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1. Introduction

1.1. In these notes we present some aspects of work we have conducted,
parts jointly with Anatole Katok, regarding dynamics of higher rank
diagonalizable groups on homogeneous spaces Γ\G. A prototypical ex-
ample of such an action is the action of the group of determinant one
diagonal matrices A on the space of unit volume lattices in Rn for n ≥ 3
which can be identified with the quotient space SL(n,Z)\ SL(n,R).
More specifically, we consider the problem of classifying measures in-
variant under such an action, and present two of the applications of
this measure classification.

Date: August 27, 2008.
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There have been several surveys on this topic, including some that we
have written (specifically, [Lin05] and [EL06]). For this reason we will
be brief in our historical discussions and the discussion of the important
work of the pioneers of the subject.

1.2. Let G be a linear algebraic group R, and Γ < G a lattice (i.e. a
discrete, finite covolume subgroup). One can more generally consider
for any subgroup H < G, in particular for any algebraic subgroup, the
action of H on the symmetric space Γ\G. Ratner’s landmark measure
classification theorem (which is somewhat more general as it considers
the case of G a general Lie group) states the following:

1.3. Theorem (M. Ratner [Rat91]). Let G,Γ be as above, and let
H < G be an algebraic subgroup generated by one parameter unipo-
tent subgroups. Then any H-invariant and ergodic probability measure
µ is the natural (i.e. L-invariant) probability measure on a single orbit
of some closed subgroup L < G (L = G is allowed).

We shall call a probability measure of the type above (i.e. supported
on a single orbit of its stabilizer group) homogeneous.

1.4. For one parameter diagonalizable flows the (partial) hyperbolicity
of the flow guarantees the existence of many invariant measures. It is,
however, not unreasonable to hope that for multiparameter diagonal-
izable flows the situation is better. For example one has the following
conjecture attributed to Furstenberg, Katok-Spatzier and Margulis:

1.5. Conjecture. Let A be the group of diagonal matrices in SL(n,R),
n ≥ 3. Then any A-invariant and ergodic probability measure on
SL(n,Z)\ SL(n,R) is homogeneous.

The reader may note that we have phrased Conjecture 1.5 in much
more specialized way than Theorem 1.3. While the basic phenomena
behind the conjecture is expected to be quite general, care must be
exercised when stating it more generally (even for the groups A and G
given above).

1.6. Conjecture 1.5 is quite open. But progress has been made. Specif-
ically, in our joint paper with Katok [EKL06], Conjecture 1.5 is proved
under the condition that there is some a ∈ A for which µ has positive
entropy (see Theorem 11.5 below for a more formal statement).

1.7. These lecture notes are based on our joint course given in the CMI
Pisa summerschool as well as a graduate course given by the second
named author in Princeton the previous semester. Notes for both were
carefully taken by Shimon Brooks and thoroughly edited by us. The
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material presenter here has almost entirely been published in several
research papers, in particular [EK03, Lin06, EK05, EKL06, EL08].

1.8. The treatment here differs from the original treatment in places,
hopefully for the better. In particular we use this opportunity to give an
alternative simplified treatment to the high entropy method developed
by M.E. and Katok in [EK03, EK05]. For this reason our treatment of
the high entropy method in §9 is much more careful and thorough than
our treatment of the low entropy method in the following section (the
reader who wishes to learn this technique more thoroughly is advised
to look at our recent paper [EL08]).

It is interesting to note that what we call the low entropy method for
studying measures invariant under diagonalizable groups uses heavily
unipotent dynamics, and in particular ideas of Ratner developed in her
study of isomorphism and joining rigidity in [Rat82b, Rat82a, Rat83]
which was a precursor to her more general results on unipotent flows
in [Rat90, Rat91].

1.9. More generally, the amount of detail given on the various topics is
not uniform. Our treatment of the basic machinery of leafwise measures
as well as entropy in §3-7 is very thorough as are the next two sections
§8-9. This has some correlation to the material given in the Princeton
graduate course, though the presentation of the high entropy method
given here is more elaborate. The low entropy section is substantially
less complete, and our discussion of how to combine these methods is
even more brief.

The last two sections of these notes give a sample of some of the
applications of the measure classification results given in earlier chap-
ters. We have chosen to present only two: our result with Katok on
the set of exceptions to Littlewood’s Conjecture from [EKL06]. The
measure classification results presented here also have other applica-
tions; in particular we mention our joint work with P. Michel and
A. Venkatesh on the distribution properties of periodic torus orbits
[ELMV06, ELMV07].

1.10. One day a more definitive and complete treatment of these mea-
sure rigidity results would be written, perhaps by us. Until that day
we hope that these notes, despite their obvious shortcomings, might be
useful.

Acknowledgements. This work owes a debt to the Clay Mathemat-
ical Institute in more than one way. We thank CMI for its support of
both of us (E.L. was supported by CMI during the years 2003-2005,
and M.E. was supported by CMI in the second half of 2005). Many of
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the ideas we present here were developed during this period. We also
thank CMI for the opportunity it provided us to present our work to
a wide and stimulating audience in the Pisa summer school. We also
thank Shimon Brooks for his careful notetaking.

The work presented here has been obtained over several years and
supported by several NSF grants, in particular DMS grants DMS-
0554373, 0622397 (ME), 0500205 and 0554345 (EL).

2. Ergodic theory: some background

We start by summarizing a few basic notions of ergodic theory, and
refer the reader with the desire to see more details to any book on
ergodic theory, e.g. [Wal82], [Gla03], or [EW07].

2.1. Definition. Let X be a locally compact space, equipped with an
action of a noncompact (but locally compact) group(1) H which we de-
note by (h, x) 7→ h.x for h ∈ H and x ∈ X. An H-invariant probability
measure µ on X is said to be ergodic if one of the following equivalent
conditions holds:

(i) Suppose Y ⊂ X is an H-invariant set, i.e. h.Y = Y for every
h ∈ H. Then µ(Y ) = 0 or µ(X \ Y ) = 0.

(ii) Suppose f is a measurable function on X with the property
that for every h ∈ H, for µ-a.e. x, f(h.x) = f(x). Then f is
constant a.e.

(iii) µ is an extreme point of the convex set of all H-invariant Borel
probability measures on X.

2.2. A stronger condition which implies ergodicity is mixing:

2.3. Definition. Let X, H and µ be as in Definition 2.1. The action
of H is said to be mixing if for any sequence hi →∞ in H(2) and any
measurable subsets B,C ⊂ X,

µ(B ∩ hi.C)→ µ(B)µ(C) as i→∞.

Recall that two sets B,C in a probability space are called indepen-
dent if µ(B ∩ C) = µ(B)µ(C). So mixing is asking for two sets to be
asymptotically independent (when one of the sets is moved by bigger
and bigger elements of H).

(1)All groups will be assumed to be second countable locally compact, all mea-
sures Borel probability measures unless otherwise specified.

(2)I.e. a sequence so that for any compact K ⊂ H only finitely many of the hi
are in K.
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2.4. A basic fact about H-invariant measures is that any H-invariant
measure is an average of ergodic measures, i.e. there is some auxiliary
probability space (Ξ, ν) and a (measurable) map attaching to each ξ ∈
Ξ an H-invariant and ergodic probability measure µξ on X so that

µ =

∫
Ξ

µξdν(ξ).

This is a special case of Choquet’s theorem on representing points in
a compact convex set as generalized convex combinations of extremal
points.

2.6. Definition. An action of a group H on a locally compact topo-
logical space X is said to be uniquely ergodic if there is only one H-
invariant probability measure on X.

2.7. The simplest example of a uniquely ergodic transformation is the
map Tα : x 7→ x+α on the one dimensional torus T = R/Z where α is
irrational. Clearly Lebesgue measure m on T is Tα-invariant; we need
to show it is the only such probability measure.

To prove this, let µ be an arbitrary Tα-invariant probability measure.
Since µ is Tα-invariant,

µ̂(n) =

∫
T
e(nx)dµ(x) =

∫
T
e(n(x+ α))dµ(x) = e(nα)µ̂(n),

where as usual e(x) = exp(2πix). Since α is irrational, e(nα) 6= 1 for
all n 6= 0, hence µ̂(n) = 0 for all n 6= 0 and clearly µ̂(0) = 1. Since
the functions e(nx) span a dense subalgebra of the space of continuous
functions on T we have µ = m.

2.9. Definition. Let X be a locally compact space, and suppose that
H = {ht} ∼= R acts continuously on X. Let µ be an H-invariant
measure on X. We say that x ∈ X is generic for µ if for every f ∈
C0(X) we have(3):

1

T

∫ T

0

f(ht.x) dt→
∫
X

f(y) dµ(y) as T →∞.

Equidistribution is another closely related notion:

2.11. Definition. A sequence of probability measures µn on a locally
compact space X is said to be equidistributed with respect to a (usually

(3)Where C0(X) denotes the space of continuous functions on X which decay at
infinity, i.e. so that for any ε > 0 the set {x : |f(x)| ≥ ε} is compact.
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implicit) measure m if they converge to m in the weak∗ topology, i.e. if∫
f dµn →

∫
f dm for every f ∈ C0(X).

A sequence of points {xn} in X is said to be equidistributed if the

sequence of probability measures µN = N−1
∑N

n=1 δxn is equidistributed,
i.e. if for every f ∈ C0(X)

1

N

N∑
n=1

f(xn)→
∫
X

f(y) dm(y) as N →∞.

Clearly there is a lot of overlap between the two definitions, and
in many situations“ equidistributed” and “generic” can be used inter-
changeably.

2.12. For an arbitrary H ∼= R-invariant measure µ on X, the Birkhoff
pointwise ergodic theorem shows that µ-almost every point x ∈ X
is generic with respect to some H-invariant and ergodic probability
measure on X. If µ is ergodic, µ-a.e. x ∈ X is generic for µ.

If X is compact, and if the action of H ∼= R on X is uniquely ergodic
with µ being the unique H-invariant measure, then something much
stronger is true: every x ∈ X is generic for µ!

Indeed, let µT be the probability measures

µT =
1

T

∫ T

0

δht.x dt

then any weak∗ limit of the µT will be H-invariant. But there is only
one H-invariant probability measure on X, namely µ, so µT → µ, i.e.
x is generic for µ.

E.g. for the irrational rotation considered in §2.7 it follows that orbits
are equidistributed. A more interesting example is provided by the
horocycle flow on compact quotients Γ\ SL(2,R). The unique ergodicity
of this system is a theorem due to Furstenberg [Fur73] and is covered
in the lecture notes by Eskin.

3. Entropy of dynamical systems: some more background

3.1. A very basic and important invariant in ergodic theory is entropy.
It can be defined for any action of a (not too pathological) unimodular
amenable group H preserving a probability measure [OW87], but for
our purposes we will only need (and only consider) the case H ∼= R or
H ∼= Z. For more details we again refer to [Wal82], [Gla03], or [EW07].
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Entropy is an important tool also in the study of unipotent flows(4),
but plays a much more prominent role in the study of diagonalizable
actions which we will consider in these notes.

3.2. Let (X,µ) be a probability space. The static entropy Hµ(P) of a
finite or countable partition of X is defined to be

Hµ(P) = −
∑
P∈P

µ(P ) log µ(P ),

which in the case where P is a countable partition may be finite or
infinite.

One basic property of entropy is sub-additivity; the entropy of the
refinement P ∨Q = {P ∩Q : P ∈ P , Q ∈ Q} satisfies

(3.2a) Hµ(P ∨Q) ≤ Hµ(P) +Hµ(Q).

However, this is just a starting point for many more natural identities
and properties of entropy, e.g. equality holds in (3.2a) if and only if P
and Q are independent, the latter means that any element of P is inde-
pendent of any element of Q. All these natural properties find a good
explanations if one interprets Hµ(P) as the average of the information
function

Iµ(P)(x) = − log µ(P ) for x ∈ P ∈ P
which measures the amount of information revealed about x if one is
given the partition element P ∈ P that contains x ∈ P .

3.3. The ergodic theoretic entropy hµ(T ) associated to a measure pre-
serving map T : X → X can be defined using the entropy function Hµ

as follows:

3.4. Definition. Let µ be a probability measure on X and T : X → X
a measurable map preserving µ. Let P be either a finite partition of
X or a countable(5) partition with Hµ(P) < ∞. The entropy of the
four-tuple (X,µ, T,P) is defined to be(6)

(3.4a) hµ(T,P) = lim
N→∞

1

N
Hµ

(
N−1∨
n=0

T−nP

)
.

(4)In particular, in [MT94] Margulis and Tomanov give a shorter proof of Ratner’s
measure classification theorem using entropy theory.

(5)One may also restrict oneself to finite partitions without changing the outcome,
but we will see situations where it will be convenient to allow countable partitions.

(6)Note that by the subadditivity of the entropy function Hµ the limit in (3.4a)
exists and is equal to infN 1

NHµ(
∨N−1
n=0 T

−nP).
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The ergodic theoretic entropy of (X,µ, T ) is defined to be

hµ(T ) = sup
P:Hµ(P)<∞

hµ(T,P).

The ergodic theoretic entropy was introduced by A. Kolmogorov and
Ya. Sinai and is often called the Kolmogorov-Sinai entropy.(7) We may
interpret the entropy hµ(T ) as a measure of the complexity of the
transformation with respect to the measure µ. We will discuss this
in greater detail later, but the geodesic flow has positive entropy with
respect to the Haar measure on Γ\ SL(2,R) while the horocycle flow
has zero entropy. However, vanishing entropy does not mean that the
dynamics of the transformation or the flow is simple, e.g. the horocycle
flow is mixing with respect to the Haar measure on Γ\ SL(2,R). Also,
one can find quite complicated measures µ on Γ\ SL(2,R) that are
invariant under the geodesic flow and with respect to which the geodesic
flow has zero entropy.

3.5. If µ is a T -invariant but not necessarily ergodic measure, it can be
shown that the entropy of µ is the average of the entropy of its ergodic
components: i.e. if µ has the ergodic decomposition µ =

∫
µξdν(ξ),

then

(3.5a) hµ(T ) =

∫
hµξ(T )dν(ξ).

Therefore, it follows that an invariant measure with positive entropy
has in its ergodic decomposition a positive fraction of ergodic measures
with positive entropy.

3.6. We will see later concrete formulas and estimates for the entropy
of flows on locally homogeneous spaces Γ\G. To obtain these the main
tools is the following notion: A partition P is said to be a generating
partition for T and µ if the σ-algebra

∨∞
n=−∞ T

−nP (i.e. the σ-algebra
generated by the sets {T nP : n ∈ Z, P ∈ P}) separates points; that is,
for µ-almost every x, the atom of x with respect to this σ-algebra is
{x}.(8) The Kolmogorov-Sinai theorem asserts the non-obvious fact
that hµ(T ) = hµ(T,P) whenever P is a generating partition.

(7)Ergodic theoretic entropy is also somewhat confusingly called the metric en-
tropy (even though it has nothing to do with any metric that might be defined on
X!).

(8)Recall that the atom of x with respect to a countably generated σ-algebra A
is the intersection of all B ∈ A containing x and is denoted by [x]A. We will discuss
that and related notions in greater detail in §5.
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3.7. We have already indicated that we will be interested in the entropy
of flows. So we need to define the ergodic theoretic entropy for flows (i.e.
for actions of groups H ∼= R). Suppose H = {at} is a one parameter
group acting on X. Then it can be shown that for s 6= 0, 1

|s|hµ(x 7→
as.x) is independent of s. We define the entropy of µ with respect to
{at}, denoted hµ(a•), to be this common value of 1

|s|hµ(x 7→ as.x).(9)

3.8. Suppose now that (X, d) is a compact metric space, and that
T : X → X is a homeomorphism (the pair (X,T ) is often implic-
itly identified with the generated Z-action and is called a dynamical
system).

3.9. Definition. The Z action on X generated by T is said to be ex-
pansive if there is some δ > 0 so that for every x 6= y ∈ X there is
some n ∈ Z so that d(T nx, T ny) > δ.

If X is expansive then any measurable partition P of X for which
the diameter of every element of the partition is < δ is generating (with
respect to any measure µ) in the sense of §3.6.

3.10. Problem. Let A be a d-by-d integer matrix with determinant 1
or −1. Then A defines a dynamical system on X = Rn/Zn. Charac-
terize when A is expansive with respect to the metric derived from the
Euclidean metric on Rn. Also determine whether the geodesic flow on
Γ\ SL(2,R) is expansive.

