and these sets are precisely the atoms of A .
Moreover,
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µ(B) =

∫

X

µA

(x1,x2)
(B) dµ(x1, x2). (2.2)

Here µA

(x1,x2)
= νx1 does not depend on x2, so (2.2) may be written as

µ(B) =

∫

[0,1]

νx1(B) dµ(x1)

where µ = π∗µ is the measure on [0, 1] obtained by the projection

π : [0, 1]2 −→ [0, 1]

(x1, x2) 7−→ x1.

In this section we have considered functions in L 1; we refer to Exer-
cise 2.1.2 for the non-negative measurable case.

2.1.2 Structural properties of conditional measures

As the conditional measures are often singular to the original measures, null
sets for µ require some additional care. However, the following general remark
helps to a large extent. If A ⊆B is a sub-σ-algebra, and N ∈ B is a null set
for µ, then µA

x (N) = 0 for µ-almost every x ∈ X . This is a simple consequence
of Theorem 2.2(1), which we will use frequently without explicit reference.

We recall from [52, Prop. 5.20] that conditional measures ‘commute’ with
refinement in the following sense. This is simply a formulation of Property (4)
in Theorem 2.1 for conditional expectation.

Proposition 2.4 (Double conditioning). Let (X,B, µ) be a Borel proba-
bility space, and let

A
′ ⊆ A ⊆ B

be countably-generated sub-σ-algebras. Then [z]A ⊆ [z]A ′ for z ∈ X, and
for almost every z ∈ X the conditional measures for the measure µA

′

z with
respect to A are given for µA

′

z -almost every x ∈ [z]A ′ by (µA
′

z )Ax = µA
x .

The next result, taken from [52, Cor. 5.24] describes how conditional mea-
sures behave with respect to measure-preserving maps.

Lemma 2.5 (Push-forward of conditional measures). Let

φ : (X,BX , µ)→ (Y,BY , ν)

be a measure-preserving map between Borel probability spaces, and let A be
a sub-σ-algebra of BY . Then

φ∗µ
φ−1

A
x = νA

φ(x)
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for µ-almost every x ∈ X.

We note that the above follows from the formula

Eµ(f ◦ φ
∣∣φ−1

A ) = Eν(f
∣∣A ) ◦ φ

for all f ∈ L1(Y,BY , ν), which in turn is easy to check from the characterizing
properties of the conditional expectation.

2.1.3 Factors and σ-Algebras

A very common way in which a σ-algebra may arise is from a measurable
map φ : (X,BX) → (Y,BY ). Indeed from φ we may immediately define
the σ-algebra A = φ−1BY .

Given a general sub-σ-algebra A ⊆ BX it is interesting to note that one
can always find a map φ for which

A =
µ
φ−1

BY .

Indeed one can use φ(x) = µA
x , which takes values in the compact space

Y = M (X̄)

consisting of probability measures on the ambient compact metric space X̄ .
This can be taken further to give a proof of the following theorem; we refer
to [52, Th. 6.5] for the details.

Theorem 2.6 (Factors). Let (X,BX , µ) be a Borel probability space, and
let T be a measure-preserving transformation on X. Assume furthermore that
there is a strictly invariant sub-σ-algebra A = T−1A ⊆ BX . Then there is
a measure-preserving system (Y,BY , ν, S) on a Borel probability space and a
factor map φ : X → Y with A = φ−1BY modulo µ. If T is invertible then S
may be chosen to be invertible.

2.1.4 Ergodic Decomposition

Another way in which a σ-algebra A ⊆ B will arise in our discussions is
the following example. In a measure-preserving system (X,B, µ, T ) we may
define the σ-algebra E = {B ∈ B | µ(T−1B△B) = 0} of invariant sets.
The notion of conditional measures for this σ-algebra leads to a proof of the
ergodic decomposition, which we describe now.
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Theorem 2.7 (Ergodic decomposition). Let T : (X,B, µ) → (X,B, µ)
be a measure-preserving map of a Borel probability space. Then there is a
Borel probability space (Y,BY , ν) and a measurable map y 7→ µy for which

• µy is a T -invariant ergodic probability measure on X for almost every y,
and
• µ =

∫
Y
µy dν(y).

Moreover, we can require that the map y 7→ µy is injective, or alternatively
set (Y,BY , ν) = (X,B, µ) and µx = µE

x , where E is the σ-algebra of T -
invariant sets, and µE

x denotes the conditional measure of µ at x with respect
to E .

Invariance of µE
x under T almost surely follows from the push-forward for-

mula for conditional measures (Lemma 2.5), but to see almost sure ergodicity
some more work is needed (which uses the pointwise ergodic theorem as a
tool and as a characterization of ergodicity). We refer to [52, Th. 6.2] for a
proof.

Exercises for Section 2.1

Exercise 2.1.1. Let (X,B, µ) be a Borel probability space, and let A and C be countably
generated sub-σ-algebras of B. Show that A =

µ
C if and only if there exists a null set N

such that the restrictions of A and C to XrN are identical.

Exercise 2.1.2. Let (X,B, µ) be a Borel probability space, let A ⊆ B be a sub σ-algebra,
and f > 0 a measurable function. Show that the definition of E(f |A )(x) =

∫
f dµA

x still
satisfies Theorem 2.1(1). Show that if g > 0 is A -measurable, then E(gf

∣∣A ) = gE(f
∣∣A )

almost everywhere, as in Theorem 2.1(3).

2.2 Conditional Entropy

We now start to generalize the definitions and basic results from the previous
chapter by allowing σ-algebras instead of just countable partitions.

Definition 2.8. Let (X,B, µ) be a Borel probability space and let A ,C ⊆ B

be countably-generated sub-σ-algebras. The information function of C given
(the information of) A with respect to µ is defined by

Iµ
(
C
∣∣A
)
(x) = − logµA

x ([x]C ) .

Moreover, the conditional entropy of C given A ,

Hµ

(
C
∣∣A
)
=

∫
Iµ
(
C
∣∣A
)
(x) dµ(x),
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is defined to be the average of the information.

We will see later that x 7−→ Iµ
(
C
∣∣A
)
(x) is measurable so thatHµ

(
C
∣∣A
)

is well-defined (see Proposition 2.10(2)). Assuming this for the moment we
assemble a few basic properties that are easy to see.

(1) We have
Iµ
(
C
∣∣A
)
= Iµ

(
A ∨ C

∣∣A
)

almost everywhere, since [x]A ∨C = [x]A ∩ [x]C and µA
x ([x]A ) = 1 by

Theorem 2.2.
(2) If C =

µ
C ′ are countably generated σ-algebras, then there is a null set N

such that
[x]CrN = [x]C ′rN

for all x ∈ X . Since µA
x (N) = 0 for almost every x by Theorem 2.2, we

deduce that
Iµ
(
C
∣∣A
)
= Iµ

(
C

′
∣∣A
)

almost everywhere.
(3) Similarly, if A =

µ
A ′ then

µA
x = µA

′

x

almost everywhere, and once again Iµ(C
∣∣A ) = Iµ(C

∣∣A ′) almost every-
where.

(4) Finally, notice that if N = {X,∅} is the trivial σ-algebra, then

Iµ(C
∣∣N )(x) = Iµ(C )(x) = − logµ([x]C )

and

Hµ(C
∣∣N ) = Hµ(C ) =

∫
Iµ(C ) dµ

is infinite unless C = σ(ξ) is the σ-algebra generated by a countable
partition with finite entropy.

Just as in the case of partitions discussed on page 12, the information
function of C given A at x is a measure of how much additional informa-
tion is revealed by finding out which atom [·]C contains x starting from the
knowledge of the atom [x]A . This informal description may help to motivate
the following discussion, and the reader may find it helpful to find similar
informal descriptions of the technical statements below.

Example 2.9. If C = σ(ξ) and A = σ(η) for countable partitions ξ and η,
then the conditional measure satisfies µA

x = 1
µ([x]η)

µ|[x]η , and so

Iµ
(
σ(ξ)

∣∣σ(η)
)
(x) = − log

µ([x]ξ ∩ [x]η)

µ([x]η)
,

and
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Hµ

(
σ(ξ)

∣∣σ(η)
)
= −

∑

P∈ξ,
Q∈η

µ(P ∩Q) log
µ(P ∩Q)

µ(Q)
.

Thus, in this case the definition of Hµ(ξ
∣∣η) seen in (1.1) and Definition 1.6

for the case of countable partitions is recovered.

Motivated by the above example we will not distinguish between a par-
tition η and the σ-algebra σ(η) that is generates. We will also write η ∨ A

or A ∨ η as an abbreviation for σ(η) ∨ A when η is a countable partition
and A is a sub σ-algebra.

2.2.1 Dependence on the sub σ-Algebra whose Information is
Measured

In order to justify the definition ofHµ(C
∣∣A ) we need to know that Iµ(C

∣∣A )
is a measurable function. In addition to this, we shall see that both the
information and the entropy are monotone and continuous (in a suitable
sense) with respect to the σ-algebra whose information is being computed.

Proposition 2.10 (Monotonicity and Continuity). Let (X,B, µ) be a
Borel probability space with sub-σ-algebras A ,C ,Cn ⊆ B for n ∈ N, and
assume that C ,Cn are countably generated for all n > 1. Then

(1) the map x 7→ Iµ(C
∣∣A )(x) is measurable;

(2) if C1 ⊆ C2 then Iµ(C1

∣∣A ) 6 Iµ(C2

∣∣A ); and
(3) if Cn ր C is an increasing sequence of σ-algebras then

Iµ(Cn

∣∣A )ր Iµ(C
∣∣A )

and
Hµ(Cn

∣∣A )ր Hµ(C
∣∣A )

as n→∞.

