
Chapter 9

Commuting Automorphisms

Automorphisms or endomorphisms of (infinite) compact groups are soft in
the following sense: there are many invariant probability measures, and many
closed invariant subsets. We have already seen the symbolic coding of the
map x 7→ 2x (mod 1) and of the toral automorphism corresponding to the

matrix

(
0 1
1 1

)
; in each case the symbolic description allows many invariant

measures and closed invariant sets to be found.
Furstenberg [64] noted that the situation is very different for measures or

closed invariant sets invariant under two genuinely distinct endomorphisms.
We start by presenting his original topological result for closed subsets of
the circle invariant under two endomorphisms, and go on to describe related
measurable results.

We will only concern ourselves with these kind of rigidity questions and
will not study the many other interesting dynamical or ergodic theoretic
properties of these systems in detail, for which we refer to the monograph of
Schmidt [182] and its references.

9.1 Closed Invariant Sets: Furstenberg’s Theorem

Before addressing the measurable questions, we describe(39) the simple topo-
logical origin of the ergodic-theoretic questions considered in the next sec-
tions. The properties being dealt with in this chapter concern the semi-
group 2N3N = {2, 3, 4, 6, 9, 12, . . .} ⊆ N generated by 2 and 3, and we begin
with some general observations about such semigroups.

Definition 9.1 (Lacunarity). A multiplicative semigroup S ⊆ N is lacu-
nary if there is some a ∈ N with the property that any s ∈ S is an integer
power of a.

Two elements s1, s2 of a semigroup are said to be multiplicatively indepen-
dent if sm1 = sn2 for m,n ∈ N0 implies that m = n = 0.

237



238 9 Commuting Automorphisms

Clearly the semigroup generated by a single element is lacunary; for ex-
ample {2, 4, 8, . . .} is lacunary. There are many others however; e.g. the semi-
group generated by 4 and 8 is lacunary but not generated by a single element.

Each k ∈ N defines an endomorphism Sk : T → T defined by Sk(t) = kt
modulo 1. A set A ⊆ T is called Sk-invariant if Skx ∈ A whenever x ∈ A,
and is called S-invariant for a subset S ⊆ N if Skx ∈ A whenever x ∈ A
and k ∈ S. Lacunary semigroups have many non-trivial closed invariant sets,
as shown in the next example.

Example 9.2. The middle-third Cantor set

{
x ∈ T | x =

∞∑

n=1

en3
−n has en ∈ {0, 2} for all n > 1

}

is invariant under S3 (and hence under any semigroup in the lacunary semi-
group {3, 9, 27, . . .}).

The next result, due to Furstenberg [64], shows that there are no ‘fractal’
or† ‘non-algebraic’ closed invariant sets under the action of a non-lacunary
semigroup.

Theorem 9.3 (Furstenberg’s ‘×2,×3’ theorem). Let S be a non-lacunary
semigroup in N and let A be a closed subset of T invariant under S. Then
either A is a finite set of rational points or A = T.

Lemma 9.4 (Non-lacunary subgroups). The following properties of a
semigroup S ⊆ N are equivalent.

(1) S is non-lacunary;
(2) S contains two multiplicatively independent elements;
(3) if S = {s1, s2, . . . } with s1 < s2 < s3 < · · · then sn+1

sn
→ 1 as n→∞.

Proof. Suppose (3) holds and let a, b ∈ Sr{1} with |ab − 1| < 1
2 . If we

have am = bn then uniqueness of prime factorization implies that a = ck

and b = cℓ for some integers c, k, ℓ. Therefore |ck−ℓ−1| < 1
2 which is impossi-

ble for an integer c > 2. This shows that (3) implies (2). That (2) implies (1)
is clear.

Assume now that (1) holds. Since logS is an additive semigroup in R, we
have that L = logS−logS is an additive subgroup of R, and is therefore either
dense or discrete. If L is discrete, then L = Zt for some t > 0, so S ⊆ (a)N

for a = exp t. Note that a ∈ Q (since t = log s1 − log s2 for some s1, s2 ∈ S)
and that a = exp(t) may not be in S but ak ∈ S for some k > 1, which gives
that a ∈ N and that S is lacunary in contradiction to our assumption.

† We do not want to define fractal sets or algebraic sets precisely, but hope that the reader
agrees with us that the Cantor set is fractal and non-algebraic while finite sets of rational
numbers are not fractal but are somewhat algebraic.
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Therefore L is dense. Since S is a semigroup there exists t1, t2, . . . ∈ logS
with

logS =
{∑

k

nktk | nk ∈ N0 for all k, nk = 0 for all but finitely many k
}
.

In particular, L =
⋃∞

n=1 Ln with

Ln = logS − n(t1 + · · ·+ tn).

satisfying Ln ⊆ Ln+1. Fix some ε > 0. Since L is dense there exists some
integer n > 1 such that Ln ∩ [0, t1] is ε-dense in [0, t1]. Since Ln + t1 ⊆ Ln

for all n > 1, we see that Ln is ε-dense in [0,∞). This implies (3). �

Lemma 9.5 (Key observation for density). Let S and A ⊆ T be as in
Theorem 9.3 but assume that 0 is an accumulation point. Then A = T.

Proof. By Lemma 9.4(3) the elements s1 < s2 < · · · of S satisfy sn+1

sn
→ 1

as n→∞. Fix ε > 0 and choose N so that sn+1

sn
< 1+ε for n > N . Since 0 is

a limit point of A, we may find xn ∈ A with 0 6= |xn| < ε/sn, then the finite
set {sxn | s ∈ S, sn 6 s 6 1/|xn|} is ε-dense in T and lies in A. As ε > 0 was
arbitrary and A is closed the lemma follows. �

The following short proof is taken from a paper of Boshernitzan [20].

Proof of Theorem 9.3.Write A′ for the set of limit points of A and assume
that A is infinite, so A′ is a non-empty closed invariant set. We claim that
it must contain a rational point. Assume for the purposes of a contradiction
that A′ does not contain any rational point (which implies that A′ is infinite
as it contains an irrational point and its orbit), and fix ε > 0. Since S is
non-lacunary, we may choose multiplicatively independent numbers p, q ∈ S.
Find t > 3 with the properties that tε > 1 and gcd(p, t) = gcd(q, t) = 1. It
follows that

pu ≡ qu ≡ 1 (mod t) (9.1)

for some u > 1 (e.g. u = φ(t) where φ is the Euler function). Define a sequence
of sets

Bt ⊆ Bt−1 ⊆ · · · ⊆ B1 = A′

by
Bj+1 =

{
x ∈ Bj | x+ 1

t ∈ Bj (mod 1)
}

(9.2)

for each j, 1 6 j 6 t− 1. We prove the following statements by induction:

• Bj is invariant under Spu and Squ .
• Bj is a closed infinite set of irrational numbers.