3.11. For some applications presented later, an important fact is that
for many dynamical systems (X,T ) the map µ 7→ hµ(T ) defined on
the space of T -invariant probability measures on X is semicontinuous.
This phenomenon is easiest to see when (X,T ) is expansive.

3.12. Proposition. Suppose (X,T ) is expansive, and that µi, µ are T -
invariant probability measures on X with µi → µ in the weak∗ topology.
Then

hµ(T ) ≥ lim
i→∞

hµi(T ).

In less technical terms, for expansive dynamical systems, a “com-
plicated” invariant measure might be approximated by a sequence of
“simple” ones, but not vice versa.

(9)Note that hµ(a•) depends not only on H as a group but on the particular
parametrization at.
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3.13. Proof. Let P be a partition of X such that for each P ∈ P
(i) µ(∂P ) = 0

(ii) P has diameter < δ (δ as in the definition of expansiveness).

Since µ(∂P ) = 0 and µi → µ weak∗, for every P ∈ P we have that
µi(P )→ µ(P ). Then for a fixed N we have (using footnote (6) for the
measure µi) that

1

N
Hµ

(
N−1∨
n=0

T−nP

)
= lim

i→∞

1

N
Hµi

(
N−1∨
n=0

T−nP

)
≥ lim

i→∞
hµi(T,P)

(by (ii))
= lim

i→∞
hµi(T ).

Taking the limit as N →∞ we get

hµ(T ) = hµ(T,P) = lim
N→∞

1

N
Hµ

(
N−1∨
n=0

T−nP

)
≥ lim

i→∞
hµi(T )

as required. �
Note that we have used both (ii) and expansiveness only to establish

(ii′) hν(T ) = hν(T,P) for ν = µ, µ1, . . . .

We could have used the following weaker condition: for every ε, there
is a partition P satisfying (i) and

(ii′′) hν(T ) ≤ hν(T,P) + ε for ν = µ, µ1, . . . .

3.14. We are interested in dynamical systems of the form X = Γ\G
(G a connected Lie group and Γ < G a lattice) and

T : x 7→ g.x = xg−1.

Many such systems(10) will not be expansive, and furthermore in the
most interesting case of Xn = SL(n,Z)\ SL(n,R) the space X is not
compact (which we assumed throughout the above discussion of expan-
siveness).

Even worse, e.g. on X2 = SL(2,Z)\ SL(2,R) one may have a se-
quence of probability measures µi ergodic and invariant under the one

parameter group

{
at =

(
et/2 0
0 e−t/2

)}
with limi→∞ hµi(a•) > 0 con-

verging weak∗ to a measure µ which is not a probability measure and
furthermore has zero entropy(11).

(10)For example, the geodesic flow defined on quotients of G = SL(2,R).
(11)Strictly speaking, we define entropy only for probability measures, so one

needs to rescale µ first.
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However, one has the following “folklore theorem”(12) :

3.15. Proposition. Let G be a connected Lie group, Γ < G a lattice,
and H = {at} a one parameter subgroup of G. Suppose that µi, µ are
H-invariant probability(13) measures on X with µi → µ in the weak∗

topology. Then

hµ(a•) ≥ lim
i→∞

hµi(a•).

ForX compact (and possibly by some clever compactification also for
general X), this follows from deep (and complicated) work of Yomdin,
Newhouse and Buzzi (see e.g. [Buz97] for more details); however Propo-
sition 3.15 can be established quite elementarily. In order to prove this
proposition, one shows that any sufficiently fine finite partition of X
satisfies §3.11(ii′′).

3.16. The following example shows that this semicontinuity does not
hold for a general dynamical system:

3.17. Example. Let S =
{

1, 1
2
, 1

3
, . . . , 0

}
, and X = SZ (equipped with

the usual Tychonoff topology). Let σ : X → X be the shift map defined
by σ(x)n = xn+1 for x = (xn)n ∈ X.

Let µn be the probability measure on X obtained by taking the prod-
uct of the probability measures on S giving equal probability to 0 and
1
n

, and δ0 the probability measure supported on the fixed point 0 =
(. . . , 0, 0, . . . ) of σ. Then µn → δ0 weak∗, hµn(σ) = log 2 but hδ0(σ) =
0.

3.18. Let (X, d) be a compact metric space, T : X → X continuous(14).
Two points x, x′ ∈ X are said to be k, ε-separated if for some 0 ≤ ` < k
we have that d(T `.x, T `.x′) ≥ ε. Let N(X,T, k, ε) denote the maximal
cardinality of a k, ε-separated subset of X.

(12)Which means in particular that there seems to be no good reference for it. A
special case of this proposition is proved in [EKL06, Section 9]. The proof of this
proposition is left as an exercise to the energetic reader.

(13) Here we assume that the weak∗ limit is a probability measure as, unlike
the case of unipotent flows, there is no general fact that rules out various weird
situations. E.g. for the geodesic flow on a noncompact quotient X of SL(2,R) it
is possible to construct a sequence of invariant probability measures whose limit µ
satisfies µ(X) = 1/2.

(14)For X which is only locally compact, one can extend T to a map T̃ on its one-
point compactification X̃ = X ∪ {∞} fixing ∞ and define htop(X,T ) = htop(X̃, T̃ )



12 M. EINSIEDLER AND E. LINDENSTRAUSS

3.19. Definition. The topological entropy of (X,T ) is defined by

H(X,T, ε) = lim
k→∞

logN(X,T, k, ε)

k

htop(X,T ) = lim
ε→0

H(X,T, ε).

The topological entropy of a flow {at} is defined as in §3.7 and de-
noted by htop(X, a•).

3.20. Topological entropy and the ergodic theoretic entropy are related
by the variational principle (see e.g. [Gla03, Theorem 17.6] or [KH95,
Theorem 4.5.3])

3.21. Proposition. Let X be a compact metric space and T : X → X
a homeomorphism.(15) Then

htop(X,T ) = sup
µ
hµ(T )

where the sup runs over all T -invariant probability measures supported
on X.

Note that when µ 7→ hµ(T ) is upper semicontinuous (see §3.11) the
supremum is actually attained by some T -invariant measure on X.
These measures of maximal entropy are often quite natural measures,
e.g. in many cases they are Haar measures on Γ\G.

3.22. To further develop the theory of entropy we need to recall in the
next few sections some more notions from measure theory.

4. Conditional Expectation and Martingale theorems

The material of this and the following section can be found in greater
detail e.g. in [EW07].

4.1. Proposition. Let (X,B, µ) be a probability space, and A ⊂ B a
sub-σ-algebra. Then there exists a continuous linear functional

Eµ(·|A) : L1(X,B, µ)→ L1(X,A, µ)

called the conditional expectation of f given A, such that Eµ(f |A) is
A-measurable for any f ∈ L1(X,B, µ), and we have∫

A

Eµ(f |A)dµ =

∫
A

fdµ for all A ∈ A.

Moreover, this characterizes the function Eµ(f |A) ∈ L1(X,B, µ).

(15)This proposition also easily implies the analogous statement for flows {at}.
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On L2(X,B, µ) the operator Eµ(·|A) is simply the orthogonal projec-
tion to the closed subspace L2(X,A, µ). From there one can extend the
definition by continuity to L1(X,B, µ). Often, when we only consider
one measure we will drop the measure in the subscript.

We will need the following useful properties of the conditional ex-
pectation E(f |A):

4.2. Proposition. (i) E(·|A) is a positive operator of norm 1, and
|E(f |A)| ≤ E(|f ||A) almost everywhere.

(ii) For f ∈ L1(X,B, µ) and g ∈ L∞(X,A, µ), we have E(gf |A) =
gE(f |A) almost everywhere.

(iii) If A′ ⊂ A is a sub-σ-algebra, then

E(E(f |A)|A′) = E(f |A′)
almost everywhere. Moreover, if f ∈ L1(X,A, µ), then E(f |A) =
f almost everywhere.

(iv) If T : X → Y sends the probability measure µ on X to T∗µ =
µ ◦ T−1 = ν on Y , and if C is a sub-σ-algebra of the σ-algebra
BY of measurable sets on Y , then Eµ(f ◦T |T−1C) = Eν(f |C)◦T
for any f ∈ L1(Y,BY , ν).

We only prove the last two claims. Take any A ∈ A′ ⊂ A. By the
characterizing property of conditional expectation, we have∫

A

E(E(f |A)|A′) =

∫
A

E(f |A) =

∫
A

f

Therefore by uniqueness, we have E(E(f |A)|A′) = E(f |A′) almost
everywhere. If f ∈ L1(X,A, µ), then f satisfies the first characteriz-
ing property of E(f |A), while trivially satisfying the second. Again
invoking uniqueness, we have E(f |A) = f almost everywhere.

We consider now the situation of the pushforward T∗µ = ν of the
measure and the pullback T−1C of the σ-algebra. By the definitions we
have for any C ∈ C that∫

T−1C

Eν(f |C) ◦ Tdµ =

∫
C

Eν(f |C)dν =

∫
C

fdν =

∫
T−1C

f ◦ Tdµ,

which implies the claim by the uniqueness properties of conditional
expectation.

4.3. The next two theorems describes how the conditional expectation
behaves with respect to a sequence of σ-algebras, and can be thought
of as continuity properties.

4.4. Theorem (Increasing Martingale Convergence Theorem). Let A1,
A2, . . . be a sequence of σ-algebras, such that Ai ⊂ Aj for all i < j.
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Let A be the smallest σ-algebras containing all of the An (in this case,
we write An ↗ A). Then

E(f |An)→ E(f |A)

almost everywhere and in L1.

4.5. Theorem (Decreasing Martingale Convergence Theorem). Sup-
pose that we have a sequence of σ-algebras Ai ↘ A, i.e. such that
Ai ⊃ Aj for i < j, and A =

⋂
Ai. Then E(f |An)(x) → E(f |A)(x)

almost everywhere and in L1.

4.6. Remark: In many ways, the Decreasing Martingale Convergence
Theorem is similar to the pointwise ergodic theorem. Both theorems
have many similarities in their proof with the pointwise ergodic theorem
and other theorems; the proofs consists of two steps, convergence in L1,
and a maximum inequality to deduce pointwise convergence.

5. Countably generated σ-algebras and Conditional
measures

Note that the algebra generated by a countable set of subsets of X
is countable, but that in general the same is not true for the σ-algebra
generated by a countable set of subsets of X. E.g. the Borel σ-algebra
of any space we consider is countably generated in the following sense.

5.1. Definition. A σ-algebra A in a space X is countably generated
if there is a countable set (or equivalently algebra) A0 of subsets of X
such that the smallest σ-algebra σ(A0) that contains A0 is precisely
A = σ(A0).

5.2. One nice feature of countably generated σ-algebras is that we can
study the atoms of the algebra. IfA is generated by a countable algebra
A0, then we define the A-atom of a point x to be

[x]A :=
⋂

x∈A∈A0

A =
⋂

x∈A∈A

A.

The equality follows since A0 is a generating algebra for the σ-algebra
A. In particular, it shows that the atom [x]A does not depend on a
choice of the generating algebra. Notice that by countability of A0 we
have [x]A ∈ A. In other words, [x]A is the smallest set of A containing
x. Hence the terminology — the atom of x cannot be broken up into
smaller sets within the σ-algebra A.

Note, in particular, that [x]A could consist of the singleton x; in fact,
this is the case for all atoms of the Borel σ-algebra on, say, R. The
notion of atoms is convenient when we want to consider conditional
measures for smaller σ-algebras.
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5.3. Caution: A sub σ-algebra of a countably generated σ-algebra
need not be countably generated!

5.4. Lemma. Let (X,B, µ, T ) be an invertible ergodic probability pre-
serving system such that individual points have zero measure. Then
the σ-algebra E of T–invariant sets (i.e., sets B ∈ B such that B =
T−1B = TB) is not countably generated.

5.5. Proof: Since T is ergodic, any set in E has measure 0 or 1, and
in particular, this holds for any generating set. Suppose that E is gen-
erated by a countable collection {E1, E2, . . .}, each Ei having measure
0 or 1. Taking the intersection of all generators Ei of measure one and
the complement X \Ei of those of measure zero, we obtain an E-atom
[x]E of measure 1. Since the orbit of x is invariant under T , we have
that [x]E must be the orbit of x. Since the orbit is at most countable,
this is a contradiction. �

5.6. We will now restrict ourselves to the case of X a locally com-
pact, second-countable metric space, B will be the Borel σ-algebra on
X. A space and σ-algebra of this form will be referred as a stan-
dard Borel space, and we will always take µ to be a Borel measure.
We note that for such X, the Borel σ-algebra is countably generated
by open neighborhoods of points in a countable dense subset of X.
When working with a Borel measure on X, we may replace X by the
one-point-compactification of X, extend the measure trivially to the
compactification, and assume without loss of generality that X is com-
pact.

5.7. Definition. Let A, A′ be sub-σ-algebras on (X,B, µ). We say that
A is equivalent to A′ modulo µ (denoted A .

=µ A′) if for every A ∈ A
there exists A′ ∈ A′ such that µ(A4 A′) = 0, and vice versa.

5.8. Proposition. Let (X,B) be a standard Borel space, and let µ be a
Borel probability measure on X. Then for every sub-σ-algebra A ⊂ B,
there exists Ã ⊂ A such that Ã is countably generated, and Ã .

=µ A.

Roughly speaking the proposition follows since the space L1(X,A, µ)
is separable, which in return is true because it is as a subspace of
L1(X,B, µ). One can define Ã by a countable collection of sets Ai ∈ A
for which the characteristic functions χAi are dense in the set of all
characteristic functions χA with A ∈ A.

This Proposition conveniently allows us to ignore issues of countable
generation, as long as we do so with respect to a measure (i.e., up to
null sets) on a nice space.
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We now wish to prove the existence and fundamental properties of
conditional measures:

5.9. Theorem. Let (X,B, µ) be a Lebesgue probability space, and A ⊂
B a sub-σ-algebra. Then there exists a subset X ′ ⊂ X of full measure
(i.e., µ(X\X ′) = 0), belonging to A, and measures µAx for x ∈ X ′ such
that:

(i) For every f ∈ L1(X,B, µ) we have E(f |A)(x) =
∫
f(y)dµAx (y)

for almost every x. In particular, the right-hand side is A-
measurable as a function of x.

(ii) If A .
=µ A′ are equivalent σ-algebras modulo µ, then we have

µAx = µA
′

x for almost every x.
(iii) If A is countably generated, then µAx ([x]A) = 1 for every x ∈

X ′, and [x]A = [y]A ⇒ µAx = µAy for x, y ∈ X ′.
(iv) The set X ′ and the map x

τ7→ µAx are A-measurable on X ′; i.e.,
if U is open in P(X), the space of probability measures on X
equipped with the weak∗ topology, then τ−1(U) ∈ A|X′.

Moreover, the family of conditional measures µAx is almost everywhere
uniquely determined by its relationship to the conditional expectation
described above.

5.10. Caution: In general we will only prove facts concerning the
conditional measures µAx for almost every x ∈ X. In fact, we even
restricted ourselves to a set X ′ of full measure in the existence of µAx .
However, even the set X ′ is by no means canonical. We also must
understand the last claim regarding the uniqueness in that way; if we
have two families of conditional measure defined on sets of full measure
X ′ and X ′′, then one can find a subset of X ′∩X ′′ of full measure where
they agree.

5.11. Comments: If N ⊂ X is a null set, it is clear that µAx (N) = 0
for a.e. x. (Use Theorem 5.9.(i) and Proposition 4.1 to check this.)
However, we cannot expect more as, for a given x, the set [x]A is often
a null set.

If B ⊂ X is measurable, then

(5.11a) µ
(
{x ∈ B : µAx (B) = 0}

)
= 0.