Proof. Property (2) follows from the fact that [x]C2 ⊆ [x]C1 for x ∈ X and
the definition. For (1), first consider the case where C = σ(ξ) is generated
by a countable partition ξ = {P1, P2, . . . }. In this case

Iµ
(
C
∣∣A
)
(x) =





− logµA
x (P1) for x ∈ P1 ∈ ξ,

− logµA
x (P2) for x ∈ P2 ∈ ξ,
...

so Iµ(C
∣∣A ) is measurable. The general case of a countably-generated σ-

algebra C = σ ({C1, C2, . . . }) follows by defining the sequence (ξn) of par-
titions to have the property that Cn = σ(ξn) = σ({C1, . . . , Cn}) ր C and
then applying (3), which we now prove.
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Let Cn ր C be an increasing sequence of countably-generated σ-algebras.
Then the atoms [x]Cn

are shrinking as n→∞,

[x]C =
⋂

n>1

[x]Cn
,

and so
µA
x ([x]Cn

)ց µA
x ([x]C )

which gives (3) by the definition of Iµ(C
∣∣A ) and monotone convergence. �

2.2.2 Dependence on the Given Sub-σ-algebra

We now turn to the properties of information and entropy with respect to
the given σ-algebra — that is, properties of the function

A 7−→ Iµ(C
∣∣A )

for fixed C . This is more delicate than the corresponding properties for the
function C 7→ Iµ(C

∣∣ A ) for fixed A , considered above. In particular, for most
of the following discussion we will assume that C = σ(ξ) for some partition ξ.

The next lemma gives an alternative description of conditional entropy,
by showing that Hµ(A

∣∣C ) is the average of the entropies HµA
x
(C ) (notice

that this result coincides with the definition (1.1) if A and C are σ-algebras
generated by countable partitions).

Lemma 2.11 (Conditional entropy equals an average). Let (X,B, µ)
be a Borel probability space, with C and A sub-σ-algebras of B. Then

Hµ

(
C
∣∣A
)
=

∫
HµA

x
(C ) dµ(x),

where HµA
x
(C ) is infinite unless C agrees modulo µA

x with a σ-algebra gen-

erated by a countable partition of finite entropy with respect to µA
x .

Proof. By monotonicity and continuity of the entropy function with respect
to the first σ-algebra (Proposition 2.10) and monotone convergence, it is
enough to check the first statement for C = σ(ξ) for a finite partition ξ. In
this case the characterizing properties of conditional measures (Theorem 2.2)
show that
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∫
µA
x (P ) log µA

x (P ) dµ(x) =

∫ (∫
1P (y) dµ

A
x (y)

)
logµA

x (P ) dµ(x)

=

∫ ∫
1P (y) log µ

A
y (P ) dµA

x (y) dµ(x)

=

∫
1P (x) log µ

A
x (P ) dµ(x)

for any P ∈ ξ. Therefore,
∫
HµA

x
(ξ) dµ = −

∫ ∑

P∈ξ

µA
x (P ) log µA

x (P ) dµ(x)

= −
∫ ∑

P∈ξ

1P (x) log µ
A
x (P ) dµ(x)

=

∫
Iµ
(
ξ
∣∣A
)
dµ = Hµ

(
ξ
∣∣A
)
.

Finiteness of HµA
x
(C ) for a general σ-algebra C was discussed on page 54. �

Working with finite partitions, the above allows us to prove continuity of
entropy with respect to the given σ-algebra.

Proposition 2.12 (Continuity). Let ξ be a finite or countable partition
of a Borel probability space (X,B, µ), and let An ր A∞ be an increasing
(or An ց A∞ a decreasing) sequence of sub-σ-algebras of B. Then

Iµ
(
ξ
∣∣An

)
−→ Iµ

(
ξ
∣∣A∞

)

and if ξ is a finite partition then also

Hµ

(
ξ
∣∣An

)
−→ Hµ

(
ξ
∣∣A∞

)
.

Proof. Let ξ = {P1, P2, . . .} be a finite or countable partition. Then the
increasing martingale theorem [52, Th. 5.5] (resp. the decreasing martingale
theorem [52, Th. 5.8]) implies for µ-almost every x ∈ Pn that

Iµ
(
ξ
∣∣An

)
(x) = − logµAn

x (Pn)

= − logEµ

(
1Pn

∣∣An

)
(x)

−→ − logEµ

(
1Pn

∣∣A∞

)
(x) (as n −→ ∞)

= Iµ
(
ξ
∣∣A∞

)
(x).

Assume now that ξ is a finite partition. By Lemma 2.11 we also have

Hµ

(
ξ
∣∣An

)
=

∫
HµAn

x
(ξ) dµ(x),

and, by the martingale theorems,
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HµAn
x

(ξ) = −
∑

P∈ξ

µAn
x (P ) logµAn

x (P )

−→ −
∑

P∈ξ

µA∞
x (P ) logµA∞

x (P ) = HµA∞
x

(ξ)

as n→∞, since the function φ in (1.6) is continuous for x > 0. Since

HµAn
x

(ξ) 6 log |ξ| <∞

for µ-almost every x, dominated convergence gives

lim
n→∞

Hµ

(
ξ
∣∣An

)
=

∫
HµA∞

x
(ξ) dµ = Hµ

(
ξ
∣∣A∞

)
,

which concludes the proof. �

With the above we can generalise the addition formula and monotonicity
properties for entropy to σ-algebras.

Proposition 2.13 (Additivity and Monotonicity). Let (X,B, µ) be a
Borel probability space, and let A ,C1, and C2 be countably-generated sub-σ-
algebras of B. Then we have

(1) the addition formulas

Iµ
(
C1 ∨ C2

∣∣A
)
= Iµ

(
C1

∣∣A
)
+ Iµ

(
C2

∣∣C1 ∨A
)
,

Hµ

(
C1 ∨ C2

∣∣A
)
= Hµ

(
C1

∣∣A
)
+Hµ

(
C2

∣∣C1 ∨A
)

for the information function and the entropy,
(2) the monotonicity property Hµ

(
C2

∣∣C1 ∨A
)
6 Hµ

(
C2

∣∣A
)
of entropy,

(3) and so also Hµ

(
C1 ∨ C2

∣∣A
)
6 Hµ

(
C1

∣∣A
)
+Hµ

(
C2

∣∣A
)
.

Proof. Pick sequences of finite partitions (ξℓ), (ηm), and (ζn) with

ξℓ ր C1, ηm ր C2, and ζn ր A .

For (1), we first apply continuity with respect to the given σ-algebra (Propo-
sition 2.12) and take n→∞ to deduce from

Iµ
(
ξℓ ∨ ηm

∣∣ζn
)
= − log

µ([x]ξℓ∨ηm∨ζn)

µ([x]ζn)

= − log
µ([x]ξℓ∨ζn)

µ([x]ζn)
− log

µ([x]ξℓ∨ηm∨ζn)

µ([x]ξℓ∨ζn)

= Iµ
(
ξℓ
∣∣ζn
)
+ Iµ

(
ηm
∣∣ξℓ ∨ ζn

)

that
Iµ(ξℓ ∨ ηm

∣∣A ) = Iµ(ξℓ
∣∣A ) + Iµ(ηm

∣∣ξℓ ∨A ).
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Next we use continuity with respect to both σ-algebras (Proposition 2.10
and 2.12) to take ℓ→∞ and see that

Iµ(C1 ∨ ηm
∣∣A ) = Iµ(C1

∣∣A ) + Iµ(ηm
∣∣C1 ∨A ).

Finally we use continuity with respect to the first σ-algebra (Proposition 2.10)
and take m→∞ to see that

Iµ(C1 ∨ C2

∣∣A ) = Iµ(C1

∣∣A ) + Iµ(C1

∣∣C1 ∨A ),

which proves both statements in (1) after taking the integral.
For (2) we use again the sequence of partitions as above and recall that

Hµ

(
ηm
∣∣ξℓ ∨ ζn

)
6 Hµ

(
ηm
∣∣ζn
)

Using continuity of entropy (Proposition 2.12) we let ℓ→∞ and n→∞ and
get

Hµ

(
ηm
∣∣C1 ∨A

)
6 Hµ

(
ηm
∣∣A
)

Now we let m→∞ and use continuity of entropy (Proposition 2.10), which
proves (2).

Combining (1) and (2) we also obtain (3). �

Even though we already discussed the continuity properties of the entropy
function with respect to the given σ-algebra, we will now give a second proof
for the increasing case which also gives dominated convergence for the infor-
mation function.

Proposition 2.14 (Continuity and dominated convergence). Let ξ be
a countable partition of the Borel probability space (X,B, µ) with Hµ(ξ) <∞.
Let An ր A∞ be an increasing sequence of σ-algebras. Then

∫
sup
n>1

Iµ
(
ξ
∣∣An

)
dµ <∞, (2.3)

Iµ
(
ξ
∣∣An

)
→ Iµ

(
ξ
∣∣A∞

)
(2.4)

almost everywhere and in L1
µ, and

Hµ

(
ξ
∣∣An

)
ց Hµ

(
ξ
∣∣A∞

)
(2.5)

as n→∞.

Proof. We note that (2.4) we already have shown in Proposition 2.12 and
that the monotonicity claim in (2.5) follows from Proposition 2.13. Thus, by
the dominated convergence theorem, it remains to show (2.3). For this we let

I∗ = sup
n>1

Iµ
(
ξ
∣∣An

)
,
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so in particular I∗ > 0. Write R+ for the non-negative reals and m for
Lebesgue measure restricted to R+. Let

F (t) = µ ({x ∈ X | I∗(x) > t}) ;

then
∫
I∗ dµ =

∫

X×R+

1{(x,t)|I∗(x)>t} d(µ×m) =

∫ ∞

0

F (t) dt

by applying Fubini’s theorem twice. Now

F (t) = µ
( ⊔

P∈ξ

{
x ∈ P | sup

n>1

(
− logµAn

x (P )
)
> t

})

=
∑

P∈ξ

µ
(
{x ∈ P | inf

n>1
µAn
x (P ) < e−t}

)

=
∑

P∈ξ

∞∑

n=1

µ
(
{x ∈ P | µAn

x (P ) < e−t but µAm
x (P ) > e−t for m < n}︸ ︷︷ ︸

=P∩An(P )

)
,

where we define

An(P ) = {x | µAn
x (P ) < e−t but µAm

x (P ) > e−t for m < n} ∈ An,

for P ∈ ξ and a fixed t > 0, and also used that the sets A1(P ), A2(P ), . . . are
all disjoint. Using the definition of An(P ) we obtain

µ(P ∩An(P )) =

∫

An(P )

1P dµ =

∫

An(P )

E(1P

∣∣An) dµ < e−tµ(An).