For j = 1 both properties hold by assumption; assume they hold for
some j, 1 6 j 6 t − 1. Define a set Dj = Bj − Bj . Since Bj is compact
by assumption, Dj is closed; since Bj is invariant under both Spu and Squ , so
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is Dj ; finally 0 must be a limit point of Dj since Bj is infinite. By assumption,
the semigroup S′ generated by pu and qu is non-lacunary. By Lemma 9.5 it
follows that Dj = T. We deduce that Bj+1 is non-empty. By the choice of u
in (9.1), the set Bj+1 is invariant under Spu and Squ , contains no rational
point by assumption, and is therefore infinite. Finally, Bj+1 is a closed set
because Bj is a closed set and the condition in (9.2) is closed.

We deduce by induction that each of the sets Bj is non-empty, and in
particular Bt is non-empty. Pick any point x1 ∈ Bt and write

xi = x1 +
i−1
t ∈ Bt+1−i

for 1 6 i 6 t. By choice of t the set C = {xi | 1 6 i 6 t} is ε-dense in T
and C ⊆ B1 = A′. Since ε was arbitrary, it follows that A′ is dense in T,
contradicting the assumption that A′ does not contain any rationals.

Thus A′ contains some rational r = n/t say. Recall that p and q are multi-
plicatively independent elements of S. We may assume (replacing r by paqbr
for suitable a, b if need be) that

gcd(n, t) = gcd(p, t) = gcd(q, t) = 1.

As before, choose u > 1 so that pu ≡ qu ≡ 1 (mod t). The sets A and A′

are both invariant under Spu and Squ , and by choice of u so are their trans-
lates A′− r and A− r. Now 0 lies in A′− r and Lemma 9.5 implies A− r = T
and so A = T. �

Exercises for Section 9.1

Exercise 9.1.1. Extend Example 9.2 to show that a lacunary semigroup has many closed
invariant subsets for its natural action on the circle by the following steps.

(1) For any k > 1, finite set F ⊆ N, and set A ⊆ {0, . . . , k − 1}F , show that the set

{
x ∈ T | x =

∞∑

n=1

enk
−n, e|F+n ∈ A for all n > 1

}

(where e|F+n means the projection of e = (en) onto the set of coordinates F +n ⊆ N)
is invariant under Sk.

(2) More generally, show that for any k > 1 the map Sk has uncountably many closed
invariant sets.

9.2 Joinings

Recall from Section 2.5 (see also [52, Def. 6.7]) that a joining of two measure-
preserving systems X and Y is a Borel probability measure on X × Y that is



9.2 Joinings 241

invariant under T ×S, defined on BX ⊗BY , and projects to the measures µ
and ν on the X and Y coordinates respectively, where X = (X,BX , µ, T )
and Y = (Y,BY , ν, S). This definition extends in a natural way to two
measure-preserving actions of a group: the only change is that the joining
measure is required to be invariant under the product group action. As in [52,
Def. 6.14], we say that two group actions are disjoint if the only joining is
the product of the two measures.

The space of joinings between two ergodic group automorphisms is a vast
and unmanageable collection in general, whereas the space of joinings between
two ergodic circle rotations is much smaller and easy to understand. One of
the manifestations of rigidity for mixing Z2-actions by automorphisms with
finite positive entropy is that non-trivial joinings(40) only exist when the two
systems are algebraically related. In this section we record a particularly
simple instance of this phenomena on disconnected groups [50], which also
helps to motivate some arguments that will appear in the proof of Rudolph’s
theorem (Theorem 9.9).

Notice that the construction of the relatively independent joining (see
the monograph of Furstenberg [66, Ch. 5, Sect. 4] or [52, Def. 6.15]) shows
that disjointness between two systems implies that they have no non-trivial
common factors.

Recall Ledrappier’s example, which is the Z2-action defined by the shift
on the compact group

X•
••

= {x ∈ FZ2

2 | xn+e1 + xn+e2 + xn = 0 for all n ∈ Z2},

where F2 = {0, 1} denotes the field with two elements (see [116] for Ledrap-
pier’s original paper or [52, Sect. 8.2]). As the notation suggests, having fixed
the binary alphabet {0, 1}, this system is determined by its defining shape •

••.
In this section we will consider a simple instance of how the measurable struc-
ture of such a system varies as the defining shape is changed.

Example 9.6 (Reverse Ledrappier’s Example). The reverse Ledrappier exam-
ple is the Z2-action by shifts on the compact group

X •
••

= {x ∈ FZ2

2 | xn−e1 + xn+e2 + xn = 0 for all n ∈ Z2}.

Write X•
••

for the measure-preserving Z2 system defined by the shift σ
on X•

••
, preserving Haar measuremX•

••
defined on the Borel σ-algebra BX•

• •
,

and similarly for the reverse shape •
••. Notice that we write σ for the natural

shift action on any group of the form F Z2

or on any of its invariant subgroups,
where F denotes any finite group.

Theorem 9.7. The systems X•
• •

and X •
• •

are disjoint.

We will prove this by showing that any joining on the group X•
••
×X •

••
is

invariant under translation by X•
• •

(acting canonically on the first factor).
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The geometric arguments used in the proof are related to the notion of ex-
pansive subdynamics introduced by Boyle and Lind [27] to study geometrical
properties of expansive topological Zd-actions.

Before embarking on the proof we assemble some properties of the two
systems.

Lemma 9.8. Write Y = {x ∈ X•
••
| xm = 0 for m1 > 0}. Then the subgroup

Z =

∞⋃

n=1

σ(−n,0)(Y )

is dense in X•
••
. It follows that the Haar measure mX•

••
is the only Borel

probability measure on X•
• •

invariant under translation by all elements of Z,
and is the only σ-invariant probability measure invariant under translation
by all elements of Y .

Proof. It is enough to prove that Z is a dense subgroup of X•
••
; the claim

about invariant measures follows since a Borel measure is determined by how
it integrates continuous functions (as in the proof that (3) =⇒ (1) in [52,
Th. 4.14]). Now σ(0,±1)(Y ) = Y , so the subgroup Z is invariant under the
whole shift σ. Thus in order to show that Z is dense, it is enough to show that
for any non-empty cylinder set C ⊆ X•

• •
defined by specifying the coordinates

in some square {(a1, a2) | 0 6 a1, a2 6 N} contains an element of Z. Choose
a sequence

(y(0,0), y(1,0), . . . , y(2N,0)) (9.3)

(see Figure 9.1) chosen to ensure† that the only way to extend y to the
coordinates in

{(a1, a2) | 0 6 a1, a2 6 N}
agrees with the condition defining the cylinder set C (e.g. fix some x ∈ C
and define y(j,0) = x(j,0) for all j = 0, . . . , 2N).