To see this define A = {x : µAx (B) = 0} ∈ A and use again Theo-
rem 5.9.(i) and Proposition 4.1 to get

µ(A ∩B) =

∫
A

χBdµ =

∫
A

µAx (B)dµ(x) = 0.
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5.12. Proof: Since we are working in a standard Borel space, we may
assume that X is a compact, metric space. Hence, we may choose a
countable set of continuous functions spanning a dense Q-vector space
{f0 ≡ 1, f1, . . .} ⊂ C(X). Set g0 = f0 ≡ 1, and for each fi with i ≥ 1,
pick(16) gi = E(fi|A) ∈ L1(X,A, µ). Taking the union of countably
many null sets there exists a null set N for the measure µ such that for
all α, β ∈ Q and all i, j, k:

• If α ≤ fi ≤ β, then α ≤ gi(x) ≤ β for all x /∈ N
• If αfi + βfj = fk, then αgi(x) + βgj(x) = gk(x) for x /∈ N

Now for all x /∈ N , we have a continuous linear functional Lx : fi 7→
gi(x) from C(X)→ R of norm ||Lx|| ≤ 1. By the Riesz Representation
Theorem, this yields a measure µAx on C(X). This measure is charac-
terized by E(f |A)(x) = Lx(f) =

∫
f(y)dµAx (y) for all f ∈ C(X). Using

monotone convergence this can be extended to other class of functions:
first to characteristic functions of compact and of open sets, then to
characteristic functions of all Borel sets and finally to integrable func-
tions, i.e. we have part (i) of the Theorem. As already remarked, this
implies that x 7→

∫
f(y)dµAx (y) is an A-measurable function for x /∈ N .

This implies part (iv).
Now suppose we have two equivalent σ-algebras A and A′ modulo

µ, and take their common refinement Ã. Then for any f ∈ C(X), we
see that both g = E(f |A) and g′ = E(f |A′) satisfy the characterizing
properties of E(f |Ã), and so they are equal almost everywhere. Again
taking a countable union of null sets, corresponding to a countable
dense subset of C(X), we see that µAx = µA

′
x almost everywhere, giving

part (ii).
For part (iii), suppose that A = σ({A1, . . .}) is countably generated.

For every i, we have that 1Ai(x) = E(1Ai |A)(x) = µAx (Ai) almost
everywhere. Hence there exists a set N of µ-measure 0, given by the
union of the these null sets for each i, such that µAx (Ai) = 1 for all i
and every x ∈ Ai\N . Therefore, since [x]A is the countable intersection
of Ai’s containing x, we have µAx ([x]A) = 1 for all x /∈ N . Finally, since
x → µAx is A-measurable, we have that [x]A = [y]A ⇒ µAx = µAy
whenever both are defined (i.e., x, y ∈ X ′). �

5.13. Another construction An alternate construction for the con-
ditional measure for a countably generated σ-algebra is to start by
finding a sequence of finite partitions An ↗ A. For finite partitions,

(16)Here the word “pick” refers to the choice of a representative of the equivalence
class of integrable measurable functions.
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the conditional measures are particularly simple; we have

µAnx =
µ|[x]An

µ([x]An)

Now, for any f ∈ C(X), the Increasing Martingale Convergence Theo-
rem tells us that for any continuous f and for almost every x, we have∫
fdµAnx = E(f |An)(x) → E(f |A)(x). Again by choosing a countable

dense subset of C(X) we show a.e. that µAnx converge in the weak∗

topology to a measure µAx as in (i) of the theorem.

5.14. The ergodic decomposition revisited. One application for
the notion of conditional measures is that it can be used to prove the
existence of the ergodic decomposition. In fact, for any H-invariant
measure µ, we have the ergodic decomposition

µ =

∫
µExdµ(x),

where E is (alternatively a countably generated σ-algebra equivalent
to) the σ-algebra of all H-invariant sets, and µEx is the conditional
measure (on the E-atom of x). This is a somewhat more intrinsic way
to write the ergodic decomposition as one does not have to introduce
an auxiliary probability space.

5.15. Definition. Two σ-algebras A and C are countably equivalent if
any atom of A can be covered by at most countably many atoms of C,
and vice versa.

5.16. Remark: This is an equivalence relation. Symmetry is part
of the definition,reflexivity is obvious, and transitivity can be readily
checked.

5.17. Proposition. Suppose A and A′ are countably equivalent sub-σ-
algebras. Then for µ-a.e. x, we have

µAx |[x]A∨A′
∝ µA

′

x |[x]A∨A′

Or, put another way,

µA∨A
′

x =
µAx |[x]A∨A′

µAx ([x]A∨A′)
=

µA
′

x |[x]A∨A′

µA′x ([x]A∨A′)

Here and in the following the notation µ ∝ ν for two measures on a
space X denotes proportionality, i.e. that there exists some c > 0 with
µ = cν.
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5.18. Proof: As a first step, we observe that A is countably equivalent
to A′ if and only if A is countably equivalent to the σ-algebra generated
by A and A′. Hence we may assume that A ⊂ A′, and the statement
of the Proposition reduces to

µA
′

x =
µAx |[x]A′

µAx ([x]A′)

The next step is to verify that the denominator on the right-hand
side is actually A′-measurable (as a function of x). As A′ is count-
ably generated, we may take a sequence A′n ↗ A′ of finite alge-
bras, and consider the decreasing chain of sets [x]A′n . Notice that
E(1[x]A′n

|A)(x) = µAx ([x]A′n) is a perfectly good A ∨ A′n-measurable

function. In the limit as n → ∞, the set [x]A′n ↘ [x]A′ =
⋂
n[x]A′n as

(A′n ∨ A)↗ A′, and so x 7→ µAx ([x]A′) is A′-measurable.
We still also have to verify that this denominator is non-zero (almost

everywhere). Consider the set Y = {x : µAx ([x]A′) = 0}. We must show
that µ(Y ) = 0 when A and A′ are countably equivalent. The previous
step guarantees that Y is measurable, and we can integrate fibre by
fibre: µ(Y ) =

∫
µAx (Y )dµ(x). But [x]A is a finite or countable union⋃

i∈I [xi]A′ of A′-atoms, and so

µAx (Y ) =
∑
i∈I

µAx ([xi]A′ ∩ Y )

and so it suffices to show that each term on the right-hand side is 0. If
[xi]A′∩Y = ∅, then there is nothing to show. On the other hand, if there
exists some y ∈ [xi]A′ ∩Y , then by definition of Y we have µAy ([xi]A′) =
0. But [xi]A′ ⊂ [x]A, and so y ∈ [x]A, which by Theorem 5.9 (and the
subsequent Remark) implies that µAx ([xi]A′) = µAy ([xi]A′) = 0.

We now know that
µAx |[x]A′
µAx ([x]A′ )

makes sense. We easily verify that it

satisfies the characterizing properties of µA
′

x , and we are done. �

6. Leaf-wise Measures, the construction

We will need later (e.g. in the discussion of entropy) another gen-
eralization of conditional measures that allow us to discuss “the re-
strictions of the measure” to the orbits of a group action just like the
conditional measures describe “the restriction of the measure” to the
atoms. However, as we have seen in Lemma 5.4 one cannot expect to
have a σ-algebra whose atoms are precisely the orbits.

As we will see these restricted measures for orbits, which we will
call leaf-wise measures can be constructed by patching together con-
ditional measures for various σ-algebras whose atoms are pieces of
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orbits. Such a construction (with little detail provided) is used by
Katok and Spatzier in [KS96]; we follow here the general framework
outlined in [Lin06], with some simplifications and improvements (e.g.
Theorem 6.29 which in this generality seems to be new).

6.1. A few assumptions. Let T be a locally compact, second count-
able group. We assume that T is equipped with a right-invariant met-
ric such that any ball of finite radius has compact closure. We write
BT
r (t0) = {t ∈ T : d(t, t0) < r} for the open ball of radius r around

t0 ∈ T , and write BT
r = BT

r (e) for the ball around the identity e ∈ T .
Also let X be a locally compact, second countable metric space. We
assume that T acts continuously on X, i.e. that there is a continuous
map (t, x) 7→ t.x ∈ X defined on T ×X → X satisfying s.(t.x) = (st).x
and e.x = x for all s, t ∈ T and x ∈ X. We take the T -action to be
locally free in the following uniform way; for every compact K ⊂ X
there is some η > 0 such that t ∈ BT

η , x ∈ K, and t.x = x im-
plies t = e. In particular, the identity element e ∈ T is isolated in
StabT (x) = {t ∈ T : t.x = x}, so that the latter becomes a discrete
group, for every x ∈ X— this property allows a nice foliation of X into
T -orbits. µ will be a Radon (or locally finite) measure on X, meaning
that µ(K) <∞ for any compact K ⊂ X.

6.2. Definition. Let(17) x ∈ X. A set A ⊂ T.x is an open T -plaque if
for every a ∈ A the set {t : t.a ∈ A} is open and bounded.

Note that by the above assumptions on T a set is bounded iff its
closure is compact.

6.3. Theorem (Provisional(18)!). In addition to the above assume also
that StabT (x) = {e} for µ-a.e. x ∈ X, i.e. t 7→ t.x is injective for a.e.
x. There is a system {µTx }x∈X′ of Radon measures on T which we will
call the leaf-wise measures which are determined uniquely outside a set
of measure zero by the following properties:

(i) The set X ′ ⊂ X is a full measure subset in the sense that
µ(X\X ′) = 0.

(ii) For every f ∈ Cc(T ), the map x 7→
∫
fdµTx is Borel measur-

able.
(iii) For every x ∈ X ′ and g ∈ T , we have µTx ∝ (µTg.x)g, where the

right-hand side is the push-forward of µTg.x by the right trans-
lation (on T ) h 7→ hg.

(17)Below we will work mostly with points x for which t ∈ T 7→ t.x is injective.
(18)Ideally, we would like to “normalize” by looking at equivalence classes of

proportional Radon measures, but this will require further work, see Theorem 6.29.
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(iv) Suppose Z ⊂ X and that there exists a countably generated
σ-ring A of subsets of Z such that for any x ∈ Z, the set [x]A
is an open T -plaque; i.e., Ux,A := {t : t.x ∈ [x]A} is open and
bounded (equivalently, [x]A = Ux,A.x). Then for µ-a.e. x ∈ Z,

(µ|Z)Ax ∝
(
µTx |Ux,A

)
.x

where the latter is the push-forward under the map t ∈ Ux,A 7→
t.x ∈ [x]A.

(v) The identity element e ∈ T is in the support of µTx for µ-a.e.
x.

6.4. Remarks:

(i) The properties of leaf-wise measures are analogous to those
of the conditional measures described in Theorem 5.9. With
leaf-wise measures, we demand that the “atoms” correspond
to entire (non-compact!) T -orbits, and herein lie most of the
complications. On the other hand, these orbits inherit the
group structure from T , and so the conditional measures µTx
are actually measures on the group T , which has structure that
we can exploit.

(ii) Property 6.3.(iii) is the analogue of Property 5.9.(iii). Ideally,
we would like to say that, since x and g.x are in the same T -
orbit, their leaf-wise measures should be the same. However,
we prefer to work with measure on T so we move the measures
from T.x to T via t.x 7→ t (which implicitly makes use of the
initial point x). Therefore, points on the orbit correspond to
different group elements depending on the base point; hence
we need to employ the right translation in order to have our
measures (defined as measures on the group) agree at points
of the orbit. Another difficulty is that the µTx need not be
probability measures, or even finite measures. There being
no good way to “normalize” them, we must make do with
proportionality instead of equality.

(iii) Property 6.3.(iv) is the most restrictive; this is the heart of
the definition. It essentially says that one can restrict µTx to
Ux,A and get a finite measure, which looks just like (up to
normalization) a good old conditional measure µAx derived from
A. So µTx is in essence a global “patching” together of local
conditional measures (up to proportionality issues).

6.5. Examples:
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6.5.1. Let X = T2, on which T = R acts by t.x = x + t~v mod Z2,
for some irrational vector ~v. If µ = λ is the Lebesgue measure on
T2, then we can take µTx = λR to be Lebesgue measure on R. Note
that, even though the space X is quite nice (eg., compact), none of the
leaf-wise measures are finite. Also, notice that the naive approach to
constructing these measures would be to look at conditional measures
for the sub-σ-algebra A of T -invariant Borel sets. Unfortunately, this
σ-algebra is not countably generated, and is equivalent (see Lemma 5.4
and Proposition 5.8) to the trivial σ-algebra! This is a situation where
passing to an equivalent σ-algebra to avoid uncountable generation
actually destroys the information we want (T -orbits have measure 0).
Instead, we define the leaf-wise measures on small pieces of T -orbits
and then glue them together.
6.5.2. Let X = (Qp × R)/Z[1

p
] ∼= (Zp × R)/Z where both Z[1

p
] and

Z are considered as subgroups via the canonical diagonal embedding.
We let T = Qp act on X by translations. To describe an interesting
example of leaf-wise measures, we (measurably) identify X with the
space of 2-sided sequences {x(i)}∞i=−∞ in base p (up to countably many
nuisances) as follows: Note that T = R/Z is the quotient of X by the
subgroup Zp and that we may use p-nary digit expansion in [0, 1) ∼= T.
This way a point of x determines a one-sided sequence of digits x(i)
for i = 1, 2, . . .. Since multiplication by p is invertible on X, we may
recover all digits x(i) for i = . . . ,−1, 0, 1, . . . by applying the above
to the points p−nx. (The reader should verify that this procedure is
well-defined at all but countably many points and that the assigned
sequence of digits uniquely defines the initial point x ∈ X.)

Under this isomorphism of X with the space of sequences the action
of translation by Zp corresponds to changing (in a particular manner)
the coordinates of the sequence corresponding to i ≤ 0 such that the
orbit under Zp consists of all sequences that agree with the original
sequence on all positive coordinates. For this recall that Zp is isomor-
phic to {0, . . . , p − 1}N0 . More generally, the orbit of a point under
p−nZp corresponds to all sequences that have the same coordinates as
the original sequence for i > n. Hence the Qp-orbit corresponds to all
sequences that have the same digits as the original sequences for all
i > n for some n.

We now define a measure and discuss the leaf-wise measures for the
action by Qp-action. Let µ an i.i.d. (but biased) Bernoulli measure – in
other words we identify X again with the space of all 2-sided sequences,
i.e. with {0, 1, . . . , p−1}Z, and define µ as the infinite product measure
using some fixed probability vector v = (v0, . . . , vp−1). We note that the
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map α : x 7→ px defined by multiplication with p (which corresponds
to shifting the sequences) preserves the measure µ and acts ergodically
w.r.t. µ (in fact as one can check directly it is mixing w.r.t. µ which as
mentioned before implies ergodicity). Note also that α preserves the
foliation into Qp-orbits and in fact contracts them, i.e. α(x + Qp) =
α(x)+Qp and α(x+t) = α(x)+pt for t ∈ Qp and pt is p-adically smaller
than t. Finally note that the Qp-action does not preserve the measure
µ unless v = (1

p
, . . . , 1

p
). In this case there is very little difference to

the above example on T2 – the leaf-wise measures end up being Haar
measures on Qp. So let us assume the almost opposite extreme: suppose
v0, . . . , vp−1 ∈ (0, 1) and no two components of v are equal.

Let A be the countably generated σ-algebra (contained in the Borel
σ-algebra of X) whose atoms are the Zp-orbits; it is generated by the
cylinder sets of the form {x : x(i) = εi for 1 ≤ i ≤ N} for any N > 0
and all possible finite sequences (ε1, . . . , εN) ∈ {0, . . . , p−1}N . Equiva-
lently, the A-atoms are all sequences that agree with a given one on all
coordinates for i ≥ 1 so that the atom has the structure of a one-sided
shift space. By independence of the coordinates (w.r.t. µ) the condi-
tional measures µAx are all Bernoulli i.i.d. measures according to the
original probability vector v of µ; in other words, a random element
of [x]A according to µAx is a sequence {y(i)} such that y(i) = x(i) for
i ≥ 1, and the digits y(i) for −∞ < i ≤ 0 are picked independently at
random according to the probability vector defining µ.

What does µTx look like (where T = Qp)? For this notice that Zp is
open in Qp, so that the atoms for A are open T -plaques. Therefore, if
we restrict µTx to the subgroup U = Zp of T = Qp, we should get by
Theorem 6.3.(iv) that

x+ µTx |U ∝ µAx .

To understand this better, let’s examine what a random point of 1
µTx (U)

µTx |U
looks like. Of course, an element belonging to Zp corresponds to a se-
quence {t(i)}0

i=−∞; how are the digits t(i) distributed? Recall that if
we translate by x, the resulting digits (t+ x)(i) (with addition formed
in Zp where the carry goes to the left) should be randomly selected
according to the original probability vector. Hence the probability of
t(0) = ε with respect to the normalized µTx |U becomes the original
probability vε+x(0) of selecting the digit ε+x(0). By our assumption on
the vector v this shift in the distribution determines x(0). However, by
using σ-algebras whose atoms are orbits of pnZp for all n ∈ Z we con-
clude that µTx determines all coordinates of x and hence x! (Of course
had we used the theorem to construct the leaf-wise measures instead
of directly finding it by using the structure of the given measure then
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the leaf-wise measure would only be defined on a set of full measure
and the above conclusion would only hold on a set of full measure.)