Then (each An(P ) depends also on t)

F (t) =
∑

P∈ξ

∞∑

n=1

µ
(
P ∩ An(P )

)
6
∑

P∈ξ

min{µ(P ), e−t}, (2.6)

which by integrating yields

∫
I∗ dµ =

∫ ∞

0

F (t) dt 6
∑

P∈ξ

∫ ∞

0

min{µ(P ), e−t} dt

=
∑

P∈ξ

−µ(P ) logµ(P ) + µ(P )

= Hµ(ξ) + 1.

�
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2.2.3 Extremal values of conditional entropy

Both zero conditional entropy and maximal conditional entropy have impor-
tant characterizations which we will discuss here.

We start by giving a natural interpretation of zero conditional entropy.
For a σ-algebra A ⊆B and a set C ∈ B we write

C ∈
µ

A

if there exists a set A ∈ A such that µ(C△A) = 0. For σ-algebras A ,C ⊆ B

we write
C ⊆

µ
A

if for any C ∈ C we have C ∈
µ

A . We note that if C is countably generated

the latter implies that there exists one null set N ∈ B such that for all C ∈ C

there exists a set A ∈ A with CrN = ArN .

Proposition 2.15 (Zero Entropy). Let (X,B, µ) be a Borel probability
space, with C and A a pair of countably-generated sub-σ-algebras of B. Then

Hµ

(
C
∣∣A
)
= 0

if and only if
C ⊆

µ
A .

Proof. First notice that Hµ

(
C
∣∣A
)
= 0 if and only if µA

x ([x]C ) = 1 for
almost every x ∈ X .

Assume now that
C ⊆

µ
A

and that C is generated by the countable algebra {C1, C2, . . . }. Then there
exists a µ-null set N such that for every Ci there exists an Ai ∈ A for
which AirN = CirN . This gives [x]ArN ⊆ [x]C for all x ∈ X . Hence

µA
x ([x]C ) > µA

x ([x]ArN) = 1

for µ-almost every x ∈ X .
Assume now that µA

x ([x]C ) = 1 almost everywhere. Then for C ∈ C we
deduce that

µA
x (C) = 1C(x),

first for almost every x ∈ C and by using XrC then for almost every x /∈ C.
It follows that

E
(
1C

∣∣A
)
= 1C .

This shows that C ∈
µ

A , and we conclude that C ⊆
µ

A . �
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By analogy with the case of two partitions (see Exercise 1.1.3), we say
that two σ-algebras A ,C ⊆ B are independent, denoted† by A ⊥ C , if

µ(A ∩ C) = µ(A)µ(C) (2.7)

for all A ∈ A and all C ∈ C . We say that a partition ξ is independent to C

if σ(ξ) ⊥ C and will again write ξ ⊥ C . We also say that a measurable set A
is independent to C if (2.7) holds for A and all C ∈ C .

By monotonicity of entropy (Proposition 2.13(2)) the following gives a
characterization of maximal conditional entropy.

Proposition 2.16 (Maximal entropy). Let C be a countably-generated σ-
algebra, ξ a countable partition with finite entropy, and P ∈ B be any mea-
surable set in a Borel probability space (X,B, µ). Then ξ is independent to C

if and only if
Hµ(ξ

∣∣C ) = Hµ(ξ).

Also a measurable set P is independent to C if and only if

µC
x (P ) = µ(P ) (2.8)

for almost every x ∈ X.

Proof. We consider first the case of a measurable set P and suppose
that (2.8) holds, and let C ∈ C . Then

µ(P ∩C) =
∫

C

1P dµ =

∫

C

Eµ

(
1P

∣∣C
)

︸ ︷︷ ︸
=µC

x (P )

dµ = µ(P )µ(C).

Now assume (2.7) holds for P = A and all C ∈ C . Then the constant func-
tion f(x) = µ(P ) satisfies

∫

C

f dµ = µ(P )µ(C) = µ(P ∩ C) =
∫

C

1P dµ

for all C ∈ C and is clearly C -measurable. It follows that

f(x) = E
(
1P

∣∣C
)
= µC

x (P )

almost everywhere with respect to µ.
For the first statement of the proposition we let ξ be a countable partition

with finite entropy. Then, using the function φ from (1.6) and Lemma 2.11
we obtain

† Strictly speaking this should be written ⊥µ to reflect the dependence of this notion on

the measure, but where we use independence of partitions or of σ-algebras the measure
will always be clear from the context.
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Hµ

(
ξ
∣∣C
)
=

∫
HµC

x
(ξ) dµ

= −
∑

P∈ξ

∫
φ
(
µC
x (P )

)
dµ

6 −
∑

P∈ξ

φ

( ∫
µC
x (P ) dµ

︸ ︷︷ ︸
=µ(P )

)
(by Lemmas 1.3 and 1.4)

= Hµ(ξ).

By strict convexity of φ equality occurs here if and only if

µ(P ) = µC
x (P )

for almost every x and all P ∈ ξ, and this holds if and only if

µ(P ∩ C) = µ(P )µ(C)

for all P ∈ ξ, C ∈ C by the first part of the proposition. �

Exercises for Section 2.2

Exercise 2.2.1. Show that Proposition 2.12 does not hold for an arbitrary σ-algebra C

and sequence of σ-algebras An ր A∞, by finding an example for which Hµ
(
C
∣∣An

)
does

not converge to Hµ
(
C
∣∣A∞

)
as n → ∞.

Exercise 2.2.2. Analyse where our proof of (2.3) fails in the case of a decreasing sequence
of σ-algebras.

Exercise 2.2.3. Let ξ be a countable partition of finite entropy in a Borel probability
space (X,B, µ). Let An ց A∞ be a decreasing sequence of sub σ-algebras of B. Show
that Hµ(ξ

∣∣An) ր Hµ(ξ
∣∣A∞) as n → ∞.

2.3 Conditional Entropy of a Transformation

For brevity we introduce the notation ξba for
∨b

i=a T
−iξ whenever a < b belong

to N0 ∪ {∞} (or Z ∪ {−∞,∞} in the invertible case) and the map is clear
from the context. We will use this notation also for σ-algebras.

Recall from Lemma 1.12 that for partitions ξ and η we have the invariance
property

Hµ

(
ξ
∣∣η
)
= Hµ

(
T−1ξ

∣∣T−1η
)
.

This extend to general σ-algebras as follows.
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Lemma 2.17 (Invariance). Let (X,B, µ, T ) be a measure-preserving sys-
tem on a Borel probability space and let A ,C be sub σ-algebras of B. Then

Hµ

(
C
∣∣A
)
= Hµ

(
T−1

C
∣∣T−1

A
)

and
Iµ
(
C
∣∣A
)
◦ T = Iµ

(
T−1

C
∣∣T−1

A
)
. (2.9)

Proof. It is enough to show (2.9), and for this we have

Iµ
(
C
∣∣A
)
(Tx) = − logµA

Tx ([Tx]C )

= − log
(
T∗µ

T−1
A

x

)
([Tx]C ) (by Lemma 2.5)

= − logµT−1
A

x

(
T−1[Tx]C

)

= − logµT−1
A

x ([x]T−1C ) = Iµ
(
T−1

C
∣∣T−1

A
)
(x).

�

For later developments, it will be useful to discuss the entropy of T with
respect to a given sub-σ-algebra A , so that when measuring the entropies of
the repeated experiment ξ we will always assume that the information of A is
given. In this context we will always assume that A is strictly invariant in the
sense that T−1A = A . The first step is to show that the sequence of (condi-
tional) entropies of the repeated experiments is sub-additive. Given m,n > 1,
we may use subadditivity of entropy (Proposition 2.13(3)), T−nA = A , and
invariance of entropy (Lemma 2.17) to obtain

Hµ

(
ξm+n−1
0

∣∣A
)
6 Hµ

(
ξn−1
0

∣∣A
)
+Hµ

(
T−nξm+n−1

n

∣∣T−n
A
)

= Hµ

(
ξn−1
0

∣∣A
)
+Hµ

(
ξm−1
0

∣∣A
)
.

So the sequence
(
Hµ

(
ξn−1
0

∣∣A
))

n>1
is sub-additive in the sense of Lemma 1.13,

justifying the claimed convergence in Definition 2.18.

Definition 2.18. Let (X,B, µ, T ) be a measure-preserving system on a Borel
probability space. If A is a sub-σ-algebra of B with T−1(A ) = A (that is,
a strictly invariant sub σ-algebra) then the conditional entropy of T given A

is
hµ(T

∣∣A ) = sup
ξ:Hµ(ξ)<∞

hµ(T, ξ
∣∣A )

where

hµ(T, ξ
∣∣A ) = lim

n→∞

1

n
Hµ

(
ξn−1
0

∣∣A
)
= inf

n>1

1

n
Hµ

(
ξn−1
0

∣∣A
)

for any countable partition ξ.
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We note that clearly hµ(T, ξ
∣∣A ) 6 hµ(T, ξ) and hµ(T

∣∣A ) 6 hµ(T ) for
any countable partition ξ with finite entropy and any strictly invariant σ-
algebra A . Just as in Chapter 1, we need to develop the basic properties of
conditional entropy.

Proposition 2.19 (Basic properties). Let (X,B, µ, T ) be a measure-pre-
serving system on a Borel probability space, let ξ and η be countable partitions
of X with finite entropy, and let A = T−1A ⊆ B be a strictly invariant
sub σ-algebra. Then properties (1)–(3) of Proposition 1.17 and (1)–(4) of
Proposition 1.18 also hold for the entropy conditioned on A . Moreover, we
have the following formulas.