We extend the finite sequence in (9.3) by 0s on the right and the left
to define an element of {0, 1}Z. Using these coordinates and the defining
relation •

•• we may define y(n1,n2) for n2 > 0 uniquely. The coordinates
of y(n1,n2) for n2 < 0 are not determined by these choices. However, by
choosing y(2N,n2) = y(2N,0) for all n2 6 0 and applying the defining relation

once more, this defines a point y in σ(−2N,0)Y ∩ C as required. �

We now turn to the main argument, which may be described as studying
the entropy geometry of X•

• •
and X •

••
. Less cryptically, we calculate the en-

tropy hρ(σ
(1,0)) in two different ways and will obtain information about ρ as a

† By definition of X•
••

: for example, y(0,0) and y(0,1) together determine the coordi-
nate y(1,0) = y(0,0) + y(0,1), while y(0,0), y(0,1), y(0,2) together also determine y(1,1), and
hence y(2,0) = y(1,0) + y(1,1).
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0 N
y(0,0)

y(0,2N)

y(2N,0)

zeroes

zeroes

Fig. 9.1: Constructing a point in Z that meets the cylinder set C. The zeroes to the right
of (2N, 0) force zeroes in the whole upper right corner.

result. Notice that for any finite alphabet group F and closed shift-invariant
subgroup of F Z2

, the state partition

ξ =
{{
x ∈ F Z2 | x(0,0) = f

}
| f ∈ F

}
(9.4)

is a generator for the whole action in the sense that
∨

n∈Z2 σ−n(ξ) is the

Borel σ-algebra in F Z2

. Of course the state partition may or may not gen-
erate under the action of some subgroup L 6 Z2, depending on the exact
rules defining the closed shift-invariant subgroup and its relation to the sub-
group L.(41)

More generally, to any finite set of coordinates in Z2 there is a natu-
rally associated partition defined by all the possible cylinder sets obtained
by specifying those coordinates. Depending on the rules defining the closed
shift-invariant subgroup the same partition may be defined by different sets
of coordinates. Similarly, infinite sets of coordinates define sub σ-algebras
and once more one may obtain the same σ-algebra possibly in different ways.

Proof of Theorem 9.7. Let X = X•
• •
×X •

••
⊆
(
F2
2

)Z2

, write σ for the usual

shift Z2-action on X , and let ρ ∈ J(X•
• •
,X •

• •
) be a joining of the two systems

(so ρ is a shift-invariant Borel probability measure on X that projects to
Haar measure on each of the two coordinates). It will be helpful to think
of X•

••
as being a ‘top’ layer and X •

••
as a ‘bottom’ layer. Notice that points

in X obey the rule •
•• in the top layer, obey the rule •

•• in the bottom layer
and, as may be checked directly, obey the rule
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•
• •
• • (9.5)

in both layers at once.†

By the future formula for entropy (Proposition 2.19(1)) we have

hρ

(
σ(1,0)

)
= sup

ξ
Hρ

(
ξ
∣∣
∞∨

i=1

σ−(i,0)(ξ)
)
,

where the supremum is taken over all finite partitions. As usual (by The-
orem 1.21 or 2.20) the supremum is attained by a partition that generates
under σ(1,0), or by taking a limit along a sequence of partitions that generate.

Define‡

ξℓ =

2ℓ∨

j=0

σ(0,j)ξ ∨
2ℓ∨

j=1

σ(−j,−j)ξ

to be the partition defined by specifying the (4ℓ + 1) coordinates illustrated
in Figure 9.2. The sequence of partitions (ξℓ) satisfies the hypothesis of the
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(0, 0)

(0,−2ℓ)

Fig. 9.2: The coordinates defining the partition ξℓ.

† Alternatively, one can argue in terms of polynomials as follows. The relation
•
•• cor-

responds to annihilation by the polynomial 1 + u1 + u2 in F2[u
±1
1 , u±1

2 ], the relation
•

••

corresponds to annihilation by 1 + u−1
1 + u2, and the relation (9.5) corresponds to annihi-

lation by the product

(1 + u2 + u2)(1 + u−1
1 + u2) = u−1

1 + u1 + u1u2 + u−1
1 u2 + u2

2,

whose support {(−1, 0), (1, 0), (−1, 1), (1, 1), (0, 2)} is illustrated in (9.5).
‡ We defined ξℓ formally for completeness, but it is less confusing to simply argue in the
following directly with the coordinates that define ξℓ as in Figure 9.2. Linking these two
view points is the formula

σ−n{x ∈ F Z2
| xm = f} = {x ∈ F Z2

| xm+n = f}

for all m,n ∈ Z2 and f ∈ F .
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sequence formulation of the Kolmogorov–Sinăı theorem (Theorem 2.20), so

hρ

(
σ(1,0)

)
= lim

ℓ→∞
Hρ

(
ξℓ
∣∣
∞∨

i=1

σ−(i,0)ξℓ

)
= lim

ℓ→∞
Hρ

(
ξℓ
∣∣Cℓ

)
, (9.6)

where Cℓ =
∨∞

i=1 σ
−(i,0)ξℓ is the σ-algebra corresponding to the known coor-

dinates in Figure 9.3. In that senseHρ

(
ξℓ
∣∣Cℓ

)
is the entropy corresponding to

learning the shaded coordinates given complete knowledge of the coordinates
to the right, as illustrated in Figure 9.3.

We also note that in the top layer X•
••

the coordinates at (1, 1), . . . , (2ℓ, 2ℓ)
are determined (by the rule •

•• defining X•
• •
), while in the bottom layer X •

••

the coordinates at (0,−1), . . . , (0,−2ℓ) are determined (by the rule •
••). The

2ℓ

2ℓ known coordinates

known coordinates

Fig. 9.3: The entropy calculation Hρ (ξℓ|Cℓ).

remaining coordinates are determined once a single choice is made in the
top layer and a single choice is made in the bottom layer at one (arbitrary)
undetermined coordinate. For example, we may choose the top layer coor-
dinate at (0,−ℓ) (that is, in the middle of the left vertical front) and the
bottom layer coordinate at (ℓ, ℓ) (that is, in the middle of the left roof) as in
Figure 9.4.

Once these choices have been made, the defining relation •
•• in the top

layer propagates the choice to all of the top layer shaded coordinates, and
the defining relation •

•• in the bottom layer propagates the choice to all of the
bottom layer shaded coordinates. Thus

Hρ

(
ξℓ
∣∣Cℓ

)
= Hρ

(
σ(0,ℓ)ξ ∨ σ(−ℓ,−ℓ)ξ

∣∣Cℓ

)
(9.7)

where, as in (9.4), we write ξ for the state partition. In particular, (9.6) shows
that hρ(σ

(1,0)) 6 log 4.
We now show how this combinatorial argument can be used to give a

geometrical decomposition of the entropy. Write
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Fig. 9.4: The choice required to determine the shaded region.

H1 = {m ∈ Z2 | m · (1, 0) > 0}

for the right half-plane in Z2, and

H2 = {m ∈ Z2 |m · (1,−1) > 0},

for the lower right diagonal half-plane in Z2. Notice that H1 ∩H2 is approxi-
mated by the region of known coordinates in Figure 9.3 for large ℓ. By (9.7)
and additivity of entropy (Proposition 1.7) we have

Hρ

(
ξℓ
∣∣Cℓ

)
= Hρ

(
σ(0,ℓ)ξ

∣∣Cℓ

)
+Hρ

(
σ−(ℓ,ℓ)ξ

∣∣Cℓ ∨ σ(0,ℓ)ξ
)

= Hρ

(
ξ
∣∣σ(0,−ℓ)

Cℓ

)
+Hρ

(
ξ
∣∣σ(ℓ,ℓ)

Cℓ ∨ σ(ℓ,2ℓ)ξ
)

(9.8)

for any ℓ > 1. Studying the coordinates that are used to define the σ-
algebra σ(0,−ℓ)Cℓ, we see that this defines an increasing sequence of σ-
algebras converging to