This example shows that the seemingly mild assumption (which we
will see satisfied frequently later) that there are different points with
the same leaf-wise measures (after moving the measures to T as we
did) is a rather special property of the underlying measure µ.
6.5.3. The final example is really more than an example – it is the
reason we are developing the theory of leaf-wise measures and we will
return to it in great detail (and greater generality) in the following
sections. Let G be a Lie group, let T be a closed subgroup, and let
Γ be a discrete subgroup of G. Then T acts by right translation on
X = Γ\G, i.e. for t ∈ T and x = Γg ∈ X we may define t.x = xt−1. For
a probability measure µ on X we have therefore a system of leaf-wise
measures µTx defined for a.e. x ∈ X (provided the injectivity require-
ment is satisfied a.e.) which as we will see describes the properties of
the measure along the direction of T . Moreover, if right translation by
some a ∈ G preserves µ, then with the correctly chosen subgroup T
(namely the horospherical subgroups defined later) the leaf-wise mea-
sures for T will allow us to describe entropy of a w.r.t. µ.

6.6. Definition. Let E ⊂ X be measurable, and let r > 0. We say
C ⊂ X is an r-cross-section for E if

(i) C is Borel measurable,
(ii) |BT

r+1.x ∩ C| = |BT
1 .x ∩ C| = 1 for all x ∈ E ∪ C,

(iii) t ∈ BT
r+1 7→ t.x is injective for all x ∈ C,

(iv) BT
r+1.x ∩BT

r+1.x
′ = ∅ if x 6= x′ ∈ C, and

(v) the restriction of the action map (t, x) 7→ t.x to BT
r+1 × C →

BT
r+1.C ⊇ BT

r .E is a Borel isomorphism.

The second property describes the heart of the definition; the piece
BT
r+1.x of the T -orbit through x ∈ E intersects C exactly once which

justifies the term cross-section. Also note that by the second property
there is for every x ∈ E some t ∈ BT

1 with t.x = x′ ∈ C. Hence,
by right invariance of the metric on T we have BT

r t
−1 ⊂ BT

r+1 and so
the inclusion BT

r+1.C ⊇ BT
r .E stated in the final property follows from

the second property. Moreover, it is clear that the restriction of the
continuous action is measurable, so the only requirement in the final
property is injectivity of the map and the Borel measurability of the
inverse. However, injectivity of this map is precisely the assertion in
property (iii) and (iv). Finally, the measurability of the image and
the inverse map are guaranteed by a general fact, namely ??, saying
that the image and the inverse of an injective Borel map are again
Borel measurable. The reader who is unfamiliar with this theorem
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may construct (replacing the following general proposition) concrete
cross-sections of sufficiently small balls in the important example in
§6.5.3 using a transverse subspace to the Lie algebra of T inside the
Lie algebra of G. This way one may obtain a compact cross-section
and this implies measurability of the inverse map rather directly as the
restriction of a continuous map to a compact set has compact image
and a continuous inverse.

6.7. Proposition. Let T act continuously on X satisfying the assump-
tions discussed in the beginning of this section. Assume x0 ∈ X is such

that t ∈ BT
r+1 7→ t.x0 is injective for some r > 1. Then there exists some

δ > 0 such that for all x ∈ E = Bδ(x0) the map t ∈ BT
r+1 7→ t.x is also

injective and such that t.x = t′.x′ for some x, x′ ∈ E and t, t′ ∈ BT
r+1

implies t′t−1, t−1t′ ∈ BT
1 and so x′ ∈ BT

1 .x. Moreover, there exists some
C ⊂ E which is an r-cross-section for E.

6.8. Proof, Construction of E: If for every δ there exists some
xδ ∈ Bδ(x0) for which the restricted action t ∈ BT

r+1 7→ t.xδ fails to be
injective then there are tδ 6= t′δ ∈ BT

r+1 with tδ.xδ = t′δ.xδ. Choosing

converging subsequences of tδ, t
′
δ we get t, t′ ∈ BT

r+1 with t.x0 = t′.x0.
Moreover, we would have t 6= t′ as otherwise we would get a contradic-
tion to the uniform local freeness of the action in §6.1 for the compact

set BT
r+1.Bε(x0) (where ε is small enough so that Bε(x0) is compact).

Similarly, if for every δ > 0 there are xδ, x
′
δ ∈ Bδ(x0) and tδ, t

′
δ ∈ BT

r+1

so that tδ.xδ = t′δ.x
′
δ then in the limit we would have t, t′ ∈ BT

r+1 with
t.x0 = t′.x0. By assumption this implies t = t′, which shows that for
sufficiently small δ, we must have t′δt

−1
δ , t−1

δ t′δ ∈ BT
1 as claimed.

We now fix some δ > 0 with the above properties and let E =
Bδ/2(x0). Below we will construct a Borel subset C ⊂ E such that
|BT

1 .x ∩C| = 1 for all x ∈ E. This implies that C is an r-cross-section
by the above properties: t ∈ BT

r+1 and x ∈ E with t.x ∈ C ⊂ E
implies t ∈ BT

1 and so property (ii) of the definition holds. Injectivity
of t ∈ BT

r+1 7→ t.x for all x ∈ E we have already checked. For the
property (iv), note that x, x′ ∈ C and t, t′ ∈ BT

r+1 with t.x = t′.x
implies x = t−1t′.x′ ∈ BT

1 .x
′ by the construction of E and so x = x′ by

the assumed property of C. As explained after the definition the last
property follows from the first four. Hence it remains to find a Borel
subset C ⊂ E with |BT

1 .x ∩ C| = 1 for all x ∈ E.

6.9. Outline of construction of C: We will construct C by an in-
ductive procedure where at every stage we define a set Cn+1 ⊂ Cn such
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that for every x ∈ E the set {t ∈ BT
1 : t.x ∈ Cn} is nonempty, compact,

and the diameter of this set decreases to 0 as n→∞.

6.10. Construction of Pw: For the construction of Cn we first define
for every n a partition of E which refines all prior partitions: For
n = 1 we choose a finite cover of E by closed balls of radius(19) 1,
choose some order of these balls, and define P1 to be the first ball in
this cover intersected with E, P2 the second ball intersected with E
minus P1, and more generally if P1, . . . , Pi have been already defined
then Pi+1 is the (i+1)-th ball intersected with E and with P1∪· · ·∪Pi
removed from it.

For n = 2 we cover P1 by finitely many closed balls of radius 1/2
and construct with the same algorithm as above a finite partition of P1

into sets P1,1, . . . , P1,i1 of diameter less than 1/2. We repeat this also
for P2, . . ..

Continuing the construction we assume that we already defined the
sets Pw where w is a word of length |w| ≤ n (i.e. w is a list of m natural
numbers andm is called the length |w|) with the obvious compatibilities
arising from the construction: for any w of length |w| = m ≤ n− 1 the
sets Pw,1, Pw,2, . . . (there are only finitely many) all have diameter less
than 1/m and form a partition of Pw.

Roughly speaking, we will use these partitions to make decisions in
a selection process: Given some x ∈ E we want to make sure that
there is one and only one element of the desired set C that belongs to
BT

1 .x. Assuming this is not the case for C = E (which can only happen
for discrete groups T ) we wish to remove, in some inductive manner
obtaining the sets Cn along the way, some parts of E so as to make
this true for the limiting object C =

⋂
nCn. Removing too much at

once may be fatal as we may come to the situation where BT
1 .x ∩ Cn

is empty for some x ∈ E. The partition elements Pw give us a way of
ordering the elements of the space which we will use below.

6.11. Definition of Qw and Cn: From the sequence of partitions
defined by {Pw : w is a word of length n} we now define subsets Qw ⊂
Pw to define the Cn: We let Q1 = P1, and let Q2 = P2 \ BT

1 .P1, i.e.
we remove from P2 all points that already have on their BT

1 -orbit a
point in P1. More generally, we define Qi = Pi \

(
BT

1 .(P1 ∪ · · · ∪Pi−1)
)

for all i and define C1 =
⋃
iQi (which as before is just a finite union).

We now prove the claim from §6.9 for n = 1 that for every x ∈ E the
set {t ∈ BT

1 : t.x ∈ C1} is nonempty and compact. Here we will use
without explicitly mentioning, as we will also do below, the already

(19)We ignore, for simplicity of notation, the likely possibility that δ < 1.
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established fact that t ∈ BT
2 and x, t.x ∈ E implies t ∈ BT

1 (note
that by assumption r > 1). If i is chosen minimally with BT

1 .x ∩ Pi
nonempty, then

{t ∈ BT
1 : t.x ∈ C1} = {t ∈ BT

1 : t.x ∈ Qi} =

{t ∈ BT
1 : t.x ∈ Pi} = {t ∈ BT

1 : t.x ∈ P1 ∪ · · · ∪ Pi}.
Now note that P1 ∪ · · · ∪ Pi is closed by the above construction (we
used closed balls to cover E and P1∪· · ·Pi equals the union of the first
i balls), and so the claim follows for n = 1 and any x ∈ E.

Proceeding to the general case for n, we assume Qw ⊂ Pw has been
defined for |w| = m < n with the following properties: we have Qw,i ⊂
Qw for i = 1, 2, . . . and for all |w| < n− 1, the sets BT

1 .Qw and BT
1 .Qw′

are disjoint whenever |w| = |w′| < n and w 6= w′, and the claim holds
for Cm =

⋃
{Qw : |w| = m} and all m < n. Now fix some word w of

length n−1, we define Qw,1 = Qw∩Pw,1, Qw,2 = Qw∩Pw,2 \ (BT
1 .Qw,1),

and for a general i we define inductively

Qw,i = Qw ∩ Pw,i \
(
BT

1 .(Qw,1 ∪ · · · ∪Qw,i−1)
)
.

By the inductive assumption we know that for a given x ∈ E there is
some w of length n− 1 such that the set

(6.11a) {t ∈ BT
1 : t.x ∈ Cn−1} = {t ∈ BT

1 : t.x ∈ Qw}
is closed and nonempty. Choose i minimally such that BT

1 .x∩Qw,i (or
equivalently BT

1 .x ∩Qw ∩ Pw,i) is nonempty, then as before

(6.11b) {t ∈ BT
1 : t.x ∈ Cn} = {t ∈ BT

1 : t.x ∈ Qw,i} ={
t ∈ BT

1 : t.x ∈ Qw ∩ (Pw,1 ∪ · · · ∪ Pw,i)
}

is nonempty. Now recall that by construction Pw,1 ∪ · · · ∪ Pw,i is rela-
tively closed in Pw, so that the set in (6.11b) is relatively closed in the
set in (6.11a). The latter is closed by assumption which concludes the
induction that indeed for every n the set {t ∈ BT

1 : t.x ∈ Cn} is closed
and nonempty.

6.12. Conclusion: The above shows that Cn =
⋃
wQw (where the

union is over all words w of length n) satisfies the claim that {t ∈
BT

1 : t.x ∈ Cn} is compact and non-empty for every x ∈ E. Therefore,
C =

⋂
nCn ⊂ E satisfies that C ∩BT

1 .x 6= ∅ for every x ∈ E. Suppose
now t1.x, t2.x ∈ C for some x ∈ E and t1, t2 ∈ BT

1 . Fix some n ≥ 1.
Recall that {t ∈ BT

1 : t.x ∈ Cn} = {t ∈ BT
1 : t.x ∈ Qw} for some Qw

corresponding to a word w of length n. As the diameter of Qw ⊂ Pw
is less than 1/n we have d(t1.x, t2.x) < 1/n. This holds for every n, so
that t1.x = t2.x and so t1 = t2 as required. �
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6.13. σ-algebras. Proposition 6.7 allows us to construct σ-rings as
they appear in Theorem 6.3(iv) in abundance. In fact we have found
closed balls E and r-cross-sections C ⊂ E such that BT

r+1 × C is mea-
surably isomorphic to Y = BT

r+1.C (with respect to the natural map)
so that we may take the countably generated σ-algebra on BT

r+1 × C
whose atoms are of the form BT

r+1×{z} for z ∈ C and transport it to Y
via the isomorphism. As we will work very frequently with σ-algebras
of that type we introduce a name for them.

6.14. Definition. Let r > 1. Given two measurable subsets E ⊂ Y of
X and a countably generated σ-algebra A of subsets of Y , we say that
(Y,A) is an (r, T )-flower with base E, iff:

(i) For every x ∈ E, we have that [x]A = Ux.x is an open T -plaque
such that BT

r ⊂ Ux ⊂ BT
r+2.

(ii) Every y ∈ Y is equivalent to some x ∈ E, i.e. the atom [y]A =
[x]A is always an open T -plaque intersecting E nontrivially.

We note that often the cross-section C will be a nullset but that the
center E will not be a null set, hence it is important to introduce it —
it may be thought of as a slightly thickened version of the cross-section
so that we still know the rough shape of the atoms as required in (i).

6.15. Corollary. For every n there exists a countable list of (n, T )-
flowers such that the union of their bases is a set of full measure. In
other words, there exists a countable collection of σ-rings Ak of Borel
subsets of Borel sets Yk for k = 1, 2, . . . such that all of the Ak-atoms
are open T -plaques for all k, and such that for a.e. x ∈ X and all n ≥ 1
there exists a k such that the Ak-atom [x]Ak contains BT

n .x.

6.16. Proof. By our standing assumption a.e. x0, say any x0 ∈ X0,
satisfies that t ∈ T 7→ t.x0 is injective. Fix some n. Therefore, by
Prop. 6.7 applied to r = n there exists an uncountable collection of
closures Ex of balls for x ∈ X0 such that x is contained in the interior
E◦x and there is an n-cross-section Cx ⊂ Ex for x ∈ X0. Since X is
second countable, there is a countable collection of these sets Cm ⊂ Em
for which the union of the interiors is the same as the union of interiors
of all of them.

As Cm is an n-cross-section for Em, we have that BT
n+1.Cm ⊃ BT

n .Em
and that BT

n+1 × Cm is measurably isomorphic to Ym = BT
n+1.Cm. We

now define Am to be the σ-algebra of subsets of Ym which corresponds
under the isomorphism to BT

n+1×BCm . It is clear that Am is an (n, T )-
flower with base Em. Using this construction for all n, we get the
countable list of (n, T )-flowers as required. �



DIAGONAL ACTIONS ON LOCALLY HOMOGENEOUS SPACES 29

It is natural to ask how the various σ-rings in the above corollary fit
together, where the next lemma gives the crucial property.

6.17. Lemma. Let Y1, Y2 be Borel subsets of X, and A1,A2 be countably
generated σ-algebras of Y1, Y2 respectively, such that atoms of each Ai
are open T -plaques. Then the σ-algebras C1 := A1|Y1∩Y2 and C2 :=
A2|Y1∩Y2 are countably equivalent.

6.18. Proof: Let x ∈ Y1 ∩ Y2, and consider [x]C1 = [x]A1 ∩ Y2. By this
and the assumption on A1 there exists a bounded set U ⊂ T , such that
[x]C1 = U.x. Now, for each t ∈ U , we have the open T -plaque [t.x]A2 ,
which must be of the form Ut.x for some open, bounded Ut ⊂ T . Now
the collection {Ut}t∈U covers U , and since T is locally compact second
countable, there exists a countable subcollection of the {Ut} covering
U . But this means that a countable collection of atoms of A2 covers
[x]C1 ; we then intersect each atom with X1 to get atoms of C2. Switch
C1 and C2 and repeat the argument to get the converse. �

6.19. Proof of Theorem 6.3, beginning. We now combine Corol-
lary 6.15, Lemma 6.17, and Proposition 5.17: Let Ak be the sequence
of σ-algebras of subsets of Yk as in Corollary 6.15. We define Yk,` =
Yk ∩Y` and get that (Ak)|Yk,` and (A`)|Yk,` are countably equivalent by

Lemma 6.17. By Proposition 5.17 we get that µAkx |[x]A`
and µA`x |[x]Ak

are proportional for a.e. x ∈ Yk,` (where we used additionally that the
conditional measure for µ|Yk,` with respect to the σ-algebra Ak|Yk,` is

just the normalized restriction of µAkx to Yk,`). Also recall that by The-
orem 5.9(iii) for every k there is a null set in Yk such that for x, y ∈ Yk
not belonging to this null set and [x]Ak = [y]Ak we have µAkx = µAky . We
collect all of these null sets to one null set N ⊂ X and let X ′′ be the set
of all points x ∈ X \N for which t 7→ t.x is injective. By construction
of Ak we have [x]Ak = Uk,x.x for some open and bounded Uk,x ⊂ T .
For a bounded measurable set D ⊂ T and x ∈ X ′′ we define

(6.19a) µTx (D) =
1

µAkx (BT
1 .x)

µAkx (D.x)

where we choose k such that D.x ⊂ [x]Ak which by the construction
of the sequence of σ-algebras, i.e. by Corollary 6.15, is possible. We
need to justify this definition by showing that the denominator does
not vanish, at least for a.e. x ∈ X ′′. We prove this in the following
lemma which will also prove Theorem 6.3(v).