(1) (Future formula) The dynamical entropy can be expressed as the en-
tropy of the partition given the future of the partition, i.e.

hµ(T, ξ
∣∣A ) = lim

n→∞
Hµ

(
ξ
∣∣ξn1 ∨A

)
= Hµ

(
ξ
∣∣ξ∞1 ∨A

)
.

(2) (Additivity) If T is invertible, the dynamical entropy is additive in the
sense that

hµ
(
T, ξ ∨ η

∣∣A
)
= hµ(T, ξ

∣∣A ) + hµ
(
T, η

∣∣ξ∞−∞ ∨A
)

= hµ(T, ξ
∣∣A ) +Hµ

(
η
∣∣η∞1 ∨ ξ∞−∞ ∨A

)
.

Proof. The proofs of the generalization of Proposition 1.17–1.18 to condi-
tional entropies follow the same lines as these proofs, we will not repeat them
here.

(1): For any n > 1,

1

n
Hµ(ξ

n−1
0

∣∣A ) =
1

n

(
Hµ(ξ

∣∣ξn−1
1 ∨A ) +Hµ(T

−1ξn−2
0

∣∣T−1
A )
)

=
1

n

(
Hµ(ξ

∣∣ξn−1
1 ∨A ) +Hµ(T

−1ξ
∣∣ξn−1

2 ∨ T−1
A )

+ · · ·+Hµ(T
−(n−1)ξ

∣∣T−(n−1)
A )
)

=
1

n

n−1∑

j=0

Hµ(ξ
∣∣ξj1 ∨A ) −→

Cesàro
Hµ(ξ

∣∣ξ∞1 ∨A ).

In the last line we first used invariance of entropy (Lemma 2.17), then con-
tinuity of entropy (Proposition 2.14), and finally the fact that the Cesàro
averages of a convergent sequence (am) converge to the limit limm→∞ am.

(2): By splitting the entropy up in a similar way to the argument in (1), but
in a different order, we get
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hµ(T, ξ ∨ η
∣∣A ) = lim

n→∞

1

n
Hµ

(
ξn−1
0

∣∣A
)
+ lim

n→∞

1

n
Hµ

(
ηn−1
0

∣∣ξn−1
0 ∨A

)

= hµ(T, ξ
∣∣A ) + lim

n→∞

1

n

n−1∑

j=0

Hµ

(
T−jη

∣∣ηn−1
j+1 ∨ ξn−1

0 ∨A
)

= hµ(T, ξ
∣∣A ) + lim

n→∞

1

n

n−1∑

j=0

Hµ

(
η
∣∣ηn−1−j

1 ∨ ξn−1−j
−j ∨A

)

> hµ(T, ξ
∣∣A ) +Hµ

(
η
∣∣η∞1 ∨ ξ∞−∞ ∨A

)

by monotonicity of entropy with respect to the given σ-algebra (Proposi-
tion 2.13).

On the other hand, given ε > 0 there exists N such that

Hµ

(
η
∣∣ηN1 ∨ ξN−N ∨A

)
< Hµ

(
η
∣∣η∞1 ∨ ξ∞−∞ ∨A

)
+ ε,

by continuity of entropy (Proposition 2.14). Therefore, we can again use
monotonicity for any n and j ∈ [N,n−N − 1] to get

Hµ

(
η
∣∣ηn−1−j

1 ∨ ξn−1−j
−j ∨A

)
6 Hµ

(
η
∣∣η∞1 ∨ ξ∞−∞ ∨A

)
+ ε.

Since for large enough n the contribution of the other terms, which is at
most 2NHµ(η), will be smaller than nε, the reverse inequality follows by
taking n→∞. �

Recall that the Kolmogorov–Sinăı Theorem (Theorem 1.21) gives a method
to compute the entropy of a measure-preserving system given a generator.
The next result is a useful extension to this, which is also applicable in situ-
ations where a generator is difficult to find.

Theorem 2.20 (Kolmogorov–Sinăı for sequences of partitions). Sup-
pose that (X,B, µ, T ) is a measure-preserving system on a Borel probability
space. If (ξk) is an increasing sequence of partitions (that is, if ξk ⊆ σ(ξk+1)
for all k > 1) of finite entropy with the property that

• B =
µ

∨∞
k=1(ξk)

∞
0 or

• B =
µ

∨∞
k=1(ξk)

∞
−∞ if T is invertible,

then
hµ(T ) = sup

k
hµ(T, ξk) = lim

k→∞
hµ(T, ξk).

More generally, under the same hypothesis, if A = T−1A ⊆ B is a strictly
invariant sub-σ-algebra, then

hµ(T
∣∣A ) = sup

k
hµ(T, ξk

∣∣A ) = lim
k→∞

hµ(T, ξk
∣∣A ).
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We may abbreviate the assumptions to the theorem by saying that the
sequence of partitions (ξk) is generating (with respect to T ).

Proof of Theorem 2.20. Let A and (ξk) be as in the theorem, and let ξ
be another countable partition of finite entropy. Then

hµ(T, ξ
∣∣A ) 6 hµ(T, (ξn)

n
0

∣∣A ) +Hµ

(
ξ
∣∣(ξn)n0 ∨A

)

for any n > 1 by the continuity bound in Proposition 1.17(3) conditioned
on A . Here the first term

hµ(T, (ξn)
n
0

∣∣A ) = hµ(T, ξn
∣∣A )

by Proposition 1.18(1), and the second term

Hµ

(
ξ
∣∣(ξn)n0 ∨A

)
−→ 0

as n → ∞ by continuity of entropy (Proposition 2.14) and the assumption
about the sequence (ξk). �

We end this section by showing how the entropy of a measure-preserving
transformation splits into two terms with respect to a given factor.(13)

Corollary 2.21 (Abramov–Rokhlin formula). Let X = (X,BX , µ, T ) be
an invertible measure-preserving system on a Borel probability space, and
let φ : X→ (Y,BY , ν, S) be a factor map. Then

hµ(T ) = hν(S) + hµ(T
∣∣A ) (2.10)

where the factor Y is identified with the corresponding strictly invariant sub-
σ-algebra A = φ−1BY ⊆ BX . Moreover,

hν(S) = sup
{
hµ(T, η) | η ⊆ A is a countable partition of finite entropy

}
.

Proof. For the final statement, let η ⊆ BY be a countable partition.
Then Hν(η) = Hµ(φ

−1η) so that, in particular, η has finite entropy if and

only if φ−1η has finite entropy. Using this also for
∨n−1

i=0 S
−iη instead of η,

we see that
hν(S, η) = hµ(T, φ

−1η),

which implies the last statement.
Turning to the proof of (2.10), pick sequences of finite partitions (ηm)

and (ξn) with ηm ր BY and ξn ր BX . By the additivity of dynamical
entropy (Proposition 2.19(2)),

hµ(T, ξn ∨ φ−1ηm) = hµ(T, φ
−1ηm) +Hµ

(
ξn
∣∣(ξn)∞1 ∨ (φ−1ηm)

∞

−∞

)

= hν(S, ηm) +Hµ

(
ξn
∣∣(ξn)∞1 ∨ (φ−1ηm)

∞

−∞

)
(2.11)
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Assume first that the left-hand side of (2.10) is finite. By the Kolmogorov–
Sinăı theorem applied for T (Theorem 2.20), for any fixed ε > 0 and all large
enough n we have

hµ(T )− ε 6 hµ(T, ξn) 6 hµ(T, ξn ∨ φ−1ηm) 6 hµ(T ).

Combining this with (2.11) gives

hµ(T )− ε 6 hµ(S, ηm) +Hµ

(
ξn
∣∣(ξn)∞1 ∨ (φ−1ηm)

∞

−∞

)
6 hµ(T ).

Let m → ∞. Applying the Kolmogorov–Sinăı theorem to S (Theorem 2.20)
and continuity of entropy (Proposition 2.14) we obtain

hµ(T )− ε 6 hν(S) +Hµ

(
ξn
∣∣(ξn)∞1 ∨A

)
6 hµ(T ).

Moreover, by the future formula for entropy (Proposition 2.19(1)) and the
Kolmogorov–Sinăı theorem applied for T conditioned on A (Theorem 2.20)
we have

lim
n→∞

Hµ

(
ξn
∣∣(ξn)∞1 ∨A

)
= lim

n→∞
hµ(T, ξn

∣∣A ) = hµ(T
∣∣A ),

which proves (2.10).
The case of hµ(T ) = ∞ is similar. Note that in this case the left-hand

side of (2.11) will become arbitrarily large as n→∞. If hν(S) =∞, there is
nothing to prove. So assume that the first term on the right-hand side of (2.11)
stays bounded as m → ∞. As the second term converges to hµ(T, ξn

∣∣A )

as m→∞, it follows from (2.11) that hµ(T
∣∣A ) =∞. �

2.4 The Pinsker Algebra

Studying a measure-preserving system via its factors can have far-reaching
consequences (a striking instance of this is Furstenberg’s proof of Szemerédi’s
theorem; see [52, Ch. 7]). In particular, it is natural to ask if a measure-
preserving system can always be decomposed into a zero-entropy system and
a system with the property that every non-trivial factor has positive entropy.
This turns out to be too much to ask, but a partial answer in the same
direction is afforded by the Pinsker algebra [165], which we now wish to
study.

Definition 2.22. Let (X,B, µ, T ) be an invertible measure-preserving sys-
tem on a Borel probability space. The Pinsker algebra of T is
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P(T ) = {B ∈ B | hµ(T, {B,XrB}) = 0}

=

{
B ∈ B | B ∈

µ

∞∨

n=1

T−n{B,XrB}
}
. (2.12)

The formulation of P(T ) in (2.12) follows from the future formula for entropy
and the characterization of zero conditional entropy (Proposition 2.19(1) and
Proposition 2.15) and may be described as follows: the Pinsker algebra com-
prises those sets with the property that knowledge of whether the orbit of a
point lies in the set or not in all of the future determines whether it lies in
the set in the present.