∨
n∈H1

σ−nξ. Noting that σ(−1,ℓ−1)ξ ⊆ Cℓ+1 or equiva-

lently σ(ℓ,2ℓ)ξ ⊆ σ(ℓ+1,ℓ+1)Cℓ+1, we see in the same way that σ(ℓ,ℓ)Cℓ∨σ(ℓ,2ℓ)ξ
also increases with ℓ and has the limit

∨
n∈H2

σ−nξ. Hence we may apply con-
tinuity of entropy (Proposition 2.12), combine (9.6) and (9.8) to obtain that

hρ(σ
(1,0)) = Hρ

(
ξ
∣∣ ∨

n∈H1

σ−nξ
)
+Hρ

(
ξ
∣∣ ∨

n∈H2

σ−nξ
)

= Hρ

(
ξ
∣∣BH1

)
+Hρ

(
ξ
∣∣BH2

)
(9.9)

where BHj
is the σ-algebra defined by the coordinates in Hj for j = 1, 2. We

note that each of the terms in (9.9) is no larger than log 2 by the argument
concerning Figure 9.4.

We will now use the joining assumption to obtain a second formula for the
entropy hρ(σ

(1,0)). In fact, B1 = BX•
••
×NX •

••
is the σ-algebra corresponding
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to the factor X•
• •

of the dynamical system

(X,BX•
• •
⊗ BX •

••
, ρ, σ(1,0)),

so by the Abramov–Rokhlin formula (Corollary 2.21) we can also decompose
the entropy as

hρ(σ
(1,0)) = hm•

••
(σ(1,0)) + hρ(σ

(1,0)
∣∣B1) (9.10)

where we write m•
• •
,m •

••
for the Haar measures on X•

••
, X •

••
respectively. We

claim that the right-hand side of (9.9) and of (9.10) agree with each other
term by term.

Going through the arguments from equations (9.6) to (9.9) again, but
for hρ(σ

(1,0)|B1) and the only change throughout that every entropy expres-
sion is in addition conditioned on the invariant σ-algebra B1, we obtain that

hρ(σ
(1,0)

∣∣B1) = Hρ

(
ξ
∣∣BH1 ∨B1

)
+Hρ

(
ξ
∣∣BH2 ∨B1

)
. (9.11)

However,

BH1 ∨B1 =
∨

n∈H1

σ−nξ ∨B1 = BX•
• •
⊗BX •

••

since the top layer X•
• •

corresponds to B1 and for the bottom layer X •
••

all
coordinates are determined by the coordinates in H1. Therefore the first term
on the right-hand side of (9.11) vanishes.

For the second term in (9.11) we note that

BH2 =
∨

n∈H2

σ−nξ ⊇B1 = BX•
••
×NX •

••
(9.12)

since in the top layer (a copy of X•
• •
) the coordinates in H2 determine every-

thing. Therefore, (9.11) becomes

hρ(σ
(1,0)

∣∣B1) = Hρ

(
ξ
∣∣BH2

)
.

Together with (9.9) and (9.10) we therefore have

log 2 = hm•
••
(σ(1,0)) = Hρ

(
ξ
∣∣BH1

)
.

Note that this also give

log 2 = Hρ

(
σ(n,0)ξ

∣∣σ(n,0)
BH1

)

for any n ∈ Z. Adding these just as in the proof of the future formula (Propo-
sition 2.19(1)) and using ξ ∨∨n∈H1

σ−n(ξ) = σ(1,0)
∨

n∈H1
σ−n(ξ) we get for

any N > 1 that
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N log 2 = Hρ

(
N−1∨

n=0

σ(n,0)ξ
∣∣BH1

)
.

Now use the same argument as in (9.12) to see that

BH1 =
∨

n∈H1

σ−nξ ⊇ B2 = NX•
••
×BX •

••
. (9.13)

Let ξ(1) ⊆ B1 be the pre-image in X•
• •
×X •

••
of the state partition in X•

••
so

that ξ ∨B2 = ξ(1) ∨B2 and therefore

N log 2 = Hρ

(
N−1∨

n=0

σ(n,0)ξ(1)
∣∣BH1

)
.

Since
∨N−1

n=0 σ
−(n,0)ξ(1) contains 2

N elements, and by the characterization of

maximal entropy (Proposition 1.5), we deduce each atom of
∨N−1

n=0 σ
−(n,0)ξ(1)

almost surely has ρ
BH1
x -measure 1

2N . However, as these partitions together

with BH1 generate the Borel σ-algebra by (9.13) this forces ρ
BH1
x to be the

Haar measure on a coset of the group Y ⊆ X•
••
×{0} (since the Haar measure

gives the same weights to the partition elements).
It follows that ρ is also invariant under Y and under σ, which implies that ρ

is also invariant under the group Z ⊆ X•
••
×{0} as in Lemma 9.8. Now notice

that Z leaves invariant the B2-atoms X•
••
× {x2} for all points x = (x1, x2)

lying in X•
••
× X •

••
. Therefore, the conditional measure ρB2

x are invariant
under Z and Lemma 9.8 implies that (almost surely the conditional mea-
sures ρB2

x and so also) ρ is invariant under translation by X•
••
× {0}. This

forces ρ to be m•
••
× ν for some measure ν on X •

••
, and ν must be m •

••
since

it is the projection of ρ onto the bottom layer. This proves Theorem 9.7. �

Exercises for Section 9.2

Exercise 9.2.1. (42) Show that the system X•
• •

has many invariant measures.

(a) Find a non-trivial invariant closed subset in X•
••

(e.g. by constructing closed subgroup

that is invariant under σ(2,0) and σ(0,2) .)
(a) Find an invariant probability measure other than m•

• •
for which σ(1,0) has positive

entropy.

Exercise 9.2.2. (43) Show that X•
• •

does exhibit a certain weak form of measure rigidity

by showing that if ρ is an invariant Borel probability measure on X•
••

and σ(1,0) is mixing
with respect to ρ, then ρ = m•

• •
.
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9.3 Rigidity of Positive Entropy Measures for ×2,×3:

Rudolph’s Theorem

It is clear that the maps S2 : x 7→ 2x modulo 1 and S3 : x 7→ 3x modulo 1 on
the circle T each have many invariant probability measures and many closed
invariant sets, both infinite and finite.

Furstenberg’s topological result described in Section 9.1 motivated the
question about how probability measures invariant under both of the maps×2
and ×3 might look like. That is, could it be that an ergodic probability
measure which is invariant under both maps, must be the Lebesgue measure
or an atomic measure? A measure invariant under both maps will be called
a ×2,×3-invariant measure, and the result sought says that under suitable
hypotheses (optimally with the only assumption that the measure has no
atoms) the only ×2,×3-invariant probability measure is Lebesgue measure.

Progress was made on this question by Lyons [129], who proved the re-
sult for measures with completely positive entropy with respect to one of the
maps (see Definition 2.25). The assumption of completely positive entropy
was reduced to just positive entropy by Rudolph [181], and this is the re-
sult we present here. Johnson [91] later removed the coprimality assumption,
extending(44) Rudolph’s theorem to measures invariant under multiplication
by 5 and 10 for example.