6.20. Lemma. Suppose A is a countably generated sub-σ-algebra of
Borel subsets of a Borel set Y ⊂ X. Suppose further that the A-atoms
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are open T -plaques. Let U ⊂ T be an open neighborhood of the identity.
Then for µ-a.e. x ∈ Y , we have µAx (U.x) > 0.

6.21. Proof: Set B = {x ∈ Y ′ : µAx (U.x) = 0}, where Y ′ ⊂ Y is a
subset of full measure on which the conclusion of Theorem 5.9(iii) holds.
We wish to show that µ(B) = 0, and since we can integrate first over the
atoms and then over the space (Theorem 5.9(i) and Proposition 4.1),
it is sufficient to show for each x ∈ Y ′ that µAx (B) = µAx ([x]A ∩B) = 0.
Now since atoms of A are open T -plaques, we can write [x]A = (Ux).x.
Set Vx ⊂ Ux to be the set of those t such that t.x ∈ [x]A ∩B.

Now clearly the collection {Ut}t∈Vx covers Vx, and we can find a
countable subcollection {Uti}∞i=1 that also covers Vx. This implies that
{(Uti).x}∞i=1 covers [x]A ∩B by definition of Vx, so we have

µAx ([x]A ∩B) ≤ µAx (
∞⋃
i=1

(Uti).x) ≤
∞∑
i=1

µAx ((Uti).x)

On the other hand, ti.x ∈ B, so by definition of B we have that each
term µAx ((Uti).x) = µAx (U.(ti.x)) on the right-hand side is 0. �

6.22. Proof of Theorem 6.3, summary. We let X ′ ⊂ X ′′ be a
subset of full measure such that the conclusion of Lemma 6.20 holds for
the σ-algebra Ak, all x ∈ Yk ∩X ′, all k, and every ball U = BT

1/n for all

n. This shows that for x ∈ X ′ the expression on the right of (6.19a) is
well defined. By the earlier established property it is also independent
of k (as long as D.x ⊂ [x]Ak as required before). Therefore, (6.19a)
defines a Radon measure on T satisfying Theorem 6.3 (v). Property (iii)
follows directly from the definition and the requirement that for x, g.x ∈
X ′′ ∩ Yk with [x]Ak = [g.x]Ak (which will be the case for many k) we
have µAkx = µAkg.x, where we may have a proportionality factor appearing

as µTx is normalized via the set BT
1 .x and µTg.x is normalized via the set

BT
1 g.x. Property (iv) follows from Lemma 6.17 and Proposition 5.17

similar to the discussion in 6.19. We leave property (ii) to the reader.
�

We claimed before that the leaf-wise measure describes properties of
the measure µ along the direction of the T -leaves, we now give three
examples of this.

6.23. Problem: The most basic question one can ask is the following:
What does it mean to have µTx ∝ δe a.e.? Here δe is the Dirac measure
at the identity of T , and this case is often described as the leaf-wise
measure are trivial a.e. Show this happens if and only if there is a
global cross-section of full measure, i.e. if there is a measurable set
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B ⊂ X with µ(X \B) = 0 such that x, t.x ∈ B for some t ∈ T implies
t = e.

6.24. Definition. Suppose we have a measure space X, a group T act-
ing on X, and µ a locally finite measure on X. Then µ is T -recurrent
if for every measurable B ⊂ X of positive measure, and for a.e. x ∈ B,
the set {t : t.x ∈ B} is unbounded (i.e., does not have compact closure
in T ).

6.25. Theorem. Let X,T, µ be as before, and suppose additionally that
µ is a probability measure. Then µ is T -recurrent if and only if µTx is
infinite for almost every x.

6.26. Proof: Assume T -recurrence. Let Y = {x : µTx (T ) < ∞}, and
suppose that µ(Y ) > 0. We may find a sufficiently large n such that
the set Y ′ = {x ∈ Y : µTx (BT

n ) > 0.9µTx (T )} also has positive measure.
We will show that, for any y ∈ Y ′, the set of return times {t : t.y ∈ Y ′}
is bounded; in fact, that {t : t.y ∈ Y ′} ⊂ BT

2n for any y ∈ Y ′. Since
µ(Y ′) > 0, this then shows that µ is not T -recurrent.

Pick any return time t. By definition of Y ′, we know that µTy (BT
n ) >

0.9µTy (T ) and µTt.y(B
T
n ) > 0.9µTt.y(T ). On the other hand, from Theo-

rem 6.3.(iii) we know that µTt.y ∝ (µTy )t, so that we have µTy (BT
n t) >

0.9µTy (Tt) = 0.9µTy (T ). But now we have two sets BT
n and BT

n t of very

large µTy measure, and so we must have BT
n ∩ BT

n t 6= ∅. This means

t ∈ (BT
n )−1BT

n , as required.
Assume now that the leaf-wise measure satisfy µTx (T ) = ∞ for a.e.

x, but µ is not T -recurrent. This means there exists a set B of positive
measure, and some compact K ⊂ T such that {t : t.x ∈ B} ⊂ K for
every x ∈ B.

We may replace B by a subset of B of positive measure and assume
that B ⊂ E for a measurable E ⊂ X for which there is an r-cross-
section C ⊂ E as in Proposition 6.7, where we choose r sufficiently big
so that BT

r ⊃ BT
1 KB

T
1 . Let (BT

r+1.C,A) be the (r, T )-flower for which
the atoms are of the form BT

r+1.z for z ∈ C. As C is a cross-section the
atoms of A are in a one-to-one correspondence to elements of C. We
define D = {z ∈ C : µAz (B) > 0} (where we require that µAx is defined
on a set X ′ ∈ A and is strictly A-measurable so that the definition of D
as a subset of the likely nullset C makes sense). Note that B\(BT

r+1.D)
is a null set, and that so we may assume B ⊂ BT

1 .D by the properties
of C and E in Proposition 6.7.

Suppose now t.z = t′.z′ for some t, t′ ∈ T and z, z′ ∈ D. By construc-
tion of D and by Proposition 6.7 we may write z = tx.x and z′ = tx′ .x
for some tx, tx′ ∈ BT

1 and x, x′ ∈ B. Therefore, ttx.x = t′tx′ .x
′ which
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implies that t−1
x′ (t′)−1ttx ∈ K by the assumed property of B. However,

this shows (t′)−1t.z = z′ and (t′)−1t ∈ BT
1 KB

T
1 ⊂ BT

r which implies
t = t′ and z = z′ since C ⊃ D is an r-cross-section. This shows that
for every n we have that BT

n+1 ×D → BT
n+1.D is injective and just as

in Corollary 6.15 this gives rise to the (n, T )-flower (BT
n+1.D,An) with

center BT
1 .D such that the atoms are of the form BT

n+1.z for z ∈ D.
By Theorem 6.3.(iv), we know that

µAnx (B) =
µTx
(
{t ∈ Un,x : t.x ∈ B}

)
µTx (Un,x)

for a.e. x ∈ BT
n .D. Here Un,x ⊂ T is the shape of the atom, i.e. is

such that [x]An = Un,x.x. Clearly, for z ∈ D we have Un,z = BT
n+1

by construction. Therefore, we have for y ∈ B ⊂ E ⊂ BT
1 .C that

Un,y ⊃ BT
n . Also recall that by assumption y ∈ B, t ∈ T , and t.y ∈ B

implies t ∈ K. Together we get for a.e. y ∈ B that

µAny (B) ≤
µTy (K)

µTy (BT
n )
,

which approaches zero for a.e. y ∈ B as n→∞ by assumption on the
leaf-wise measures.

We define

B′ = {y ∈ B : µAny (B)→ 0}
which by the above is a subset of B of full measure, and also the
function fn by the rule fn(x) = 0 if x /∈ BT

n .D and fn(x) = µAnx (B′)
if x ∈ BT

n .D. Clearly if y /∈ T.D then fn(y) = 0 for all n. While if

y ∈ BT
n0
.D and fn0(y) = µ

An0
x (B′) > 0 for some n0 then we may find

some x ∈ B′ equivalent to y with respect to all An for n ≥ n0, so that
fn(y) = fn(x) for n ≥ n0 by the properties of conditional measures.
Therefore, fn(y) → 0 for a.e. y ∈ X. By dominated convergence (µ is
a finite measure by assumption and fn ≤ 1) we have

µ(B) =

∫
BTn .D

µAnx (B′)dµ =

∫
fndµ→ 0,

i.e. µ(B) = 0 contrary to the assumptions.�

6.27. Problem: With triviality of leaf-wise measures as one possible
extreme for the behavior of µ along the T -leaves and T -recurrence in
between, on the opposite extreme we have the following fact: µ is T -
invariant if and only if the leaf-wise measures µTx are a.e. left Haar mea-
sures on T . Show this using the flowers constructed in Corollary 6.15.
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6.28. Normalization. One possible normalization of the leaf-wise
measure µTx , which as we discussed is uniquely characterized by its
properties up to a proportionality factor, is to normalize by a scalar
(depending on x measurably) so that µTx (BT

1 ) = 1. However, under
this normalization we have no idea how big µTx (BT

n ) can be for n > 1.
It would be convenient if the leaf-wise measures µTx would belong to

a fixed compact metric space in a natural way — then we could ask
(and answer in a positive manner) the question whether the leaf-wise
measures depend measurably on x where we consider the natural Borel
σ-algebra on the compact metric space. Compare this with the case
of conditional measures µAx for a σ-algebra A and a finite measure µ
on a compact metric space X, here the conditional measures belong to
the compact metric space of probability measures on X (where we use
the weak∗ topology on the space of measures). Unfortunately, the lack
of a bound of µTx (BT

2 ) shows that, with µTx normalized using the unit
ball, that the leaf-wise measures do not belong to a compact subset
in the space of Radon measures (using the weak∗ topology induced by
compactly supported continuous functions on T ). For that reason we
are interested in the possibly growth rate of µTx (BT

n ), so that we can
introduce a different normalization with respect to which we get values
in a compact metric space.

6.29. Theorem. Assume in addition that T is unimodular, and denote
the bi-invariant Haar measure on T by λ. Fix weights bn such that∑∞

n=1 b
−1
n < ∞ (eg., think of bn = n2) and a sequence rn ↗ ∞. Let µ

be a probability measure on X, and suppose T acts locally freely on X,
etc. Then for µ-a.e. x we have

lim
n→∞

µTx (BT
rn)

bnλ(BT
rn+5)

= 0

where BT
r is the ball of radius r around e ∈ T .

In other words, the leaf-wise measure of big balls BT
rn can’t grow

much faster than the Haar measure of a slightly bigger ball BT
rn+5.

This is useful as it gives us a function f : T → R+ which is integrable
w.r.t. µTx for a.e. x ∈ X, e.g. f(x) = 1

b2nλ(BTrn+5)
for x ∈ BT

rn \ B
T
rn−1

.

Hence we may normalize µTx such that
∫
T
fdµTx = 1 and we get that

µTx belongs to the compact metric space of measures ν on T for which∫
T
fdν ≤ 1, where the latter space is equipped with the weak∗ topology

induced by continuous functions of compact support. Hence it makes
sense, and this is essentially Theorem 6.3.(ii), to ask for measurable
dependence of µTx as a function of x.
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Before proving this theorem, we will need the following refinement
regarding the existence of (r, T )-flowers.

6.30. Lemma. For any measurable set B ⊂ X, R > 0, we can find a
countable collection of (BT

R, T )-flowers (Yk,Ak) with base Ek so that

(i) any x ∈ X is contained in only finitely many bases Ek, in fact
the multiplicity is bounded with the bound depending only on
T ,

(ii) µ(B \
⋃
k Ek) = 0

(iii) for every x ∈ Ek there is some y ∈ [x]Ak ∩ Ek ∩B so that

BT
1 .y ⊂ [x]Ak ∩ Ek,

for any two equivalent x, y ∈ Ek we have [x]Ak ∩ Ek ⊂ BT
4 .y,

and
(iv) for every x ∈ Yk there is some y ∈ [x]Ak ∩ Ek ∩B.

The third property may, loosely speaking, be described as saying that
for points x in the base Ek we require that there is some y ∈ B ∩ Ek
equivalent to x such that y is deep inside the base Ek (has distance one
to the complement) in the direction of T .

6.31. Proof: By Corollary 6.15 we already know that we can cover a
subset of full measure by a countable collection of bases Ẽk of (R+1, T )-
flowers (Ỹk, Ãk) such that additionally there is some (R + 2)-cross-
section C̃k ⊂ Ẽk, Ỹk = BT

R+2.C̃k, and Ẽk ⊂ BT
1 .C̃k. We will construct

Yk by an inductive procedure as subsets of Ỹk and will use the restriction
Ak of Ãk to Yk as the σ-algebra.

For k = 1 we define

(6.31a) Y1 =
{
x ∈ Ỹ ′1 : µÃ1

x (B ∩ Ẽ1) > 0
}
,

and A = Ã|Y1 . By definition we remove from Ỹ1 complete atoms to
obtain Y1, so that the shape of the remaining atoms is unchanged. From
this it follows that (Y1,A) is an (R + 1, T )-flower with base Ẽ1 ∩ Y1.
Also note that B ∩ Ẽ1 ∩ Y1 is a subset of full measure of B ∩ Ẽ1 (cf.
(5.11a) and (6.31a)). We define

E1 = BT
2 .(C̃1 ∩ Y1) ⊃ Ẽ1 ∩ Y1,

where the inclusion follows because Ẽ1 ⊂ BT
1 .C̃1 holds by construction

of the original flowers. Since we constructed Y1 by removing whole
atoms from Ỹ1 we obtain E1 ⊂ Y1.

Finally, by definition of Y1 we have µA1
x (B ∩ Ẽ1) > 0 for every x ∈

E1 ⊂ Y1, so there must indeed be some y ∈ B∩Ẽ1 which is equivalent to
x. Again because Y1 was obtained from Ỹ1 by removing entire atoms, we
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have y ∈ Ẽ1∩Y1. Moreover, y ∈ BT
1 .C1 so that BT

1 .y ⊂ (BT
2 .C1)∩Y1 =

E1. The conclusions in (iii) follow now easily for the case k = 1. At
last notice that (Y1,A|Y1) is an (R, T )-flower with base E1.

For a general k we assume that we have already defined for any ` < k
an (R, T )-flower (Y`,A`) with bases E` satisfying: Y` ⊂ Ỹ` is obtained
by removing entire Ã`-atoms, A` = Ã`|Y` , properties (iii) and (iv) hold,

and that B∩
⋃
`<k E` contains B∩

⋃
`<k Ẽ` except possibly for a nullset.

The latter is the inductive assumption regarding (ii) as at the end of
the construction it will imply (ii) by the assumption that the bases Ẽj
for j = 1, 2, . . . cover a set of full measure.