Proposition 2.23 (Pinsker factor). The Pinsker algebra P(T ) is a strictly
invariant sub-σ-algebra and so defines via Theorem 2.6 the Pinsker factor
of T . This factor

XP = (XP ,P(T ), µ, TP)

has zero entropy and is maximal with respect to that property in the following
sense. If

Y = (Y,A , ν, S)

is another factor of X with zero entropy then Y is a factor of XP . Moreover,
the relative entropy of T given P(T ) coincides with the entropy of T ,

hµ(T ) = hµ(T
∣∣P(T )). (2.13)

Proof. To see that P(T ) is a σ-algebra, let {Bi | i > 1} be a collection
of sets in P(T ) and write ξi = {Bi, XrBi} for the associated partitions.
If Q ∈ ∨∞

i=1 ξi and η = {Q,XrQ}, then for any ε > 0 there is an n such that

Hµ

(
η
∣∣

n∨

i=1

ξi

)
< ε.

It follows, by the continuity bound in Proposition 1.17(3), that

hµ(T, η) 6 hµ

(
T,

n∨

i=1

ξi

)
+Hµ

(
η
∣∣

n∨

i=1

ξi

)

6

n∑

i=1

hµ(T, ξi) + ε = ε,

so η ⊆ P(T ). For the T -invariance, note first that hµ(T, ξ) = hµ(T, T
−1ξ)

for any partition with finite entropy, which implies that T−1P(T ) ⊆P(T ).
The converse holds as well, since any B ∈ P(T ) agrees by (2.12) modulo µ
with some element of
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∞∨

n=1

T−n{B,XrB} = T−1
∞∨

n=0

T−n{B,XrB} ⊆ T−1
P(T ).

By Theorem 2.6 this defines now a factor XP = (XP ,P(T ), µ, TP) of
the measure-preserving system (X,B, µ, T ). By the definition of P(T ) and
by the last statement in the Abramov–Rokhlin formula (Corollary 2.21),
the entropy hµ(TP) of the Pinsker factor vanishes. Now (2.13) follows from
Corollary 2.21 (or the following Lemma 2.24). If Y is any factor of X with
zero entropy, then every finite partition of the corresponding T -invariant σ-
algebra A must have zero entropy. Hence the whole σ-algebra A must
be measurable with respect to P(T ) modulo µ. By Theorem 2.6 (applied
to A ⊆P(T )), it follows that there is a factor map XP → Y. �

The next lemma (which refines (2.13) and is needed in the next section)
encapsulates once again the idea that the factor P(T ) has no entropy, and
is maximal with respect to this property.

Lemma 2.24 (Conditioning on the Pinsker algebra). Let (X,B, µ, T )
be a measure-preserving system on a Borel probability space, and let A ⊆ B

be a strictly invariant sub-σ-algebra. Then for any partition ξ with finite
entropy,

hµ(T, ξ
∣∣A ) = hµ(T, ξ

∣∣P(T ) ∨A ).

Proof. Let η ⊆P(T ) be a partition with Hµ(η) <∞ (so hµ(T, η) = 0) and
let ξ be a partition with Hµ(ξ) <∞. Then

hµ(T, ξ
∣∣A ) 6 hµ(T, ξ ∨ η

∣∣A )

= hµ(T, η
∣∣A ) + hµ

(
T, ξ

∣∣η∞−∞ ∨A
)
6 hµ(T, ξ

∣∣A )

by additivity of dynamical entropy (Proposition 2.19(2)), and monotonic-
ity with respect to the given σ-algebra. By the future formula (Proposi-
tion 2.19(1)) this gives

hµ(T, ξ
∣∣A ) = Hµ

(
ξ
∣∣ξ∞1 ∨ η∞−∞ ∨A

)
.

By choosing an increasing sequence of such partitions (ηn), which generate
the Pinsker algebra in the sense that ηn ր P(T ), the lemma follows from
the continuity of entropy with respect to the given σ-algebra (see Proposi-
tion 2.14). �

A partition ξ is called non-trivial if it contains two sets of positive measure,
or equivalently if H(ξ) > 0. The Pinsker algebra singles out a natural class of
measure-preserving transformations — those for which all non-trivial factors
have positive entropy.

Definition 2.25. An invertible measure-preserving system (X,B, µ, T ) is
said to have completely positive entropy or to be a K-automorphism if we
have hµ(T, ξ) > 0 for any non-trivial partition ξ.
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Notice that (X,B, µ, T ) has completely positive entropy if and only
if P(T ) =

µ
NX = {X,∅} is the trivial σ-algebra.

2.4.1 Tail σ-algebras

For any σ-algebra A (and similarly for partitions) we will refer to the σ-
algebra

∞⋂

n=0

A
∞
n =

∞⋂

n=0

∞∨

i=n

T−i(A )

as the tail σ-algebra or tail field of A . Below we will frequently use the
characterization of zero conditional entropy in Proposition 2.15. As in that
characterization containment modulo µ is used, it is convenient to interpret
the intersection of σ-algebras as in the above definition also modulo µ, mean-
ing that A belongs to the tail σ-algebra of A if A is an element of A ∞

n

modulo µ for all n. However, we note that for decreasing sequences of σ-
algebras, as for instance in the definition of the tail, this is not necessary by
the following argument.

Suppose Cn ց C∞ and suppose for some measurable B there exists for
all n some Cn ∈ Cn with µ(B△Cn) = 0 (i.e. B equals Cn modulo µ). Then we
note that

⋃
k>n Ck ∈ Cn also equals B modulo µ. Defining the limes superior

of these sets we see that

C∞ = lim sup
n→∞

Cn =
⋂

n

⋃

k>n

Ck =
⋂

n>n0

⋃

k>n

Ck

for all n0 > 1. Therefore, C∞ belongs to C∞ =
⋂

n Cn and also equals B
modulo µ. Hence the intersection defined modulo µ is equivalent to the in-
tersection of σ-algebras.

The tail of partitions with finite entropy is directly related to the Pinsker σ-
algebra as we will now discuss.

Proposition 2.26 (Pinsker and tail σ-algebras). For any invertible
measure-preserving transformation T of a Borel probability space (X,B, µ),

P(T ) =
µ

∨

ξ:Hµ(ξ)<∞

∞⋂

n=0

ξ∞n .

Proof of Proposition 2.26. Let ξ be a partition with Hµ(ξ) < ∞, and
let η be a finite partition measurable with respect to

⋂∞
n=0 ξ

∞
n . Then η ⊆ ξ∞1

and so
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hµ(T, ξ) = Hµ

(
ξ
∣∣ξ∞1

)
= Hµ

(
ξ ∨ η

∣∣(ξ ∨ η)∞1
)

= hµ(T, ξ ∨ η) = hµ(T, η) + hµ
(
T, ξ

∣∣η∞−∞

)

= hµ(T, η) + hµ(T, ξ),

where the last equality holds since

hµ
(
T, ξ

∣∣η∞−∞

)
= Hµ

(
ξ
∣∣ξ∞1 ∨ η∞−∞

)

and
η∞−∞ 6 ξ∞1 .

It follows that hµ(T, η) = 0 since hµ(T, ξ) 6 Hµ(ξ) <∞.
Conversely, if η = {Q,XrQ} ⊆P(T ) then

hµ(T, η) = 0 = Hµ(η
∣∣η∞1 ).

Using the characterization of zero conditional entropy in Proposition 2.15 we
see that η ⊆

µ
η∞1 . In particular,

η∞0 =
µ
η∞1 =

µ
η∞n

for all n > 1, which implies that

Q ∈
µ

∞⋂

n=0

η∞n

as required. �

If a generator is known, then the tail σ-algebra can be expressed in terms
of the generator, giving the following strengthening of Proposition 2.26.

Theorem 2.27 (Tail of generator). Let ξ be a finite entropy generator
for an invertible measure-preserving transformation T . Then the Pinsker σ-
algebra

P(T ) =
µ

∞⋂

n=1

ξ∞n

equals the tail of the generator ξ. In particular, the σ-algebra of invariant
sets E is modulo µ a subset of ξ∞1 .

Example 2.28. Let (X,B, µ, σ) be the Bernoulli shift defined by the prob-
ability vector (p1, . . . , ps), so that X =

∏
Z{1, . . . , s}, µ =

∏
Z(p1, . . . , ps),

and T = σ is the left shift. Recall that the state partition

ξ = {[1]0, [2]0, . . . , [s]0}

is a generator. Since ξk−k ⊥ ξnk+1 for all n > k we obtain ξk−k ⊥ ξ∞k+1. To
see this, it suffices to show that the collection of measurable sets that are
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independent of ξk−k forms a monotone class or reformulate the independence
as maximality of entropy (Propositions 2.16), then apply continuity of en-
tropy (Proposition 2.14) and finally apply Propositions 2.16 again. This also
implies ξk−k ⊥ P(T ) since P(T ) ⊆ ξ∞k+1. As this holds for all k > 1 we
obtain B ⊥P(T ), which implies that

P(T ) =
µ

N = {X,∅}

since any element P ∈ P(T ) is now independent to itself. Thus a Bernoulli
shift has completely positive entropy.(14)

Proof of Theorem 2.27. For any n > 1, the partition ξn−n is a generator
for T 2n, so by the Kolmogorov–Sinăı theorem (Theorem 2.20)

hµ(T
2n) = Hµ

(
ξn−n

∣∣ξ∞n
)

(2.14)

and similarly
hµ(T

2n
∣∣P(T )) = Hµ

(
ξn−n

∣∣ξ∞n ∨P(T )
)
. (2.15)

On the other hand, by Proposition 2.23,

hµ(T
2n) = 2nhµ(T ) = 2nhµ(T

∣∣P(T )) = hµ(T
2n
∣∣P(T )).