Theorem 9.9 (Rudolph). Let S2 denote x 7→ 2x (mod 1) and S3 de-
note x 7→ 3x (mod 1) on T. Let µ be an S2, S3-invariant probability mea-
sure on T which is ergodic with the property that hµ(S

m
2 S

n
3 ) > 0 for

some m,n ∈ N. Then µ is the Lebesgue measure mT on T.

Here ergodicity is meant with respect to the joint action, that is if A ⊆ T
is measurable and S−1

2 A = S−1
3 A = A (mod µ) then µ(A) = 0 or 1.

In order to prove this, it is convenient to work with the invertible extension
of the N2-action in which the pair (m,n) is sent to the map Sm

2 S
n
3 (see

Section A.5 for the construction of the invertible extension of a single map
which formally may be used here for each of the generators in turn). To
construct the invertible extension, define

X = {x ∈ TZ2 | xn+e1 = 2xn and xn+e2 = 3xn for all n ∈ Z2}.

The conditions defining X as a subset of TZ2

are closed and homogeneous,
so X is a compact abelian group. The group X is invariant under the shift
action of Z2 defined by

(xn)n
action of m−→ (xn+m)n.

Write T2 for the left shift by e1 and T3 for the down shift by e2. Thus

(Tm
2 T

n
3 x)(a,b) = x(a+m,b+n)
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for all a, b,m, n ∈ Z, so T2, T3 are commuting automorphisms of X . Together
they define a Z2-action that is the invertible extension of the N2-action de-
fined by the commuting endomorphisms S2 and S3.

Write π0 : X → T for the surjective homomorphism defined by

π0(x) = x(0,0).

By the definition of X , for any m,n > 0 the diagram

X
Tm
2 Tn

3−−−−→ X

π0

y
yπ0

T −−−−→
Sm
2 Sn

3

T

commutes. Every T2, T3-invariant measure µX on X defines a S2, S3-invariant
measure µT = (π0)∗µX on T and (by the properties of the invertible exten-
sion) vice versa. Moreover, ergodicity is preserved: µX is ergodic if and only
if µT is (see Section A.5).

It will be useful to visualize the group X as a lattice of circles in which
a step to the right is an application of S2, a step up is an application of S3

and therefore each point in T at a given lattice site has two choices for the
point to its left and three choices for the point below it. This is illustrated in
Figure 9.5.

x 2x 4x

3x

9x

6x

two choices

three choices

Fig. 9.5: The invertible extension of ×2,×3.

Define a partition on T by

ξT = {[0, 16 ), [ 16 , 26 ), . . . , [ 56 , 1)}

and induce a partition on X by

ξX = π−1
0 ξT.
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Lemma 9.10 (The generator). The partition ξT is a generator for S2 and
is a generator for S3. In general the partition ξX is not a generator for T2,
nor is it a generator for T3. Nonetheless,

hµX
(T2, ξX) = hµX

(T2) = hµT
(S2) = hµT

(S2, ξT)

for any probability measure µX on X that is invariant under the Z2-action,

Proof. The only non-trivial part of this is to show that

hµX
(T2, ξX) = hµX

(T2).

Let C =
∨∞

i=−∞ T−i
2 ξX . In Figure 9.6, C is the σ-algebra generated by the

coordinates in the upper half-plane.

ξXT2ξX T−1
2 ξX T−2

2 ξX
determines x0 entirelypre-image is determined

determined

Fig. 9.6: How much is determined about x if [x]C is known.

Now T3ξX (and the associated factor T3C ) gives the same entropy to T2.
Since T n

3 C ր BX , the Kolmogorov–Sinăı theorem (Theorem 2.20) shows
that

hµX
(T2) = lim

n→∞
hµX

(T2, T
n
3 ξ) = hµX

(T2, ξX).

�

Due to the above, and also because we will work mostly on X , we will not
distinguish between µT and µX any longer, and simply write µ in the fol-
lowing. An important step in the proof is a relationship between the entropy
of T2 and T3 which holds for the ×2,×3-invariant measure µ on X .

Proposition 9.11 (Key entropy formula). For any σ-algebra S invari-
ant under T2 and T3,

hµ(T3
∣∣S ) =

log 3

log 2
hµ(T2

∣∣S ).

In particular,

hµ(T3) =
log 3

log 2
hµ(T2).
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Proof. Let κ = log 3
log 2 . For any n > 1 the partition

∨n−1
i=0 S

−i
3 ξT comprises

intervals of length 1
2·3n , while the partition

∨m−1
i=0 S−i

2 ξT comprises intervals
of length 1

2m·3 . Write ℓ3(n) =
1

2·3n and ℓ2(m) = 1
2m·3 . If m = ⌊κn⌋ then

2m 6 3n 6 2m+1

and
1

2
ℓ2(m) =

1

2m+1 · 3 6
1

3 · 3n 6 ℓ3(n) 6
1

2 · 2m =
3

2
ℓ2(m).

This implies that each interval in
∨n−1

i=0 S
−i
3 ξT intersects at most three inter-

vals in
∨m−1

i=0 S−i
2 ξT and vice versa. It follows that

Hµ




n−1∨

i=0

T−i
3 ξX

∣∣
m−1∨

j=0

T−j
2 ξX


 6 log 3,

and

Hµ




m−1∨

j=0

T−j
2 ξX

∣∣
n−1∨

i=0

T−i
3 ξX


 6 log 3,

so

Hµ

(
n−1∨

i=0

T−i
3 ξX

∣∣S
)

6 Hµ




n−1∨

i=0

T−i
3 ξX ∨

m−1∨

j=0

T−j
2 ξX

∣∣S




6 Hµ




m−1∨

j=0

T−j
2 ξX

∣∣S


+Hµ



n−1∨

i=0

T−i
3 ξX

∣∣
m−1∨

j=0

T−j
2 ξX




︸ ︷︷ ︸
6log 3

.

Now divide by n and let n→∞ (with m = ⌊κn⌋) to deduce that

hµ(T3
∣∣S ) 6 lim

n→∞

m

n︸ ︷︷ ︸
→κ

hµ(T2
∣∣S ) + 0.

The same argument with the role of S2 and S3 reversed gives the reverse
inequality. �

A similar argument applies to any map Tm
2 T

n
3 with m > 0 and n > 0, so

we deduce that the following properties of a measure µ are equivalent:

• hµ(T2) > 0;
• hµ(T3) > 0;
• hµ(Tm

2 T
n
3 ) > 0 for some m > 0, n > 0;

• hµ(Tm
2 T

n
3 ) > 0 for all (m,n) 6= (0, 0) with m > 0, n > 0.



9.3 Rigidity for ×2,×3: Rudolph’s Theorem 253

Corollary 9.12 (Identical Pinsker σ-algebra). The maps T2 and T3
of (X,µ) have the same Pinsker algebra.

Proof. Let P(T2) be the Pinsker algebra of T2. Then it is easy to check
that T3P(T2) = P(T2). Proposition 9.11 then implies that

hµ
(
T3
∣∣P(T2)

)
= κhµ

(
T2
∣∣P(T2)

)

= κhµ(T2)

= hµ(T3).