We now define

Yk =
{
x ∈ Ỹk : µÃkx

(
B ∩ Ẽk \

⋃
`<k

E`
)
> 0
}
,

which as before is Ỹk minus a union of complete Ãk-atoms. In particu-
lar, we again get that (Yk,Ak) (with Ak = Ãk|Yk) is an (R+1, T )-flower

with base Ẽk ∩ Yk and that B ∩ Ẽk \
⋃
`<k E` is contained in Ẽk ∩ Yk

except possibly for a null set. The latter ensures the inductive assump-
tion regarding (ii) if we define Ek as a superset of Ẽk ∩ Yk. We define
Ek = BT

2 .(Yk ∩ Ck) which implies Ẽk ∩ Yk ⊂ Ek and also property (iii)
similar to the case k = 1. Indeed, if x ∈ Ek, then x = t.z for some
t ∈ BT

2 and z ∈ Yk ∩ Ck which implies

µAkz
(
B ∩ Ẽk \

⋃
`<k

E`
)
> 0

by definition of Yk. Hence there is some y ∈ B ∩ Ẽk equivalent to z
(and to x) with y = ty.z for some ty ∈ BT

1 by the properties of Ẽk.
This implies BT

1 .y ⊂ Ek as required.
Suppose now we have completed the above construction defining

Yk and Ek and assume that x belongs to Ek1 , Ek2 , . . . , Ekm for some
k1 < k2 < · · · < km. We wish to bound m in order to proof (i).
By property (iii) we know for j = 1, . . . ,m that x = tj.yj for some
tj ∈ BT

1 and yj ∈ Ekj ∩ B. In fact, by the construction we know that

yj ∈ B ∩ Ẽkj \
⋃
`<kj

E`. Also notice that

t−1
j ti.yi = t−1

j .x = yj for any pair i, j.

However, since BT
1 .yi ⊂ Eki for i < j we must have t−1

j ti /∈ BT
1 . As

the metric on T is assumed to be right invariant we conclude that the
elements t−1

1 , . . . , t−1
km

have all distance ≥ 1, and so m is bounded by

the maximal number of 1-separated elements of BT
1 which has compact

closure. This proves (i). �
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6.32. Proof of Theorem 6.29. We fix some δ > 0, and some integer
M . We define

Bm =

{
y :

µTy (BT
rn)

µTy (BT
4 )
≥ bnδ

λ(BT
rn+5)

λ(BT
4 )

for at least m different n ≤M

}
.

We want to give a bound on µ(Bm) which will be independent of M
and tends to 0 as m → ∞. Let R = rM , and let Ei and Ai be as in
Lemma 6.30. (Note that by the choice of R the sequence of σ-algebras
depends crucially on M .)

Consider the function

G =
M∑
n=1

∞∑
i=1

wnχBTrn .Ei

with wn = 1
bnλ(BTrn+5)

and where χA again denotes the characteristic

function of a set A. We claim that G is bounded, with the bound
independent of M .

Fixing n and x, let I =
{
i : x ∈ BT

rn .Ei
}

. For each i ∈ I, let h′i ∈ BT
rn

be such that h′i.x ∈ Ei, and by Lemma 6.30.(iii), we can modify h′i to
some hi ∈ BT

rn+4 so that BT
1 hi.x ⊂ [x]Ai ∩ Ei.

As the multiplicity of the sets E1, E2, . . . is bounded by some constant
c1 (that only depends on T ) and since BT

1 hi.x ⊂ Ei we get that∑
i∈I

χBT1 hi ≤ c1χBrn+5 .

This implies that |I|λ(BT
1 ) ≤ c1λ(BT

rn+5). We conclude that

∞∑
i=1

wnχBTrn .Ei(x) ≤ wn |I| ≤
c1λ(BT

rn+5)

bnλ(BT
1 )λ(BT

rn+5)
≤ c2

bn
,

where c2 again only depends on T . Therefore, G(x) ≤ c3 = c2

∑∞
n=1 b

−1
n

for all M as claimed.
On the other hand, consider the (BT

R, T )-flower (Yi,Ai) with base
Ei. By the properties of leaf-wise measures (Theorem 6.3.(iv)) and
Lemma 6.30.(iii), we know that for every y ∈ Ei ∩Bm and every n,

µAiy (Ei)

µAiy (BT
rn .y)

≤
µTy (BT

4 )

µTy (BT
rn)
.

So if z ∈ Yi and y ∈ [z]Ai ∩ Bm ∩ Ei (the existence of such a y is
guaranteed by Lemma 6.30.(iv)), then χBTrn .Ei ≥ χBTrn .y and so∫

Yi

χBTrn .Ei dµ
Ai
z ≥ µAiy (BT

rn .y) ≥
µTy (BT

rn)

µTy (BT
4 )
µAiz (Ei).
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Multiplying with wn and summing over n = 1, . . . ,M we get∫
Yi

M∑
n=1

wnχBTrn .Ei dµ
Ai
z ≥

M∑
n=1

1

bnλ(BT
rn+5)

µTy (BT
rn)

µTy (BT
4 )
µAiz (Ei)

≥ mδ
1

λ(BT
4 )
µAiz (Ei)

where the latter follows from the definition of Bm. Integrating over
z ∈ Yi we get ∫

Yi

M∑
n=1

wnχBTrn .Ei dµ ≥ mδc4µ(Ei)

for a constant c4 > 0 only depending on T . Summing the latter in-
equality over i, we get that

c3µ(X) ≥
∫
X

Gdµ ≥ c4mδ
∑
i

µ(Ei) ≥ c4mδµ(Bm)

by Lemma 6.30.(ii). This implies µ(Bm) ≤ c3µ(X)
c4mδ

, independent of M .
Hence we may lift the requirement that n ≤M in the definition of Bm

without effecting the above estimate and then let m → ∞ and δ → 0
to obtain the theorem. �

7. Leaf-wise Measures and entropy

We return now to the study of entropy in the contexts of locally
homogeneous spaces(20).

7.1. General setup, real case. Let G ⊂ SLn(R) be a closed real
linear group. (One may also takeG to be a connected, simply connected
real Lie group if so desired.) Let Γ ⊂ G be a discrete subgroup and
define X = Γ\G. We may endow G with a left-invariant Riemannian
metric which then induces a Riemannian metric onX too. With respect
to this metric X is locally isometric to G, i.e. for every x ∈ X there
exists some r > 0 such that g 7→ xg is an isometry from the open r-ball
BG
r around the identity in G onto the open r-ball BX

r (x) around x ∈ X.
Within compact subsets of X one may choose r uniformly, and we may
refer to r as an injectivity radius at x (or on the compact subset).

Clearly any g ∈ G acts on X simply by right translation g.x =
xg−1 = Γ(hg−1) for x = Γh ∈ X, and one may check that this action

(20)The space X = Γ\G we define is in fact a homogeneous space for the group
G in the abstract sense of algebra but if we also consider the metric structure the
phrase “locally homogeneous” seems more appropriate.
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is by Lipshitz automorphisms of X. By definition of X the G-action is
transitive.

Recall that Γ is called a lattice if X carries a G-invariant probability
measure mX , which is called the Haar measure on X. E.g. this is the
case if the quotient is compact, and in this case Γ is called a uniform
lattice. From transitivity of the G-action it follows that the G-action
is ergodic with respect to the Haar measure mX . Although this is not
clear a priori it is often true (in the non-commutative setting we are
most interested) that unbounded subgroups of G also act ergodically
with respect to mX .

We may fix some a ∈ G or a one parameter subgroup A = {at =
exp(tw) : t ∈ R} and obtain a measure-preserving transformation
a.x = xa−1 or flow at.x = xa−1

t . Our discussion of entropy below
may be understood in that context. However, we will not assume that
the measure µ on X, which we will be discussing, equals the Haar
measure, or that Γ is a lattice. Rather we will use the results here to
obtain information about an unknown measure µ and in best possibly
situations deduce from that that µ equals the Haar measure.

7.2. Arithmetic setup. Fix a prime number p and let G be the group
of Qp-points of an algebraic subgroup G ⊂ SLn, i.e. G would consists of
all Qp-points of a variety G which is contained in the affine space of all
n-by-n-matrices and whose points happen to form a group. Here a Qp-
point of G is an element of the variety whose matrix entries are elements
of Qp, as a shorthand we will write G = G(Qp) for the group of all Qp-
points. In this setting (more precisely in the zero characteristic case)
one may say G is defined over a field F if G = {g ∈ SLn : φ(g)v ∝
v} where φ is an algebraic representation over F , i.e. an action of
SLn by linear automorphisms of a finite dimensional vector space with
a given basis such that the matrix entries corresponding to φ(g) are
polynomials in the matrix entries of g with coefficients in F , and v
equals an F -linear combination of the basis vectors. Again we will let
Γ ⊂ G be a discrete subgroup and study dynamics of subgroups of G
on X = Γ\G.

E.g. if G is the group of Qp-points of SO(3) (defined in the usual way
as the group of matrices of determinant one preserving x2

1 + x2
2 + x2

3),
which is an algebraic subgroup defined over Q, then one may take Γ to
be the group of Z[1

p
]-points of SO(3). In this case G is noncompact if

p > 2 but X = Γ\G is compact for any p.
A more general setup would be to allow products

G = G∞ ×Gp1 × · · · ×Gp`
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over the real and finite places(21) of the group of R-points G∞ = G(R)
resp. the group of Qp-points Gp = G(Qp), for some finite list of primes
p ∈ Sfin = {p1, . . . , p`}, of an algebraic group G defined over Q. In this
case one may take Γ = G(Z[1

p
: p ∈ Sfin]) to be the Z[1

p
: p ∈ Sfin]-points

of G, which one considers as a subgroup of the product of the real and
p-adic groups by sending a matrix γ with coefficients in Z[1

p
: p ∈ Sfin]

to the element (γ, γ, . . . , γ) ∈ G∞ ×Gp1 × · · · ×Gp` , this embedding is
called the diagonal embedding. It can easily be checked that (the image
of) Γ forms a discrete subgroup. Often (e.g. when G is semisimple) Γ
defined by this diagonal embedding will form a lattice in G.

A similar construction of arithmetically defined quotients X = Γ\G
can be used in positive characteristic. Most of what we will discuss in
this chapter (and possibly beyond) applies to either of these settings.
However, so as to keep the notation at a minimum we will confine
ourself to the situation where G = G(k) is the group of k-points of an
algebraic group G defined over k. We will refer to this by briefly saying
G is an algebraic group over a local field k. Also we only assume that
Γ < G is a discrete subgroup.

7.3. The horospherical subgroup defined by a. For the following
fix some a ∈ G. Then we may define the stable horospherical subgroup
for a by

G− = {g : anga−n → e as n→∞},

which in the setting described above is always a closed(22) subgroup of
G. Similarly, one can define the unstable horospherical subgroup G+

e.g. as the stable horospherical subgroup for a−1. (We note, that in the
theory of algebraic groups G− and G+ are also known as the unipo-
tent radicals of the parabolic subgroups defined by a one-parameter
subgroup containing a.)

Consider two points x, xg for some g ∈ G−, then an.x and an.xg
get closer and closer to one another as n → ∞. In fact, an.xg =
xa−n(anga−n) and an.x have distance ≤ d(anga−n, e) → 0. In that
sense we will refer to G−.x as the stable manifold through x. Note
x may not be fixed or even periodic so the statement needs to be
understood by the sequence of tuples of points as described. Also note
that it is not clear that G−.x is necessarily the complete set of points

(21)The reader who is familiar with adeles may want to consider them instead of
finite products.

(22)This is not true for general Lie groups, hence our assumption that G should
be a linear group or a simply connected Lie group.
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y for which d(an.y, an.x) → 0, but we will show that for all practical
purposes it suffices to study G−.x.

7.4. Problem: Suppose X is a compact quotient. Show that in this
case G−.x ⊂ X is precisely the set of points y ∈ X with d(an.y, an.x)→
0 as n→∞.

7.5. Entropy and the horospherical subgroup. The following is
one of the main results of this section.

7.6. Theorem. Let µ be an a-invariant probability measure on Γ\G.
Let U be a closed subgroup of G− normalized by a. Then:

(i) The entropy contribution of U at x

Dµ(a, U)(x) := lim
n→∞

log µUx (a−nBU
1 a

n)

n
exists for a.e. x and defines an a-invariant function on X.

(ii) For a.e. x we have Dµ(a, U)(x) ≤ hµEx(a), with equality if U =
G−. Here E denotes the σ-algebra of a-invariant sets as in
5.14.

(iii) For a.e. x we have Dµ(a, U)(x) = 0 iff µUx is finite iff µUx is
trivial.

In particular, the theorem shows that entropy must vanish for all in-
variant measures if the stable horospherical subgroup G− is the trivial
subgroup. This is the case for the horocycle flow (and all other unipo-
tent flows), hence its entropy vanishes. Therefore, the most interesting
case will be the study of the opposite extreme namely diagonalizable
elements a ∈ G (and in the proof we will restrict ourselves to this
case). For instance, the theorem shows that entropy for the geodesic
flow is determined precisely by the leaf-wise measure for the horocyclic
subgroup, as for the time-one-map a1 of the geodesic flow the stable
horospherical subgroup is precisely the horocyclic subgroup.

7.7. Corollary. The measure µ is G−-recurrent iff hµEx(a) > 0 a.e.
Assume µ is additionally a-ergodic, then µ is G−-recurrent iff hµ(a) >
0.

7.8. Entropy and G−-invariance. To state the second equally im-
portant theorem we ask first what is hmX (a) where Γ is assumed to be
a lattice and mX denotes the Haar measure on X. This follows from
Theorem 7.6: Since mX is invariant under G−, its leaf-wise measures
are Haar measures on G−. Hence the expression in Theorem 7.6.(i) can
be calculated and one obtains

DmX (a,G−) = − log
∣∣det Ada |g−

∣∣,
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here Ada is the adjoint action of a on the Lie algebra g and g− is the
Lie algebra of G− which by definition is being invariant and contracted
by Ada.

The following theorem will characterize when a measure µ is invariant
under G− (or under U ⊂ G−) in terms of the entropy hµ(a) (or the
entropy contribution of U). To state it most conveniently, let us define
the entropy contribution of an a-normalized closed subgroup U ⊂ G−

by

hµ(a, U) =

∫
Dµ(a, U)dµ

the integral of the entropy contributions at the various x. This way,
the entropy contribution of G− equals the entropy of a (cf. §3.5 and
§5.14).

7.9. Theorem. Let U < G− be an a-normalized closed subgroup of the
horospherical subgroup G− for some a ∈ G, and let u denote the Lie
algebra of U . Let µ be an a-invariant probability measure on X = Γ\G.
Then the entropy contribution is bounded by

hµ(a, U) ≤ − log
∣∣det Ada |u

∣∣
and equality holds iff µ is U-invariant.

In many cases this theorem shows that the Haar measure on X is
the unique measure of maximal entropy, e.g. the Haar measure on
SL(2,Z)\ SL(2,R) is the unique measure of maximal entropy as fol-
lows from Theorem 7.9: Since the stable horospherical subgroup is
the upper unipotent subgroup in SL(2,R), we have that an a-invariant
measure whose entropy equals that of the Haar measure must be in-
variant under the upper unipotent subgroup. Since hµ(a) = hµ(a−1) we
get the same for the lower unipotent subgroup. However, since the up-
per and the lower unipotent subgroups generate SL(2,R), we get that
hµ(a) = hmX (a) implies µ = mX . By the same argument one obtains
the following more general corollary.

7.10. Corollary. Suppose Γ is a lattice in G, and let X = Γ\G. Sup-
pose a ∈ G is such that G is generated by G+ and G−. Then mX is the
unique measure of maximal entropy for the action of a on X, i.e. if µ
is an a-invariant probability measure on X with hµ(a) = hmX (a) then
µ = mX .

7.11. Starting the proofs: Let us start by discussing the technical
assumption of the last section that a.e. orbit is embedded.

7.12. Lemma. Let µ be an a-invariant probability measure on X =
Γ\G. Then for µ-a.e. x the map u ∈ G− 7→ u.x is injective.
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7.13. Proof: Suppose x = u.x for some nontrivial u ∈ G−. Then
xn = an.x = anua−n.xn for all n = 1, 2, . . .. However, anua−n → e so
that the injectivity radius at xn goes to 0 as n→∞. This shows that
x does not satisfy Poincaré recurrence, and so that it belongs to a null
set. �

7.14. Semisimple elements and class A elements. As before we
assume that G is an algebraic group over a local field k (or that G is
a simply connected real Lie group), Γ < G a discrete subgroup, and
X = Γ\G. We say that a ∈ G is k-semisimple if as an element of
SLn(k) its eigenvalues belong to k. In particular, this implies that the
adjoint action Ada of a on the Lie algebra has eigenvalues in k and so
is diagonalizable over k. (In the Lie group case the latter would be our
assumption with k = R.) We say furthermore that a is class A if the
following properties hold:

• a is k-semisimple.
• 1 is the only eigenvalue of absolute value 1 for the adjoint

action Ada.
• No two different eigenvalues of Ada have the same absolute

value.