Thus, for any finite partition η ⊆ P(T ) we have, by additivity of entropy
(Proposition 2.13(1)) applied in two different ways, continuity of entropy
(Proposition 2.14), and the combination of (2.14)–(2.15) that

Hµ

(
η
∣∣ξ∞n

)
= Hµ

(
ξn−n ∨ η

∣∣ξ∞n
)
−Hµ

(
ξn−n

∣∣ξ∞n ∨ η
)

= Hµ

(
η
∣∣ξ∞n ∨ ξn−n

)
︸ ︷︷ ︸

<ε for large n

+Hµ

(
ξn−n

∣∣ξ∞n
)
−Hµ

(
ξn−n

∣∣ξ∞n ∨ η
)

︸ ︷︷ ︸
=0

.

It follows that
Hµ

(
η
∣∣ξ∞n

)
< ε

for all large enough n. Hence, by continuity of entropy (Proposition 2.12), and
the characterization of vanishing of conditional entropy in Proposition 2.15,
we have

η ⊆
µ

∞⋂

n=1

ξ∞n ,

which gives

P(T ) ⊆
µ

∞⋂

n=1

ξ∞n

since η ⊆ P(T ) was an arbitrary finite partition. The opposite inclusion
follows from Proposition 2.26. �
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A similar result holds for a sequence of partitions that generate under the
transformation in the limit.

Theorem 2.29 (Tails for a generating sequence). Let (X,B, µ, T ) be an
invertible measure-preserving system on a Borel probability space and let (ξk)
be an increasing sequence of partitions (that is, ξk ⊆ σ(ξk+1) for all k > 1)
of finite entropy with the property that (ξk)

∞
−∞ ր B as k →∞. Then

P(T ) =
µ

∨

k>1

∞⋂

n=1

(ξk)
∞
n .

Proof. Given any finite partition η ⊆ P(T ) and ε > 0, choose k so large
that Hµ

(
η
∣∣(ξk)∞−∞

)
< ε, and proceed as in the proof of Theorem 2.27. �

Exercises for Section 2.4

Exercise 2.4.1. Let (X,B, µ, T ) be an invertible measure-preserving system. Let ξ, η be
two partitions with finite entropy. Show directly that

Iµ

(
ξ
∣∣ξ∞1 ∨

⋂

n>1

η∞n

)
= Iµ(ξ

∣∣ξ∞1 )

and interpret this as a relative independence of the elements of ξ and the tail of η when
conditioned on ξ∞1 .

Exercise 2.4.2. Let (X,B, µ, T ) be an invertible measure-preserving system. Show that
we have P(T ) = P(Tn) for any n ∈ Zr{0}.

Exercise 2.4.3. Complete the proof of Theorem 2.29 in greater detail.

Exercise 2.4.4 (Countable Lebesgue spectrum(15)). Let X = (X,B, µ, T ) be an
invertible measure-preserving system on a Borel probability space. Use the steps below to
show that if X has completely positive entropy, then it has countable Lebesgue spectrum.
(a) Let ξ be a finite partition for X, and let V ⊆ L2(ξ∞0 ) be the orthogonal complement
of L2(ξ∞1 ). Show that the subspaces UkTV for k ∈ Z are mutually orthogonal and that

L2(ξ∞−∞) =
⊕

k∈Z

UkTV ⊕ L2(T ),

where

T =

∞⋂

n=0

ξ∞n

is the tail σ-algebra of ξ.
(b) Notice† that (a) implies that the unitary operator UT has pure Lebesgue spectrum on

⊕

k∈Z

UkTV

† After looking up the spectral theorem if necessary, see [52, Th. B.4] or [53, Sec. 9.1].
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with multiplicity dimV .
(c) Let A ∈ ξ∞1 be an atom of the σ-algebra (meaning that for any B in the σ-algebra
generated by ξ∞1 we have µ(A ∩ B) ∈ {0, µ(A)}). Show that A ∈ T .
(d) Using (c), show that if V 6= {0} then V is infinite-dimensional.
(e) If (X,B, µ, T ) has completely positive entropy, deduce that UT has countable Lebesgue
spectrum.
(f) Replacing the assumption of completely positive entropy with the assumption of positive
entropy, generalize (e) to show that the unitary operator UT restricted to the orthogonal
complement of L2(P(T )) within L2(B) has countable Lebesgue spectrum.

2.5 Entropy and Disjointness

We start by recalling the following fundamental definitions, which were intro-
duced into ergodic theory by Furstenberg [64] in an influential paper of 1967.

Definition 2.30. Let X = (X,BX , µ, T ) and Y = (Y,BY , ν, S) be invertible
measure-preserving systems on Borel probability spaces. A measure ρ on

(X × Y,BX ⊗BY )

is a joining of the two systems if

• ρ is invariant under T × S, and
• the projections of ρ onto the X and Y coordinates are µ and ν respec-
tively.

The product measure µ × ν is called the trivial joining. The two systems X
and Y are said to be disjoint, written as X ⊥ Y, if the trivial joining is the
only joining between X and Y.

Notice that the trivial joining is always a joining. Moreover, disjointness
is the strongest sense in which two measure-preserving systems can be un-
related. In particular, disjoint systems cannot have a non-trivial factor in
common, because of the existence of the relatively independent joining over
a common factor (we refer to [64] or [52, Sec. 6.5] for the details).

Also notice that spectral information about the systems can sometimes be
used to prove disjointness. For example, a weakly mixing systems is always
disjoint from a Kronecker system (see [64], [52, Ex. 6.5.4], or [53, Sec. 9.1.5]).
As remarked in [64], entropy may also sometimes be used to show disjointness.

Theorem 2.31 (Disjointness via Entropy). Let X and Y be invertible
measure-preserving systems on Borel probability spaces, and suppose that X
has zero entropy and Y has completely positive entropy. Then X and Y are
disjoint.

In the next corollary, we implicitly restrict attention to the class of invert-
ible measure-preserving systems on Borel probability spaces.
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Corollary 2.32. Let D = {X | X has zero entropy} be the class of determin-
istic systems. Then

D
⊥ = {Y | Y ⊥ X for all X ∈ D}

is equal to the class K = {Y | Y has completely positive entropy}.

Proof. By Theorem 2.31 we have K ⊆ D⊥. For the reverse inclusion,
assume that Y ∈ D⊥, and let YP denote the Pinsker factor of Y as defined
by Proposition 2.23. Then by definition we have YP ∈ D , and so must be
disjoint from Y. The graph of the factor map

πP : Y = (Y,BY , ν, S) −→ YP = (YP ,P, ν|P , SP)

gives rise to a joining ρ defined by the property that

ρ(A×B) = ν(A ∩ π−1
P

(B))

for A ∈ BY and B ∈ P. It follows that YP must be the trivial factor, and
hence Y ∈ K . �

Proof of Theorem 2.31. Let X = (X,BX , µ, T ) and Y = (Y,BY , ν, S) be
invertible measure-preserving systems on Borel probability spaces, assume
that X has zero entropy and Y has completely positive entropy, and let ρ be
a joining of X and Y. Write πX : X × Y → X and πY : X × Y → Y for the
projection maps onto X and Y .

Now let η be a finite partition ofX into elements of BX , and let ξ be a finite
partition of Y into elements of BY . We wish to show that π−1

X η and π−1
Y ξ

are independent with respect to ρ (see Exercise 1.1.3 and Proposition 2.16).
As η and ξ are arbitrary, this will then imply that ρ = µ × ν is the trivial
joining. Using additivity of dynamical entropy (Proposition 2.19(2)) in both
of the possible ways, we obtain for the partition η× ξ = π−1

X η∨π−1
Y ξ and the

joining ρ the identities

hρ(T × S, η × ξ) = hρ(T × S, π−1
X η)︸ ︷︷ ︸

=hµ(T,η)=0

+hρ(T × S, π−1
Y ξ

∣∣π−1
X η∞−∞)

= hρ(T × S, π−1
Y ξ)︸ ︷︷ ︸

=hν(S,ξ)

+ hρ(T × S, π−1
X η

∣∣π−1
Y ξ∞−∞)︸ ︷︷ ︸

6hρ(T×S,π−1
X

η)=0

.

Alternatively, we may rewrite this equality in the form

Hν

(
ξ
∣∣ξ∞1

)
= Hρ

(
π−1
Y ξ

∣∣π−1
Y ξ∞1 ∨ π−1

X η∞−∞

)
, (2.16)

by the future formula of entropy (Proposition 2.19(1)). This already expresses
some form of the independence property we seek, but we still need to dispose
of the ξ∞1 term using the assumptions on T . Using additivity of entropy
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(Proposition 2.13(1)) and invariance of entropy (Lemma 2.17), for any n > 1
we have

Hν

(
ξn−1
0

∣∣ξ∞n
)
= Hν

(
T−(n−1)ξ

∣∣ξ∞n
)
+Hν

(
T−(n−2)ξ

∣∣ξ∞n−1

)
+ · · ·

+Hν

(
ξ
∣∣ξ∞1

)
= nHν

(
ξ
∣∣ξ∞1

)
,

and similarly

Hρ

(
π−1
Y ξn−1

0

∣∣π−1
Y ξ∞n ∨ π−1

X η∞−∞

)
= nHρ

(
π−1
Y ξ

∣∣π−1
Y ξ∞1 ∨ πXη∞−∞

)

= Hν

(
ξn−1
0

∣∣ξ∞n
)
,

where we used (2.16) in the last step. Also notice that

Hν

(
ξn−1
0

∣∣ξ∞n
)
= Hν

(
ξ
∣∣ξ∞n

)
+Hν

(
ξn−1
1

∣∣ξ ∨ ξ∞n
)
,

Hν

(
ξ
∣∣ξ∞n

)
= Hρ

(
π−1
Y ξ

∣∣π−1
Y ξ∞n

)

> Hρ

(
π−1
Y ξ

∣∣π−1
Y ξ∞n ∨ π−1

X η∞−∞

)
,

Hν

(
ξn−1
1

∣∣ξ ∨ ξ∞n
)
= Hρ

(
π−1
Y ξn−1

1

∣∣π−1
Y ξ ∨ π−1

Y ξ∞n
)

> Hρ

(
π−1
Y ξn−1

1

∣∣π−1
Y ξ ∨ π−1

Y ξ∞n ∨ π−1
X η∞−∞

)
,

and

Hρ

(
π−1
Y ξ

∣∣π−1
Y ξ∞n ∨ π−1

X η∞−∞

)
+Hρ

(
π−1
Y ξn−1

1

∣∣π−1
Y ξ ∨ π−1

Y ξ∞n ∨ π−1
X η∞−∞

)

= Hρ

(
π−1
Y ξn−1

0

∣∣π−1
Y ξ∞n ∨ π−1

X η∞−∞

)
.