This in turn gives hµ(T3
∣∣P(T2)) = 0 by the Abramov–Rokhlin formula

(Corollary 2.21), so P(T2) ⊆ P(T3). The corollary follows by repeating
the argument with T2 and T3 switched. �

Proving Theorem 9.9 requires a more geometric understanding of entropy
(using similar pictures and ideas as those already used in the last section).
Let

A1 = σ

(
∞∨

i=1

T−i
2 ξX

)
= T−1

2 π−1
0 BT,

illustrated in Figure 9.7. Also note that T−1
3 A1 equals the σ-algebra generated

by the partition at the coordinates

{(1, 1), (2, 1), (3, 1) . . .}

and that A1 ⊇ T−1
3 A1.

ξX T−1
2 ξX T−2

2 ξX determined completely

also determined by A1

Fig. 9.7: The σ-algebra A1.

Knowledge of S2(y) and S3(y) in T determines y ∈ T uniquely, so

T−1
3 ξX ∨A1 = π−1

0 BT = ξX ∨A1.

Using this repeatedly and applying T n
3 we also obtain

ξX ∨ T n
3 A1 = T n

3 ξX ∨ T n
3 A1 (9.14)

for any n > 0, see also Figure 9.8.
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✻
❄

n

Fig. 9.8: Proof that Tn3 ξX ∨ A1 = ξX ∨ A1.

Lemma 9.10 shows that

hµ(T2) = Hµ(ξX
∣∣A1)

= Hµ(T
n
3 ξX

∣∣T n
3 A1) (since µ is invariant under T3)

= Hµ(ξX
∣∣T n

3 A1). (by (9.14))

It follows that if

A =

∞∨

i=1

∞∨

j=−∞

T−i
2 T−j

3 ξX

denotes the σ-algebra determined by the coordinates in the half-plane

{(m,n) ∈ Z2 | m > 0},

then by continuity of entropy (Proposition 2.14),

hµ(T2) = Hµ(ξX
∣∣A ). (9.15)

We refer to Exercise 9.3.1 for a tempting but wrong argument to prove The-
orem 9.9 using this formula (see also the solution on page 332).

The next step is to identify the A -atoms more closely, for which we will
use some material from Appendix C.

Lemma 9.13 (Atoms are cosets). G = [0]A is a closed subgroup of X.
Moreover, [x]A = G+ x for x ∈ X.

Proof. The projection onto the coordinates in the half-space

{(m,n) ∈ Z2 | m > 0}

is a continuous homomorphism, so its kernel is a closed subgroup of X , and
the pre-images of other points are the cosets of this kernel. �

The following provides a better understanding of the group G.

Lemma 9.14 (2-adic integers). G is isomorphic to Z2, the 2-adic integers,
and the isomorphism conjugates T3 to multiplication by 3 on Z2.

Proof. The isomorphism between G and Z2 may be described concretely as
follows. For this, first recall that the invertible extension of S2 : T → T is
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defined by
X2 =

{
x ∈ TZ | xk+1 = 2xk for all k ∈ Z

}

and define the subgroup

G2 = {x ∈ X2 | xk = 0 for all k > 1}.

A 2-adic integer

a =

∞∑

m=0

am2m

with am ∈ {0, 1} for all m > 0, determines a point g(a) ∈ G2 by setting

g(a)k = 2k−1

|k|∑

m=0

am2m (mod 1)

for all k 6 0 and g(a)(k,0) = 0 for all k > 1. Identify Q2/Z2
∼= Z[ 1

2 ]/Z < R/Z
with its image in T = R/Z. Setting g(a)k = 2k−1a modulo Z2 for all k ∈ Z
gives an equivalent definition which allows us to see the properties of the map
more clearly. In particular, Z2 ∋ a 7−→ g(a) ∈ G2 is a group homomorphism,
and so multiplication by 3 has the property g(3a) = 3g(a). Using this we
extend the map g(a) to a map from Z2 to G ⊆ X by setting

g(a)(k,ℓ) = 2k−13ℓa

for all a ∈ Z2 and (k, ℓ) ∈ Z2 (which is again to be understood using the
inclusion Q2/Z2

∼= Z[ 1
2 ]/Z ⊆ T).

We note that g(a) = 0 ∈ G forces ak = 0 for all k > 0 (for ex-
ample, by looking at the coordinate g(a)(−k,0)), so that the map is injec-
tive. Moreover, g(·) : Z2 → G is also surjective. In fact if g ∈ G we
find a0 ∈ {0, 1} with g(0,0) = a0

2 (since 2g(0,0) = 0 in T). Having already
found ak for k = 0, . . . ,m− 1 we find am ∈ {0, 1} with

g(−m,0) =
am
2

+ 2−(m+1)
m−1∑

k=0

ak2
k

(using 2g(−m,0) = g(−m+1,0) and the same formula for g(−m+1,0)). The se-
quence am ∈ {0, 1} for m > 0 then defines an element a ∈ Z2 with g = g(a).

�

Since the atom [x]A supports the measure µA
x and [x]A is a coset of G,

we can define for almost every x ∈ X a measure νx on G by

νx(B) = µA
x (x+B)

for all measurable B ⊆ G, or equivalently
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νx = µA
x − x,

where we simply write translation by −x instead of the push forward by
translation by −x. This definition of νx is a precursor of what we will call a
leafwise measure and the reader should interpret νx as a description of the
atom of x with respect to µ and the σ-algebra A viewed from the point x,
so that 0 ∈ G corresponds to x itself.

Proposition 9.15 (Pinsker measurability — the key to invariance).
The map x 7→ νx is measurable with respect to the Pinsker σ-algebra of T2
(or equivalently of T3).

Proof. Fix some n > 1. Using the isomorphism between G and Z2 we define
the subset Bn(k) ⊆ G as the image of the ball {a ∈ Z2 | ‖a − k‖ 6 2−n},
where k ∈ Z or equivalently just k ∈ {0, . . . , 2n − 1}.

It is enough to show that gk(x) = νx(Bn(k)) is Pinsker measurable for
any n and k as above. We claim that gk is in fact periodic with respect to T3.
For this, note that multiplication by 3 is invertible modulo 2n and recall
that T−1

3 A = A . By Lemma 2.5 applied to φ = T−1
3

gk(T
−1
3 x) = µA

T−1
3 x

(
T−1
3 x+Bn(k)

)
(by definition of gk and νx)

= µT3A
x (x+ T3Bn(k)) (by Lemma 2.5)

= µA
x (x+Bn(3k)) = g3k(x).

There exists some† m with 3m ≡ 1 modulo 2n and in particular

Bn(k) = Bn(3
mk).

With this value of m we then also have

gk(T
−m
3 x) = g3mk(x) = gk(x),

which gives the claimed periodicity. By Exercise 2.4.2 (see also the hint on
page 329) and Corollary 9.12, νx is Pinsker measurable with respect to T3
and T2. �

Proposition 9.16 (Invariance). For almost every x ∈ X, the measure νx
is the Haar measure mGx

of a closed subgroup Gx 6 G.