For class A elements a we have a decomposition of g, the Lie algebra
of G, into subspaces

g = g0 ⊕ g− ⊕ g+

where g0 is the eigenspace for eigenvalue 1, g− is the direct sum of the
eigenspaces with eigenvalues less than 1 in absolute value, and g+ is
the direct sum of the eigenspaces with eigenvalues greater than 1 in ab-
solute value. These are precisely the Lie algebras of the corresponding
subgroups

G0 = {h : ah = ha} = CG(a),

G− = {h : anha−n → e as n→∞},
G+ = {h : a−nhan → e as n→∞}.

We refer to G0 as the centralizer of a, while G− and G+ are the horo-
spherical subgroups of a.

If convenient we will assume(23) below that a is of class A as this
gives us a convenient description of a neighborhood of e ∈ G in terms
of neighborhoods in the three subgroups G0, G−, and G+. As before
we will always assume that U < G− is a closed a-normalized subgroup
of the stable horospherical subgroup.

(23)Replacing G0 and g0 with slightly more complicated versions this assumption
can be avoided but in our applications a will always be of class A.
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7.15. Problem: Show that for any Lie group G and any a ∈ G the
Lie algebra generated by g− and g+ is a Lie ideal in g. Deduce that
the assumption regarding a in Corollary 7.10 is satisfied whenever G is
a simple real Lie group and g− is nontrivial.

7.16. Lemma. Let U < G− be a closed a-normalized subgroup for some
a ∈ G, denote conjugation by a by θa(g) = aga−1 for g ∈ G. Let µ be
an a-invariant probability measure on X = Γ\G. Then µUa.x ∝ θ∗µ

U
x for

a.e. x.

7.17. Proof: As a normalizes U it maps an (r, U)-flower (Y,A) with
base E to another σ-algebra aA of subsets of aY whose atoms are still
open U -plaques. As a preserves the measure µ the conditional measures
forA are mapped to those of aA. Combining this with Theorem 6.3.(iv)
gives the lemma. �

7.18. Independence of neighborhood, a-Invariance. From the
definition ofDµ(a, U)(x) it follows that, if the limit definingDµ(a, U)(x)
exists, then the original set BU

1 can be replaced by any bounded neigh-
borhood O of e ∈ U without affecting the limit Dµ(a, U)(x). In fact,
if akBU

1 a
−k ⊂ O ⊂ a−kBU

1 a
k (and such a k exists as U is being con-

tracted by a and both BU
1 and O are bounded neighborhoods) then

µ(a−n+kBU
1 a

n−k) ≤ µ(a−nOan) ≤ µ(a−n−kBU
1 a

n+k) and this implies
the claim (using the sandwich argument for sequences and n±k

n
→ 1).

The a-invariance follows from Lemma 7.16: Replacing x by a.x may
be interpreted a.e. as replacing µUx by a measure proportional to θ∗µ

U
x ,

and the latter replaces BT
1 by O = a−1BU

1 a. Both the proportionality
factor and also the change to O does not affect the limit Dµ(a, U)(x)
so that Dµ(a, U)(x) = Dµ(a, U)(a.x) a.e.

7.19. Preparing the reduction to ergodic case: Recall from §5.14
that for any a-invariant measure µ, we have the ergodic decomposition

µ =

∫
µExdµ(x)

where E is the σ-algebra of all a-invariant sets, and µEx is the conditional
measure. Also recall from §3.5 that the entropy hµ(a) equals the aver-
age of the entropies hµEx(a) of the ergodic components. In what follows
we wish to reduce the proof of Theorem 7.6 and 7.9 to the correspond-
ing statements under the assumption of ergodicity. The reader who
is willing to assume ergodicity(24) of a or to accept this, may continue
reading with §7.25.

(24)This assumption should not be confused with A-ergodicity which we will
assume in the later sections but which in general does not imply a-ergodicity.
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An important observation (the Hopf argument) is that we can choose
the elements of E to be not only a-invariant, but in fact 〈U, a〉-invariant.
This will allow us to reduce the proof of the main theorems to the case
of a-ergodic invariant measures.

7.20. Lemma. Let C be an a-invariant subset of X. Then there exists
a 〈U, a〉-invariant set C̃ such that µ(C 4 C̃) = 0.

7.21. Proof (using the Hopf argument): Let ε > 0 and choose
f ∈ Cc(X) such that ||f − 1C ||1 < ε. Set

Cε =

{
x : lim

n→∞
A(f, n)(x) >

1

2

}
where A(f, n) = 1

n

∑n−1
i=0 f(aix). Now

C 4 Cε ⊂ {x : limn→∞A(f, n)(x) does NOT exist }(7.21a)

∪{x ∈ C : limn→∞A(f, n)(x) ≤ 1
2
}(7.21b)

∪{x /∈ C : limn→∞A(f, n)(x) > 1
2
}(7.21c)

By the pointwise ergodic theorem, the set on the right of (7.21a)
has measure 0, so it remains to show that the measures of (7.21b)
and (7.21c) are small. Let M(f) = supn |A(f, n)| be the maximal
function as in the maximal ergodic theorem. Then (7.21b) ∪ (7.21c)
⊂ {x : M(f − 1C)(x) ≥ 1/2}. Since C is a-invariant, we have

x ∈ C ⇒ A(f − 1C , n)(x) = A(f, n)(x)− 1

x /∈ C ⇒ A(f − 1C , n)(x) = A(f, n)(x)

Therefore, µ
(
(7.21b)∪(7.21c)

)
≤ 2||f − 1C ||1 < 2ε by the maximal

ergodic theorem.
Furthermore, we claim that Cε is G−-invariant. Notice that for any

h ∈ G−, we have that an.(h.x) = anha−n.(an.x) and anx are asymptotic
to one another. Thus, since f has compact support and so is uniformly
continuous, we have

1

n

n−1∑
i=0

[f(an.x)− f(an.(h.x))]→ 0

uniformly in x. This shows that Cε is U -invariant.
To finish the proof we may choose εn = 2−n and

C̃ = lim
n→∞

C2−n =
⋂
n

⋃
k≥n

C2−n

to obtain a set as in the lemma.�
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7.22. Proposition. Let µ =
∫
µExdµ(x) be an a-invariant probability

measure, and U ⊂ G−. Then for µ-a.e. x, for µEx-a.e. y, we have
µUy = (µEx)Uy .

In other words, by changing the leaf-wise measures for µEx at most
on a µEx-nullset, we may define (µEx)Uy to be equal to µUy . With this

definition in place, we also have (µEx)Ux = µUx . (In the formulation of
the proposition we avoided this formula as {x} is a null set for µEx and
so making claims for the leaf-wise measure at x would be irrelevant.)

7.23. Proof: Recall that the leaf-wise measures µUx were determined by
moving the conditional measures µAix to U and patching them together
there. Here (Yi,Ai) were U -flowers. By Lemma 7.20 (and Proposi-
tion 5.8) we may replace E by a countably generated σ-algebra consist-
ing of a-invariant and U -invariant sets. In particular, this shows that
the atoms of E|Yi are unions of the atoms of Ai (which are open U -
plaques). However, using conditional measures for Ai it is easy to see
that a function that is constant on Ai-atoms is in fact Ai-measurable
modulo µ. Therefore, we have E|Yi ⊂ Ai modulo µ. However, this
inclusion of σ-algebras implies that

E(E(f |Ai)|E|Yi) = E(f |E|Yi)

for any f ∈ L1. In turn, using the defining properties of conditional
measures (in terms of conditional expectations) this gives the following
relation between the conditional measures: for µ-a.e. x ∈ Yi we have

for µ
E|Yi
x -a.e. y that (

µ
E|Yi
x

)Ai
y

= µAiy .

Translating this to a property of leaf-wise measures we see that µUy and

(µEx)Uy agree on the subset of U corresponding to the atom [x]Ai and
the proposition follows by collecting the various null sets of Yi. �

7.24. Proof of reduction to ergodic case: As confusing working
with double conditional measures as in the above proposition may be,
it is useful for the following purpose: In the proof of Theorem 7.6 and
7.9 we are comparing the entropy of the ergodic components and the
entropy contribution arising from the subgroup U < G−. From §5.14
and §3.5 we know that

hµ(a) =

∫
hµEx(a)dµ.
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We would like to have a similar relationship between Dµ(a, U)(x) and
DµEx

(a, U)(x). Using (µEx)Ux = µUx as in the discussion right after Propo-

sition 7.22 we get DµEx
(a, U)(x) = Dµ(a, U)(x). Since µEx is a-invariant

and ergodic for µ-a.e. x, and as we assume the statements of Theo-
rem 7.6 and 7.9 in the ergodic case, the general case follows from this.
�

7.25. Definition. We say a σ-algebra A is subordinate to U (mod µ)
if for µ-a.e. x, there exists δ > 0 such that

BU
δ .(x) ⊂ [x]A ⊂ BU

δ−1 .(x).

We say that A is subordinate to U on Y iff the above holds for a.e.
x ∈ Y .

We say A is a-descending if a−1A ⊂ A.

Ignoring null sets to say that A is subordinate to U is basically
equivalent to say that the A-atoms are open T -plaques. Hence we
have already established in the last section the existence of σ-algebras
which are subordinate to U at least on some sets of positive measure.
Also, it is rather easy to find an a-descending partition as e.g.

∨∞
n=0 a

nP
is a-descending for any countably partition (or even σ-algebra) P . We
note however, that the existence of an a-descending σ-algebra that is
also subordinate, is not trivial.

Recall that we may assume that µ is a-ergodic, so that the a-invariant
function Dµ(a, U)(x) must be constant a.e. We will denote the common
value (i.e. the average) by hµ(a, U). If we are given an a-descending
σ-algebra A that is subordinate to U , we will show the following prop-
erties.

(i) For a.e. x

log µUx (a−nBU
1 a

n)

n
→ Hµ(A|a−1A) = hµ(a, U)

as n→∞.
(ii) hµ(a, U) ≤ hµ(a,P), with equality if U = G−.
(iii) If hµ(a, U) = 0 then a−1A = A (modµ) and µUx = δe almost

surely.

In other words, we will use the σ-algebra A as a gadget linking the two
expressions Dµ(a, U)(x) and hµ(a) appearing in the Theorem 7.6.

Recall that the “empirical entropy” Hµ(A|a−1A) is the expectation
of the “information function”

Iµ(A|a−1A)(x) = − log µa
−1A
x ([x]A).
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7.26. Hyperbolic torus automorphisms. We first look at a par-
ticular example(25) where it is relatively easy to give an a-descending
σ-algebra A that is subordinate to G− and to see the connection to
entropy. Let a be a hyperbolic automorphism of Tn = Rn/Zn (defined
by a matrix with eigenvalues of absolute value different from one —
the latter is the answer to Problem 3.10). We set G = Rn, Γ = Zn,
and write θ for the linear map on Rn defining a, for consistency we will
still write a.x for the action. It is easy to see that G− is the sum of
all (generalized) eigenspaces for eigenvalues of absolute value less than
one. By expansiveness we know that any partition P whose atoms have
sufficiently small diameter will be a generator for a. By the same argu-
ment one easily shows that A =

∨∞
n=0 a

−nP satisfies that the A-atoms
are of the form [x]A = Vx.x for bounded subsets Vx ⊂ G−. Also, A is
a-decreasing. The remaining property that Vx contains the identity in
the interior a.e. is not a general property (as e.g. it is likely not true if
the boundaries of the partition elements are not null sets) but follows
if we are a bit more careful in the choice of the partition P . What we
will need is the following quantitative strengthening of µ(∂P ) = 0 for
all P ∈ P .

7.27. Lemma. Let X be a locally compact metric space and let µ be
a Radon measure on X. Then for every x ∈ X and Lebesgue-a.e.
r > 0 there exists a constant c = cx,r such that µ(∂δBr(x)) ≤ cδ where
∂δB = {y ∈ X : infz∈B d(y, z) + infz /∈B d(y, z) < δ} we refer to as the
δ-neighborhood of the boundary(26) of a subset B ⊂ X.

7.28. Problem. Prove Lemma 7.27 using the function f(r) = µ(Br(x)).
A hint may be found in the footnote(27)on the next page.

We say that a set B has µ-thin boundary if there exists some c such
that µ(∂δB) ≤ cδ. It is clear that a set obtained from finitely many sets
with µ-thin boundary via the set-theoretic operations of intersections,
union, or complements also has µ-thin boundary. Hence by Lemma 7.27
any compact space has a partition P consisting of sets with µ-thin
boundary and arbitrarily small diameter.

We also note another property, which is rather easy to verify for the
Euclidean metric on G = Rn.

(25)This example almost fits into the framework under which we work, except
that the automorphism we consider is not coming from an element of G = Rn. We
could use a bigger subgroup, namely a semidirect product of Z and Rn, but this is
not necessary and may be more confusing.

(26)We use this phrase even though in general ∂B may be empty with ∂δB
nonempty.
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7.29. Lemma. There exists some α > 0 and d > 0 depending on a and
G such that for every r ∈ (0, 1) we have

θn(BG−

r ) ⊂ BG
de−nαr

for all n ≥ 1.

7.30. Problem. Prove Lemma 7.29 in the context of G being a real Lie
group, assuming that G is endowed with a left invariant Riemannian
metric.

Prove Lemma 7.29 in the setting of G being an algebraic group de-
fined over a p-adic field or a finite characteristic local field by first
defining a metric on G. (If necessary it wouldn’t make a difference
to our applications below to replace the upper bound 1 for r by some
smaller quantity depending on a and G.)

We now show how the two properties in Lemma 7.27 and Lemma 7.29
can be used in combination.

7.31. Lemma. Suppose P is a finite partition of X = Γ\G consisting
of measurable sets with µ-thin boundary. Then for a.e. x ∈ X there is
some δ > 0 such that

(7.31a) BG−

δ .x ⊂ [x]∨
n≥0 a

−nP .

7.32. Proof: Let c be as in the definition of µ-thin boundary, and let
α and d be as in Lemma 7.29 for r = 1. We write ∂δP for the union of
the δ-neighborhoods of the boundaries of the elements of P .

Fix some δ > 0 and define for n ≥ 0 the set

En = a−n.∂de−nαδP .

By construction we have

µ

(⋃
n≥0

En

)
≤ cd

(∑
n≥0

e−nα

)
δ,

which shows that for a.e. x there is some δ with x /∈
⋃
n≥0En. Fix such

an x and the corresponding δ, we claim that (7.31a) holds. Indeed let
h ∈ BG−

δ and suppose h.x /∈ [x]∨
n≥0 a

−nP . Then there would be some

n ≥ 0 such that an.x and an.(h.x) belong to different elements of the
partition P . However, θ contracts G− and indeed d(θn(h), e) < de−nαδ
by Lemma 7.29. Therefore, an.(h.x) = θn(h).(an.x) and an.x have
distance less than de−nαδ, which shows that both belong to ∂de−nαδP
and gives a contradiction to the definition of En.�
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7.33. Hyperbolic torus automorphism concluded. The discus-
sion in §7.26 together with Lemma 7.31 shows that it is possible to
choose P such that the σ-algebra A =

∨∞
n=0 a

−nP is a-decreasing and
subordinate to G−. Recalling that P was constructed as a generator
(c.f. §3.6) we also get

hµ(a) = hµ(a,P) = Hµ(A|a−1.A).

This establishes the link between Hµ(A|a−1.A) and the entropy hµ(a)
in the case at hand, the link between Hµ(A|a−1.A) and the entropy
contribution we now establish in great generality.

7.34. Proposition. Suppose A is a countably generated σ-algebra sub-
ordinate to U , such that A ⊃ a−1A. Then

lim
n→∞

log µUx (a−nBU
1 a

n)

n
= Hµ(A|a−1A).

In particular, the limit defining the entropy contribution of U at x
exists.

7.35. Proof: We start by showing that

− 1

n
log µa

−nA
x ([x]A)→ Hµ(A|a−1A).

Here notice first that by Proposition 5.17

µa
−1A
x

∣∣
[x]A

= µa
−1A
x ([x]A)µAx

for a.e. x since [x]a−1A is a countable union of A-atoms. More generally
we obtain by the same argument that

µa
−nA
x ([x]A) =

n∏
i=1

µa
−iA
x ([x]a−(i−1)A).