Together these relations force there to be equality in all of the inequalities
above. Hence

Hν

(
ξ
∣∣ξ∞n

)
= Hρ

(
π−1
Y ξ

∣∣π−1
Y ξ∞n ∨ π−1

X η∞−∞

)

6 Hρ

(
π−1
Y ξ

∣∣π−1
X η

)
6 Hρ

(
π−1
Y ξ

)
= Hν (ξ) .

We now let n → ∞. By our assumption on Y = (Y,BY , ν, S) its Pinsker σ-
algebra is trivial and since the tail of ξ belongs to the Pinsker σ-algebra
(Proposition 2.26) we know that

∞⋂

n=1

ξ∞n

coincides with the trivial σ-algebra modulo ν. Applying continuity of entropy
with respect to the given σ-algebra (Proposition 2.12) we deduce that

Hν(ξ) = lim
n→∞

Hν

(
ξ
∣∣ξ∞n

)
6 Hρ

(
π−1
Y ξ

∣∣π−1
X η

)
6 Hν(ξ).

It follows that
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Hρ

(
π−1
Y ξ

∣∣π−1
X η

)
= Hρ

(
π−1
Y ξ

)
= Hν (ξ) ,

and so π−1
Y ξ and π−1

X η are independent with respect to ρ by Proposition 2.16.
As mentioned earlier, this implies that ρ = µ× ν and hence the theorem. �

Exercises for Section 2.5

Exercise 2.5.1. Let X = (X,BX , µ, T ) and Y = (Y,BY , ν, S) be invertible measure-
preserving systems on Borel probability spaces with completely positive entropy, and let ρ
be an ergodic joining of X and Y. Then ρ may not have completely positive entropy, and the
conditional measures ρP

(x,y)
of ρ for the Pinsker σ-algebra may not be invariant under T×S

(see Exercise 2.5.2). Show that nonetheless we have

(πX)∗ρ
P

(x,y) = µ

and
(πY )∗ρ

P

(x,y) = ν

for ρ-almost every (x, y) ∈ X × Y .

Exercise 2.5.2. Let A ∈ GLr(Z) be a quasihyperbolic matrix,(16) so that TA : Tr → Tr

is ergodic but there is a plane V < Rr with the property that A|V : V → V is a rotation.
Let m△ denote the Haar measure on the diagonally embedded torus Tr < Tr × Tr.
Clearly m△ is an ergodic joining between TA on Tr and itself. Let ρ denote the Lebesgue

measure (normalized to be a probability measure) on a fixed circle in the plane V , and
consider ρ as an invariant measure for TA in Tr ∼= Tr × {0}. Show that µ = ρ ∗ m△ is
an ergodic joining between TA and itself. Show that the Pinsker factor of µ coincides with
the Kronecker factor, and is isomorphic to (Tr ,BTr , ρ, TA).

2.6 Entropy and Convex Combinations

It is often useful to assume an invariant measure is ergodic and Theorem 2.7
shows how any invariant measure can be decomposed into ergodic compo-
nents. In this section we show how entropy behaves with respect to general-
ized convex combinations, including the ergodic decomposition as a special
case.

Theorem 2.33 (Entropy and convex combinations). Let (X,BX , µ, T )
be an invertible measure-preserving system on a Borel probability space, with
ergodic decomposition

µ =

∫

Y

µy dν(y), (2.17)

where (Y,BY , ν) is some Borel probability space. Then

hµ(T ) =

∫

Y

hµy
(T ) dν(y) (2.18)
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and more generally

hµ(T, ξ
∣∣A ) =

∫

Y

hµy
(T, ξ

∣∣A ) dν(y) (2.19)

for any partition ξ with Hµ(ξ) < ∞ and T -invariant sub σ-algebra A ⊆ B.
The conclusion in (2.18) also holds if (2.17) is any way of expressing µ as a
generalized convex combination of invariant measures.

We will give two related but slightly different proofs, the first for the
ergodic decomposition exploits the construction of the ergodic decomposition
using conditional measures with respect to the σ-algebra of invariant sets. The
second proof uses the Abramov–Rokhlin formula (Corollary 2.21) to deal with
any generalized convex combination of measures.

Proof of equations (2.18) and (2.19) using the Pinsker algebra.
Recall from Theorem 2.7 that one way to construct the ergodic decomposition
is to use Y = X and µx = µE

x for x ∈ X , where

E = {E ∈ BX | T−1E = E}.

If E ∈ E then
T−1{E,XrE} = {E,XrE}

so E ∈P(T ), the Pinsker algebra of T . If ξ is a partition with Hµ(ξ) <∞,
then since conditioning on the Pinsker does not affect dynamical entropy
(Lemma 2.24), since conditional entropy equals an average (Lemma 2.11),
by the double conditioning formula (Proposition 2.4), and dominated con-
vergence we have

hµ(T, ξ
∣∣A ) = hµ(T, ξ

∣∣E ∨A )

= lim
N→∞

1

N
Hµ

(
ξN−1
0

∣∣E ∨A
)

= lim
N→∞

∫
1

N
HµE∨A

x

(
ξN−1
0

)
dµ(x)

= lim
N→∞

∫
1

N

∫
HµE∨A

y

(
ξN−1
0

)
dµE

x (y) dµ(x)

= lim
N→∞

∫
1

N

∫
H(µE

x )E∨A
y

(
ξN−1
0

)
dµE

x (y) dµ(x)

= lim
N→∞

∫
1

N
HµE

x

(
ξN−1
0

∣∣A
)
dµ(x)

=

∫
hµE

x
(T, ξ

∣∣A ) dµ(x).

Now take a generating sequence of finite partitions (ξn) with

σ(ξn)ր BX
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to deduce, using the Kolmogorov–Sinăı theorem (Theorem 2.20) and mono-
tone convergence of the function

x 7−→ hµA
x
(T, ξn)

for n→∞ in the integral above, that hµ(T ) =
∫
hµE

x
(T ) dµ(x). �

Proof of (2.18) using the Abramov–Rokhlin formula. By assump-
tion, we are given a Borel probability space (Y,BY , ν) and a measurable
function y 7→ µy, defined ν-almost everywhere, with µy a T -invariant Borel
probability measure on (X,BX), such that

µ =

∫

Y

µy dν(y).

We define a probability measure ρ on (Z,BZ) = (X × Y,BX ⊗BY ) by

ρ =

∫

Y

µy × δy dν(y),

and note that if πX , πY denote the projections onto the X and Y coordinates
from Z, then (πX)∗ρ = µ and (πY )∗ρ = ν. We will use the Abramov–Rokhlin
formula (Corollary 2.21) to compute the entropy of the map T × IY : Z → Z
sending (x, y) to (T (x), y), in two different ways. Firstly, T×IY is an extension
of the identity map on Y , so

hρ(T × IY ) = hν(IY ) + hρ(T × IY
∣∣NX ×BY ) (2.20)

where NX = {∅, X} is the trivial σ-algebra on X ; secondly, T × IY is an
extension of the map T on (X,BX , µ), so

hρ(T × IY ) = hµ(T ) + hρ(T × IY
∣∣BX ×NY ). (2.21)

Clearly hν(IY ) = 0 as in Example 1.24. We claim that

hρ(T × IY
∣∣BX ×NY ) = 0

for the following reason. Let (ξn) be an increasing sequence of partitions
of X with σ(ξn) ր BX , and similarly let (ηn) be an increasing sequence of
partitions of Y with σ(ηn)ր BY . Then

hρ(T×IY , ξn×ηn
∣∣BX×NY ) 6 hρ(T×IY , ξn×{∅, Y }

∣∣BX×NY )

+hρ(T×IY , {∅, X}×ηn
∣∣BX×NY )

and both terms vanish by Proposition 2.15. It follows from (2.20) and (2.21)
that

hµ(T ) = hρ(T × IY
∣∣NX ×BY ).
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Now
ρNX×BY

(x,y) = µy × δy (2.22)

by the definition of ρ and [52, Prop. 5.19].
Let ξ ⊆BX and η ⊆ BY be finite partitions. Then

hρ(T × IY , ξ × η
∣∣NX ×BY ) = lim

n→∞

1

n
Hρ

(
ξn−1
0 × η

∣∣NX ×BY

)

= lim
n→∞

1

n
Hρ

(
ξn−1
0 × {∅, Y }

∣∣NX ×BY

)

= lim
n→∞

∫
1

n
Hµy

(
ξn−1
0

)
dν(y)

since conditional entropy equals an average of entropies (Lemma 2.11) and
by (2.22). By the dominated convergence theorem, we conclude that

hρ(T × IY , ξ × η
∣∣NX ×BY ) =

∫

Y

hµy
(T, ξ) dν(y).

Finally, taking sequences ξn ր B and ηn ր BY , and using the Kolmogorov–
Sinăı theorem (Theorem 2.20) and the monotone convergence theorem, we
obtain

hµ(T ) = hρ(T × IY
∣∣NX ×BY ) =

∫
hµy

(T ) dν(y)

as claimed. �

Exercises for Section 2.6

Exercise 2.6.1. Prove (2.18) in the non-invertible case by proving hµ(T, ξ) = hµ(T, ξ
∣∣E )

without referring to Section 2.4 (where invertibility was assumed).

2.7 An Entropy Calculation: Other Measures

†We return now to the specific automorphism of the torus discussed in Sec-
tion 1.6. Recall that this is the map T = TA : T2 → T2 defined by

T :

(
x
y

)
7→
(

y
x+ y

)
(mod 1),

† Just as for Section 1.6, this section could be skipped if the reader wants to focus on the
theoretical developments.
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which is naturally associated to the matrix A =

(
0 1
1 1

)
.