Proof. Since T k
3

∨∞
i=−∞ T−i

2 ξX ր BX as k → ∞, Theorem 2.29 implies
that

† Here we are indeed using the fact that gcd(2, 3) = 1; for natural numbers with a com-
mon factor a different argument would be needed, and this may be found in the work of
Johnson [91].
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S =
∨

k>0

T k
3

∞⋂

n=0

∞∨

i=n

T−i
2 (ξX)

is the Pinsker σ-algebra modulo µ. Since S ⊆ A we see from Proposition 9.15
that νx is A -measurable, possibly after removing a µ-null set N from the
space. Certainly µA

x is A -measurable (by Theorem 2.2 resp. [52, Th. 5.14]).
This gives

µA
x = µA

y ,

νx = νy,

and

µA
x (N) = 0.

for x, y ∈ [x]ArN , where we possibly have to enlarge the null set N for the
last property.

By definition of νx, this then implies

µA
x − x = νx = νy = µA

x − y = νx − x+ y,

for all x, y ∈ [x]ArN . We also have νx(N − x) = 0, and so for νx-almost
every g ∈ G we have y = x+ g ∈ [x]ArN and so

νx = νx + g

for νx-almost every g ∈ G. This implies that Gx = Supp(νx) is a closed
subgroup of G and νx is the Haar measure on Gx. �

Proof of Theorem 9.9. By assumption hµ(T2) > 0 and using (9.15) we
see that

B = {x | Iµ(ξX
∣∣A )(x) > 0}

has positive measure. Using the notation of the proof of Lemma 9.14 we
have [x]ξX∨A = x+B1(0) and hence

Iµ(ξX
∣∣A )(x) = − logµA

x ([x]ξX∨A ) = − log νx(B1(0)) = − log g0(x).

Hence g0(x) < 1 for x ∈ B and we see that the closed subgroup Gx in
Proposition 9.16 contains (where defined) an element g = g(a) with

a =

∞∑

n=0

an2
n ∈ Z2

and a0 = 1. However, Z2 (and hence G) is topologically generated by any
such element (since Z/2n+1Z is generated by any odd number). Thus Gx = G
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for almost every x ∈ B. Since g0(x) = g0(T3x) we know that the set B is T3-
invariant.

We claim that Gx = G for almost every x. To prove this, it is enough
to show that B = X . For almost every x ∈ B we have µA

x = x + mG

(and note that this property characterizes membership of B). By the double
conditioning formula (Proposition 2.4, which in our case is somewhat easier
as ξX is a finite partition) we have

µT2A
x = µA∨ξX

x =
(
µA
x

)ξX
x

= x+mT2G

for almost every x ∈ B. Using the push-forward formula for conditional
measures (Lemma 2.5 for φ = T−1

2 ) we obtain

µA

T−1
2 x

=
(
T−1
2

)
∗
µT2A
x = T−1

2 x+mG

for almost every x ∈ B, but this shows T−1
2 x ∈ B. Thus B is T2-invariant, T3-

invariant, and has positive measure. By the assumption of ergodicity, this
implies that B =

µ
X .

Now there are many ways to finish the argument. For example, the argu-
ment above gives µA

x = x+mG and hence

Iµ(ξX
∣∣A )(x) = − log(x +B1(x)) = log 2

almost surely. From this we obtain hµ(T2) = log 2, and so the original measure
on T must have been mT. �

9.3.1 Semigroups of Polynomial Density and Positive Entropy

In this section we apply the powerful local entropy methods from Chapter 3
to extend Theorem 9.9 to classify measures on T that are invariant under the
action of a large multiplicative sub-semigroup of N, by explaining the method
of Bourgain and Lindenstrauss [22] for establishing positive entropy in this
much simpler (in comparison, a toy) situation. This exposition of the idea is
taken from work of Einsiedler and Fish [45].

Let S ⊆ N be a multiplicative semigroup. Recall that if S ⊆ aN for
some a > 1, then S is called lacunary and in this case there is a multitude
of S-invariant probability measures (under the natural action of multiplica-
tion by elements of S on T = R/Z) and there are many S-invariant closed
infinite subsets of X = R/Z. On the other hand, if S 6⊆ aN for any a > 1,
then S is called non-lacunary and as we have seen in Theorem 9.3, there are
very few closed invariant subsets under the action of a non-lacunary semi-
group.
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Let us now ask Furstenberg’s question regarding ×2, ×3-invariant mea-
sures in the right generality: Must a probability measure that is invariant and
ergodic for a non-lacunary semigroup be of finite support or be Lebesgue mea-
sure? It is straightforward (see Exercise 9.3.4) to see that for S = N there are
only two possible S-invariant and ergodic probability measures, namely the
Dirac measure δ0 and the Lebesgue measure mT. However, as with S = 〈2, 3〉
for general non-lacunary semigroups the conjecture is still open. Let us state
Johnson’s generalization of Rudolph’s Theorem† from [91].

Theorem 9.17 (Johnson). Let S be a non-lacunary semigroup in N, and
let µ be an S-invariant ergodic probability measure on T. If hµ(s) > 0 for
some s ∈ S, then µ = mT is Lebesgue measure.

One may ask whether it is possible to give stronger conditions on S which
would allow a complete classification of S-invariant ergodic probability mea-
sures without the entropy hypothesis (as in the trivial case S = N considered
in Exercise 9.3.4). This can indeed be done for the following class of semi-
groups.

Definition 9.18. A semigroup S ⊆ N has polynomial density with expo-
nent α > 0 if

|S ∩ [1,M ]| >Mα (9.16)

for all sufficiently large M .

Theorem 9.19. Let S be a semigroup of polynomial density with positive
exponent. Then any S-invariant and ergodic probability measure on T is either
supported on a finite set of rational points, or is the Lebesgue measure.

We will prove Theorem 9.19 by establishing, under this stronger assump-
tion on S, the entropy hypothesis in Theorem 9.17.

Proof of Theorem 9.19. Let µ be an S-invariant ergodic probability mea-
sure. If µ(Q/Z) > 0 then by ergodicity we must have µ(Q/Z) = 1, and so µ
must be supported on a finite set since each point in Q/Z has a finite or-
bit under S. Suppose therefore that µ is an S-invariant ergodic probability
measure on T with µ(Q/Z) = 0.

Fix some s0 ∈ Sr{1}, write T (x) = s0x. Then we will show below (under
the assumption µ(Q/Z) = 0) that hµ(s0) > δ = α log s0

5 . This will imply the
theorem by the work of Rudolph and Johnson. Let

ξ =
{
[0, 1

s0
), [ 1

s0
), . . . , [ s0−1

s0
, 1)
}

be the partition corresponding to fixing the first digit in the s0-ary expan-
sion of real numbers x ∈ [0, 1) ∼= T. Notice that

∨n−1
i=0 T

−iξ is the partition

† We note that if 2, 3 ∈ S then it is very easy to prove Theorem 9.17 as a corollary of

Rudolph’s theorem (Theorem 9.9).
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corresponding to the first n digits in the s0-ary expansion, and so comprises
intervals of length 1

sn0
.

Now recall that the Shannon–MacMillan–Breiman theorem (Theorem 3.1)
states that

− 1

n
logµ

(
[x]∨n−1

i=0 T−iξ

)
−→ hµE

x
(T, ξ)

almost surely, where µE
x is the ergodic component of µ with respect to T .