Behind the somewhat enigmatic details of the argument in Section 1.6
lies a simple idea reflected in the geometry of the action of T on suitable
rectangles: it is contraction (respectively, expansion) along eigenspaces for
eigenvalues of absolute value less (resp. greater) than one that contributes
to the entropy. However, if we are considering an arbitrary invariant Borel
measure µ, naturally the properties of the measure also play a role in com-
puting hµ(T ). In this section, we will explain why hµ(T ) depends mainly on
the properties of the conditional measures µA

x for A as in (2.23) below as x
varies in T2. This is a very special case of a profound theory.(17)

We let ξ be the partition of T2 as in Figure 1.3. Assuming that µ gives
zero mass to the origin, the boundaries of the elements of ξ are null sets.
To see this, recall that the boundaries of these rectangles are made of pieces
of Rv+ and Rv− through integer points. In T2 this means that these points
either approach the origin in their backward orbit or in their forward orbit.
In either case we can apply Poincaré recurrence (see [52, Th. 2.11]) to see
that the boundary is a µ-null set. Hence we do not have to specify to which
elements these boundaries belong. It is easy to derive the following from
Lemma 1.33.

Lemma 2.34. The atoms for the σ-algebra

A = ξ ∨ T−1ξ ∨ · · · =
∞∨

i=0

T−iξ (2.23)

are line segments parallel to v− as long as the element of ξ containing them,
and ξ is a generator under T .

Define the stable subgroup for T by

U− = Rv−,

and the unstable subgroup of T by

U+ = Rv+.

For x ∈ R2 the stable manifold through x is the coset x + U− and the
unstable manifold is x+ U+. Finally, for δ > 0 we let

BU−

δ (x) = x+
(
U− ∩Bδ(0)

)

denote the δ-neighbourhood of x inside the stable manifold. The δ-neighbourhood
of x inside the unstable manifold, BU+

δ (x), is defined similarly. It is impor-
tant to note that we consider the intersections like U−∩Bδ(0) in the covering
space R2, while the translation by the point x is made in T2 to define finally
a subset of T2.
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Theorem 2.35 (Entropy and conditional measures). Let T = TA be the

automorphism of the 2-torus associated to the matrix A =

(
0 1
1 1

)
and let µ

be a T -invariant non-atomic probability measure on T2. Then for µ-almost
every x we have

hµE
x
(T ) = lim

n→∞

− logµA
x ([x]TnA )

n
. (2.24)

That is, the limit on the right-hand side of (2.24) exists and equals the
entropy of T with respect to the ergodic component µE

x of µ at x. In particular,
by Theorem 2.33,

hµ(T ) =

∫
hµE

x
(T ) dµ(x) =

∫
lim
n→∞

− logµA
x [x]TnA

n
dµ(x).

Proof of Theorem 2.35. Define f(x) = Iµ(ξ
∣∣ T−1A )(x) for the generating

partition ξ as in Lemma 1.33, and let A be as in (2.23). Then by invariance
of the information function (Lemma 2.17)

f(T−1x) = Iµ(ξ
∣∣T−1

A )(T−1x)

= Iµ(Tξ
∣∣A )(x)

and also
f(T−kx) = Iµ(T

kξ
∣∣T k−1

A )(x)

for all k > 0. Thus additivity of the entropy function (Proposition 2.13)
and ξ ∨ T−1A = A gives

1

n

n−1∑

k=0

f(T−kx) =
1

n

n−1∑

k=0

Iµ(T
kξ
∣∣T k−1

A )(x)

=
1

n
Iµ(ξ ∨ Tξ ∨ · · · ∨ T n−1ξ

∣∣T−1
A )(x)

= −n− 1

n
· 1

n− 1
logµT−1

A
x ([x]Tn−1A ) .

By the pointwise ergodic theorem, it follows that the limit of the expression
on the right of (2.24) exists and is equal to Eµ

(
Iµ(ξ

∣∣T−1A )
∣∣E
)
(x). Next

notice that E ⊆ A by Theorem 2.27, since ξ is a generator. Therefore, by
the double conditioning formula (Proposition 2.4),

Iµ
(
ξ
∣∣T−1

A
)
(y) = − logµT−1

A
y ([y]ξ)

= − log
(
µE
x

)T−1
A

y
([y]ξ) = IµE

x

(
ξ
∣∣T−1

A
)
(y)

for µE
x -almost every y and µ-almost every x ∈ X . Integrating this over y with

respect to µE
x now gives
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E
(
Iµ(ξ

∣∣T−1
A )
∣∣E
)
(x) = hµE

x
(T, ξ) = hµE

x
(T )

and so the theorem. �

The dependence in Theorem 2.35 on the geometry of [x]TnA is slightly
unsatisfactory. We know that [x]TnA is an interval in the set x+ U− of size
comparable to ρ−n, but what we do not know is the position of x within that
interval. Assuming for the moment that this does not have any influence on
the entropy, we expect that the limit

sx = lim
δ→0

logµA
x (BU−

δ (x))

log δ
,

exists, and we may call sx the local dimension of µ along the stable manifold
of T . Moreover, hµ(T ) is then given by the logarithm of the expansion factor
times the average dimension of µ along the stable manifold.† We will prove
this extension in greater generality later.

We think of this quantity as a dimension as it tell us roughly at which
power of δ the measure of a typical δ-ball decays as δ → 0. As a more for-
mal justification of the terminology ‘dimension’ for sx we show the following
lemma.

Lemma 2.36 (Upper bound on dimension of measure). For any finite
Borel measure ν on Rd the function

g(x) = lim sup
δ→0

log ν(Bδ(x))

log δ

satisfies g(x) 6 d for almost every x ∈ Rd.

Proof. The lemma follows from the special case of measures supported on
compact subsets of Rd, and using an affine contraction it suffices to consider
a finite measure supported on [0, 1]d.

Fix ε ∈ (0, 1), and let A = {x ∈ [0, 1]d | g(x) > d + ε}. It is enough to
show that ν(A) = 0 if ε > 0. Write

Ak =
{
x | ν (B2−k(x)) < 2d+12−k(d+ε)

}
.

If x ∈ A, then there exists a sequence δn → 0 with ν(Bδn(x)) < δd+ε
n .

Now define the integer sequence kn → ∞ with 2−kn 6 δn < 2 · 2−kn , so
that ν(B2−kn (x)) 6 δd+ε

n < 2d+12−(d+ε)kn . Therefore,

A ⊆
⋂

ℓ>1

⋃

k>ℓ

Ak.

† Because of the symmetry hµ(T ) = hµ(T−1) the same argument gives a similar result
phrased in terms of the unstable manifolds.
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If B ⊆ [0, 1]d is a ball of diameter 2−k with Ak∩B 6= ∅ then the definition
of Ak gives immediately

ν(B) < 2d+12−k(d+ε).

Since [0, 1]d can be covered† by ≪ 2dk many balls B, we conclude that

ν(Ak)≪ 2kd2−k(d+ε) = 2−εk

and therefore

ν


⋃

k>ℓ

Ak


≪

∑

k>ℓ

2−εk = 2−εℓ · 1

1− 2−ε
→ 0

as ℓ→∞. It follows that ν(A) = 0. �

Notes to Chapter 2

(13)(Page 67) The map T may be thought of as a skew-product construction, and the
entropy formula is proved by Abramov and Rokhlin [4]. It is generalized to actions of
countable amenable groups by Ward and Zhang [205].
(14)(Page 72) The converse is not true: there are measure-preserving systems with trivial
Pinkser algebra that are not isomorphic to Bernoulli shifts. The distinction is a subtle
one, and erroneous arguments that the two properties are the same were put forward by
Wiener [209] among others. An uncountable family of non-isomorphic measure-preserving
transformations with trivial Pinsker algebra, all with the same entropy, none of which
is isomorphic to a Bernoulli shift, is constructed by Ornstein and Shields [153]. Smooth
examples of this sort were constructed by Katok [97].
(15)(Page 74) Kolmogorov [108] considered the family of measure-preserving systems with

completely positive entropy, and the (larger) family of automorphisms with countable
Lebesgue spectrum as motivational examples for the new invariant of measure-theoretic
entropy. Rokhlin [176] showed that completely positive entropy implies countable Lebesgue
spectrum, and the question raised by Rokhlin of whether any invertible measure-preserving
system can have Lebesgue spectrum of finite multiplicity remains open; Banach explictly
raised the question of the existence of measure-preserving systems with Lebesgue spectrum
of multiplicity one, as reported in Ulam’s collection of problems [199, p. 76]. We refer to the
survey of Katok and Thouvenot [99] for an overview of the spectral properties of unitary
operators arising in ergodic theory. For infinite measure-preserving systems the situation is
different. In [1] el Abdalaoui and Nadkarni give an example of an ergodic non-singular map
whose unitary operator admits a Lebesgue component of multiplicity one in its spectrum,
and we refer to that paper for a brief overview of several other results in similar directions.
(16)(Page 78) This means that no eigenvalue of A is a root of unity, and that at least one
eigenvalue of A has unit modulus. This is only possible for r > 4, and an explicit example
is

† The implicit constant depends on the choice of the norm on Rd.
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A =




0 1 0 0
0 0 1 0
0 0 0 1

−1 −4 2 −4


 .

The implications of quasihyperbolicity for toral automorphisms (and its analog for compact
connected group automorphisms) in relation to rigidity of invariant measures is studied
by Lindenstrauss and Schmidt [127]. Other dynamical properties of quasihyperbolic toral
automorphisms, particularly those connected to the existence of generators and the number
and distribution of periodic points, were earlier studied by Lind [119].
(17)(Page 82) The material in this section is a very special case of the beginning of the the-
ory of the entropy of diffeomorphisms developed by many researchers including Pesin [164],
Ledrappier and Young [114], [115] and Mañé [130].