We assume now that the convergence takes place for x ∈ T and that

hµE
x
(T, ξ) < δ.

Then for large enough n > n0 we would have

− 1

n
logµ

(
[x]∨n−1

i=0 T−iξ

)
< δ,

and so
µ
(
B(x, s−n

0 )
)
> e−nδ,

where
B(x, s−n

0 ) = (x− s−n
0 , x+ s−n

0 ) ⊇ [x]∨n−1
i=0 T−iξ.

We define M =M(n) by
M = 2enδ/α, (9.17)

and we may assume that (9.16) holds whenever n > n0.
Recall that every s ∈ S preserves the measure µ, so µ

(
T−1
s B

)
= µ(B) for

any Borel set B ⊆ T and where Ts(x) = sx for all x ∈ T. This clearly implies
(using B = Ts(I) = sI) that µ(sI) > µ(I) for any Borel set I and s ∈ S. We
now apply this to the interval

I = B(x, s−n
0 )

to obtain
µ
(
sB(x, s−n

0 )
)
> e−nδ.

Using this together with (9.17) and the assumption that S has polynomial
density with exponent α we see that

∑

s∈S∩[1,M ]

µ
(
sB(x, s−n

0 )
)
>Mαe−nδ > 1,

at least once n (and hence M) are sufficiently large, so let us say this holds
also for n > n0. Therefore, there must be distinct elements s, s′ ∈ S ∩ [1,M ]
with

sB(x, s−n
0 ) ∩ s′B(x, s−n

0 ) 6= ∅.

Of course, this overlapping must be understood in T = R/Z, so if we iden-
tify x ∈ T with the corresponding element x ∈ [0, 1) ⊆ R, then we have
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s(x + v) = s′(x+ v′) + k,

where |v|, |v′| < s−n
0 , and k ∈ Z. Thus

x =
s′v′ − sv
s− s′ +

k

s− s′ ,

so by (9.17) and the definition of δ = α log s0
5 ,

∣∣∣∣
s′v′ − sv
s− s′

∣∣∣∣ 6 2Ms−n
0 = 2Me−n log s0 ≪MM−α

δ
log s0 =M1−5 =M−4

and
|s− s′| < M.

This already should be surprising — the real number x (about which we only
assumed hµE

x
(T, ξ) < δ) has a rational approximation of the shape

∣∣∣∣x−
pn
qn

∣∣∣∣≪M−4

with denominator qn < Mn = 2enδ/α.
We now apply the argument used above with n + 1 in place of n; note

that Mn 6Mn+1 ≪Mn and so we find a rational approximation

∣∣∣∣x−
pn+1

qn+1

∣∣∣∣≪M−4
n

with qn+1 < Mn+1 ≪Mn. Together these two approximations give

∣∣∣∣
pn
qn
− pn+1

qn+1

∣∣∣∣≪M−4. (9.18)

On the other hand, the left-hand side of (9.18) is either zero, or has

∣∣∣∣
pn
qn
− pn+1

qn+1

∣∣∣∣ >
1

qnqn+1
>M−2.

Assuming n is large enough (increasing n0 further if necessary we again sup-
pose n > n0 is sufficient), the latter inequality gives a contradiction to (9.18).
Hence we must have pn

qn
= pn+1

qn+1
for all n > n0, and therefore

∣∣∣∣x−
pn0

qn0

∣∣∣∣≪Mn

for all n > n0. Letting n→∞ we obtain
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x =
pn0

qn0

∈ Q ∩ [0, 1).

To summarize, we have shown for almost every x that hµE
x
(T, ξ) < δ implies

that x ∈ Q ∩ [0, 1). Since
µ(Q ∩ [0, 1)) = 0

we deduce that almost every ergodic component of µ has hµE
x
(T, ξ) > δ > 0

as required. Therefore, Theorem 9.17 implies Theorem 9.19. �

Exercises for Section 9.3

Exercise 9.3.1. After the definition of the σ-algebra A in the invertible extension X
for S2, S3 and having obtained (9.15) it is tempting to finish the proof by a much faster
argument as follows:
(a) Show that Iµ(ξX

∣∣A )(T3x) = Iµ(ξX
∣∣A )(x).

(b) Use ergodicity to conclude that Iµ(ξX
∣∣A ) is constant.

(c) Show that Iµ(ξX
∣∣A ) = log 2 everywhere and conclude that the original measure on T

must have been the Lebesgue measure.
Which part of this outline is not correct?

Exercise 9.3.2. (45) Let µ be an S3-invariant and ergodic probability measure on T with
positive entropy.
(a) Prove that any weak* limit of 1

n

∑n−1
j=0 (S2)

j
∗µ is of the form cmT+(1−c)ν for some c > 0

and ν ∈ M (T).
(b) Prove that µ-almost every point x ∈ T has a dense orbit under S2.

Exercise 9.3.3. Show how to choose, for any n > 1 with gcd(n, 6) = 1, a subset Sn
of {0, 1

n
, . . . , n−1

n
} that is invariant under both x 7→ 2x (mod 1) and x 7→ 3x (mod 1)

with |Sn| > nα for some fixed α > 0. Show that for any ε > 0 there exists some N(ε) such
that for n > N(ε) the set Sn is ε-dense in [0, 1).

Exercise 9.3.4. Show Theorem 9.19 directly for the case S = N (or for any positive-
density semigroup S ⊆ N).

Notes to Chapter 9

(39)(Page 237) The treatment here follows Boshernitzan [20] and Furstenberg [64, Sect. IV]
closely.
(40)(Page 240) The argument in Section 9.2 comes from a paper of Einsiedler and Ward [50]
and uses half-space entropy ideas from Kitchens and Schmidt [104] and Einsiedler [44];
similar ideas are applied to show isomorphism rigidity for certain Zd-actions by toral
automorphisms in [51], later generalized by Bhattacharya [13]. Related work for Zd-actions
by toral automorphisms has been done by Kalinin and Katok [96], where more refined
information is found about joinings and the consequences of the existence of non-trivial
joinings.
(41)(Page 243) Determining which subgroups generate in this sense is closely related to
the expansive subdynamical structure of the system, which is introduced by Boyle and
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Lind [27] and completely determined for commuting automorphisms of compact abelian
groups by Einsiedler, Lind, Miles and Ward [46].
(42)(Page 248)In fact Ledrappier’s “three dot” example has many invariant measures:
Einsiedler [43] constructs uncountably many closed invariant sets, and uncountably many
different invariant measures giving positive entropy, to any single map in systems of this
sort.
(43)(Page 248) This is a special case of a more general result due to Schmidt [183], where
it is shown that Haar measure is the unique “most mixing” invariant probability measure
for a large class of systems of this sort.
(44)(Page 249) Other approaches to this result have been found by Feldman [58], Host [85],
Lindenstrauss [126], Parry [162] and others. More recently, Bourgain, Lindenstrauss, Michel

and Venkatesh [23] have found effective versions of both Rudolph’s and Johnson’s theorems,
relating the size of the assumed positive entropy to effective properties of the invariant
measure.
(45)(Page 262) In fact a much stronger statement holds: Johnson and Rudolph [92] showed
that the weak* limit is equal to mT.