Also note that µAa.x = a∗µ
a−1A
x (as one e.g. verifies from the defining

relation of µAx in terms of the conditional expectation). Combining
these one gets by taking logarithms that

− 1

n
log µa

−n

x A([x]A) =
n∑
i=1

− log µa
−iA
x ([x]a−(i−1)A)

n

=
1

n

n−1∑
i=0

Iµ(A|a−1A)(ai.x)

→ Hµ(A|a−1A)

(27)Notice that f(r) is monotone and hence differentiable a.e.
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by the pointwise ergodic theorem (since µ is assumed to be a-ergodic).
We may also obtain in a similar manner that

log µUx (a−nBU
1 a

n)

n
→
∫

log µUx (a−1BU
1 a),

where we assume the normalization µUx (BU
1 ) = 1. Indeed by Lemma 7.16

we know µUa.x(a
−1BU

1 a) =
µUx (a−2BU1 a

2)

µUx (a−1BU1 a)
, which easily generalizes to higher

powers of a and then gives

µUx (a−nBU
1 a

n) =
n−1∏
i=0

µUai.x(a
−1BU

1 a).

Taking the logarithm and using the pointwise ergodic theorem the
above claim follows.

We now prove Proposition 7.34 roughly speaking by the following ar-
gument: Both of the above limits measure the growth rate of the a dy-
namically expanded set in relation to a fixed set. By Theorem 6.3.(iv)
the fact that in one expression we are using the conditional measures
µa
−nA
x and in the other the leaf-wise measure µUx is irrelevant. However,

what is unclear is the precise relationship between the shape Vn,x ⊂ U
of the atoms [x]a−nA = Vn,x.x and the set a−nBU

1 a
n. We show below

that as n→∞ the influence of the shape is negligible, thus obtaining
the proposition.

Fix δ > 0 such that

(7.35a) Y := {x : BU
δ (x) ⊂ [x]A ⊂ BU

δ−1(x)}
has positive measure. By the argument in §7.18 (which only assumes
the existence of the limit for r = 1) we know that

(7.35b) lim
n→∞

log µUx (a−nBU
r a

n)

n

is independent of r for a.e. x. Moreover, for a.e. x there exists a se-
quence nj of integers for which anj .x ∈ Y . For those n = nj we
therefore have

[x]a−nA = a−n[an.x]A ⊂ a−nBU
δ−1an.x

and similarly

[x]a−nA ⊃ a−nBU
δ a

n.x.

Let c(x) = µUx (Vx) > 0 be the factor such that µUx |Vx .x = c(x)µAx where
Vx ⊂ U is the shape of the atom [x]A = Vx.x. With this notation the
above inclusions imply

µUx (a−nBU
δ a

n) ≤ c(x)µa
−nA
x ([x]A)−1 ≤ µUx (a−nBU

δ−1an)
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for a.e. x. Taking the logarithm, letting n = nj → ∞, and using the
independence of the limit in (7.35b) the proposition follows. �

7.36. Returning to the general case. Even though we used in the
example of the hyperbolic torus automorphism some special properties,
namely that X is compact and that a is expansive, it does give hope
regarding the existence of A in general. In fact using somewhat similar
methods (Lemma 7.29, 7.27, and 7.31 are general) as in the example
we now establish the existence of the σ-algebra. However, linking the
σ-algebras and the entropy (as we did in §7.33) will need more work.

7.37. Proposition. Say µ is an a-invariant measure on Γ\G, and U <
G− is a closed subgroup normalized by a. For every ε > 0, there exists
a countably generated σ-algebra A, and Y ⊂ X, such that:

(i) µ(Y ) > 1− ε
(ii) A is subordinate to U on Y .
(iii) a−1A ⊂ A, i.e. A is a-decreasing.

Above we do not assume that a acts ergodically w.r.t. µ. However,
with this additional assumption we obtain that the above A is actually
subordinate to U (on a subset of full measure). For this note that for
a.e. x /∈ Y there exists some positive as well as some negative n with
an.x ∈ Y which together with a−1.A ⊂ A gives an upper resp. a lower
bound for [x]A.

7.38. Proof: Choose some open Y ⊂ X with compact closure, µ(Y ) >
1−ε, and with µ-thin boundary (by applying Lemma 7.27 to find some
large r). Choose a finite partition of Y into sets of small diameter (as
specified below) and with µ-thin boundary (applying Lemma 7.27 to
find for every x ∈ Y a small r and choosing a finite subcover). We
add to this partition the set X \ Y to obtain the partition P . Since
the boundaries of all elements of P are null sets, we may assume all
elements of P are open (and ignore the remaining null set). By Lemma
7.31 we know that the atoms of

∨
n≥0 a

−n.P contain a neighborhood of

x in the direction of G− almost surely, i.e. for a.e. x ∈ X there is some
δ > 0 such that

(7.38a) [x]∨
n≥0 a

−n.P ⊃ BG−

δ .x.

We now will replace P by a σ-algebra PU in such a way that A =∨
n≥0 a

−n.PU will be subordinate to U (at least) on Y . Let P denote
an element of P different from X \Y . As we may assume that diameter
of P is smaller than half the injectivity radius on Y , we get that P is
the injective isometric image of an open subset P̃ of G. By assumption
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U is closed, so that the Borel σ-algebra BG/U of the quotient G/U is

countably generated. This induces a σ-algebra CP (first on P̃ and then
also) on P whose atoms are open pieces of U -orbits. We define PU
to be the countably generated σ-algebra whose elements are unions of
elements of CP for P ∈ P and possibly the set X \ Y , i.e. the atoms
of x for PU is either X \ Y if x /∈ Y , resp. an open U -plaque Vx.x
of x if x ∈ Y . We claim that for a.e. x ∈ Y the atom [x]A w.r.t.
A =

∨
n≥0 a

−n.PU is an open U -plaque. Indeed suppose x satisfies
(7.38a) for some δ > 0 (which we may assume is smaller than half
the injectivity radius) and u ∈ BU

δ . Then for all n ≥ 0 we know that
an.x and anu.x belong to the same element P ∈ P . Fix some n ≥ 0. If
P = X \Y , then an.x and anu.x still belong to the same atom of PU . If
P 6= X \Y , then we also claim that an.x and anu.x belong to the same
atom of PU : The two elements y = an.x, z = anu.x ∈ P correspond
to two elements ỹ, z̃ ∈ P̃ . Since P and P̃ are isometric and anua−n

is being contracted we conclude that these two points are still on the
same U -coset ỹU = z̃U , for otherwise we would get a contradiction to
the injectivity property at z ∈ Y . This shows that the atoms [x]A for
a.e. x ∈ Y are indeed open U -plaques. �

7.39. Proof of Theorem 7.6.(iii): Clearly if µUx is finite, then the
entropy contribution hµ(a, U) vanishes (as it measures a growth rate).
Assume now on the other hand hµ(a, U) = Hµ(A|a−1A) = 0. Then

Hµ(A|a−1A) = E(− log µa
−1A
x ([x]A)) = 0

implies µa
−1A
x ([x]A) = 1 a.e. which is equivalent to A = a−1A modµ.

Iterating this gives amA = a−mA modµ and µa
−mA
x ([x]amA) = 1 a.e.

and for all m ≥ 1. By Theorem 6.3.(iv) this says that µUx (V−m,x \
Vm,x) = 0 a.e., where Vm,x denotes the shape of the amA-atom of x.
Using again the set Y in (7.35a) we see that the precise shapes do not
matter as V−m,x ↗ U and Vm,x ↘ {e} as m→∞ for a.e. x. It follows
that µUx ∝ δe. �.

7.40. Proof of the inequality hµ(a, U) ≤ hµ(a, U ′) for U ⊂ U ′ ⊆
G−. Assume both U and U ′ are closed a-normalized subgroups of G−

such that U ⊂ U ′. By the construction of the σ-algebra we see that
there exist two σ-algebras A and A′ which are both a-decreasing and
subordinate to U resp. to U ′ such that additionally A ⊃ A′. In order
to obtain these, one may use one and the same finite partition P and
then carry the construction through with both groups.

We claim that A′ ∨ a−1.A = A (modµ). We already know one
inclusion, to see the other we describe the atom of C = A′ ∨ a−1.A.
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Suppose y and x are equivalent w.r.t. C, then a.s. there exists some
u ∈ U with y = u.x where umay be rather big because the a−1.A-atoms
are in general bigger than the A-atoms. To make this more precise,
assume y, x belong to the set Y which was used in the constructions of
the σ-algebras. Then we do not know that d(e, u′) is smaller than the
injectivity radius (of Y ). However, we also know that y = u′.x for some
u′ ∈ U ′ (as the two points are also A′-equivalent), and that d(e, u′) is
less than the injectivity radius. Since for a.e. x the G−-leaf is embedded
by Lemma 7.12, we must have u = u′. This implies that x and y = u.x
belong to the same atom of the σ-algebra C ′P (for x, y ∈ P ⊂ Y ) which
was used in the construction of PU . This shows the two points are
equivalent w.r.t. A, first under the assumption that x, y ∈ Y but the
general case follows by the same argument using the minimal n with
an.x, an ∈ Y . As the atoms of the σ-algebra determine the σ-algebra
at least modµ the claim follows.

The claim implies the desired inequality since

h(a, U) = Hµ(A|a−1.A) = Hµ(A′|a−1.A) ≤ Hµ(A′|a−1.A′) = h(a, U ′)

by monotonicity of the entropy function with respect to the given (i.e.
the second) σ-algebra. �

7.41. First proof of the inequality in Theorem 7.9: In the U, a
we have considered, it is easy to see that λ(a−nBU

1 a
n) = cn, where c is

the determinant of the adjoint representation of a−1 acting on the Lie
algebra u of U . Hence for a.e. x, we have by Theorem 6.29(28)

lim
n→∞

µUx (a−nBU
1 a

n)

n2cn
= 0 and so

hµ(a, U) = lim
n→∞

log µUx (a−nBU
1 a

n)

n
≤ c.

This is the inequality in Theorem 7.9. In §7.55 we will give the proof
of Theorem 7.9 in full including an independent proof of the inequality
shown here. �

7.42. Where we are. To summarize we have shown Theorem 7.6.(i),
the inequality in (ii), (iii), and the inequality in Theorem 7.9 (and also
that it suffices to study ergodic measures). However, we still have to
show the equality between the entropy contribution hµ(a,G−) and the
entropy hµ(a) and the relationship between invariance and equality in
Theorem 7.9. We now turn to the former problem in general.

(28)Strictly speaking the sets a−nBU1 a
n may not balls, but the proof can be

adapted to allow for that and the additional thickening of the balls by the parameter
5 does not change the asymptotical behavior of λ(a−nBU1 a

n).
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7.43. Proposition. Let µ be an a-invariant and ergodic measure on
X = Γ\G. Then there exists a countable partition P with finite en-
tropy which is a generator for a modµ. Moreover, the σ-algebra A =∨
n≥0 a

−n.P is a-decreasing and subordinate to G−.

Together with Proposition 7.34 this implies the last claim of Theo-
rem 7.6.(ii).

7.44. Some comments: In general, we will have to work with two
complications not present in the example of an hyperbolic torus auto-
morphism. For one, a need not be hyperbolic on Γ\G— there could be
a central direction (orbits of G0) along which a is neither expanding
nor contracting. The second issue is that Γ\G will not be compact in
general (which often one refers to by saying that it may contain a cusp)
which needs to be dealt with. However, as we will now show, one can
still carefully choose a countable partition P of finite entropy which
generates under a (and modµ).

We will need a few more elementary lemmata.

7.45. Lemma. There exists some α > 0 depending on a and G such
that for every r > 0 we have

θn(BG
e−|n|αr) ⊂ BG

r

for all n ∈ Z. Here θ(g) = aga−1 for g ∈ G again stands for conjuga-
tion by a.

Basically this lemma follows from the fact that conjugation is a Lip-
shitz map whose Lipshitz constant is the norm of the adjoint represen-
tation of a.

7.46. Lemma. For every Ω ⊂ Γ\G with compact closure, and for every
α and r > 0, there exist κ(G), c(Ω, r) such that for every n, the set Ω
can be covered by ceκn balls of radius e−αnr.

For the proof of this lemma notice that the set Ω can be covered by
finitely many small balls of fixed radius, and that in each one of these
we may argue that the metric is basically flat (e.g. in characteristic
zero the logarithm map would be bi-Lipshitz in a neighborhood of the
identity and the claim is quite easy for a linear space). In a sense this
lemma captures (in some weak way) the finite-dimensionality of the
group in question.

7.47. Proof: Equipped with the lemmata above, we are ready to start
the construction of our partition P . Fix an open subset Ω ⊂ X = Γ\G
of compact closure, positive measure, and µ-thin boundary (see Lemma



DIAGONAL ACTIONS ON LOCALLY HOMOGENEOUS SPACES 55

7.27). We may assume Ω is a ball Br/16(x0) where r is an injectivity
radius on Ω.

7.48. The partition Q. We define Q = {Ω, X \ Ω}. By Lemma 7.31
we have that for a.e. x there exists some δ > 0 with

(7.48a) BG−

δ .x ⊂ [x]∨
n≥0 a

−n.Q.

7.49. The partition Q̃. Next we define Q̃ = {Qi : i = 0, 1, 2, . . .},
where we define Q0 = X \Ω, resp. Q1 = Ω∩ a−1.Ω, Q2 = (Ω \ a−1.Ω)∩
a−2Ω, . . ., in other words we split Ω into countable many sets according
to when the points next visit Ω (under forward iterates of a). (Strictly
speaking we should also add the set Q∞ = Ω1 ∩

⋂∞
j=1 a

−j.X \Ω to the

partition Q̃, but by Poincaré Recurrence µ(Q∞) = 0, so we may omit
it from the discussion.)

We observe that Q̃ is contained in the σ-algebra
∨∞
n=1 a

−nQ. There-

fore,
∨∞
n=1 a

−n.Q =
∨∞
n=1 a

−n.Q̃ and the above claim (7.48a) regarding

the atoms remains true for Q̃.

7.50. Finite entropy. We will now show that Hµ(Q̃) < ∞ (but we
will need to refine it further to obtain the desired partition). First, note
that X \Ω can be partitioned according to how much time a point will
spend (resp. has already spent) in X \Ω before returning to (resp. since
coming from) Ω, keeping in mind that the set of points which remain
in X \ Ω forever (resp. have always been in X \ Ω) has measure 0 by
ergodicity. Moreover, the set of points that have spent time t in X \Ω
and will return to X \ Ω in time s is exactly at.Qt+s+1. This implies

that X \ Ω =
⋃∞
i=1

⋃i
j=1 a

i−jQi+1, and since µ is a-invariant, we see

that µ(X \ Ω) =
∑∞

i=1 iµ(Qi+1) < 1. As the sets Q1, Q2, . . . partition
Ω we also have µ(Ω) =

∑∞
i=1 µ(Qi), and so we conclude that

∞∑
i=1

iµ(Qi) = 1.

We can therefore write

Hµ(Q̃) = −
∞∑
i=0

µ(Qi) log µ(Qi) <
∑

µ(Qi)>e−i

µ(Qi)i+
∑

µ(Qi)≤e−i
e−ii+c <∞

by using monotonicity of − log t in the first case and the monotonicity
of −t log t for small values of t in the second case (the constant c is
there to handle the finitely many cases where the latter monotonicity
may not apply).
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7.51. The partition P. We now apply Lemma 7.46: For i ≥ 1 each
of the sets Qi ⊂ Ω may be covered with ≤ ceiκ many balls Bj of radius
e−αnr/8. Here r is the injectivity radius at x0 ∈ Ω and α is chosen as
in Lemma 7.45. We will refine the partition Q̃ by splitting each Qi into
smaller sets. However, so as not to destroy the property (7.48a) we will
use instead of the original balls Bj some modified version of them that
are “widened” or “smeared out” in the direction of G−.

Fix some Qi ∈ Q̃ for i ≥ 1 and write D = Qi to simplify the notation,
also let B1, B2, . . . , BN with N = N(i) ≤ ceiκ be the cover obtained
above. We split D into the set D1, D2 as follows:

D1 = D ∩ (BG−

r/4 .B1),

D2 = D ∩ (BG−

r/4 .B2) \D1, . . . .

This defines a partition of D = Qi into ≤ ceiκ many sets. Collecting
these partitions for the various sets Qi we obtain one partition P of
X containing all them and Q0 = X \ Ω. Roughly speaking, since
the set Ω ⊃ D has small diameter (at most r/8) in comparison to its
injectivity radius (r) and since the widening by BG−

r/4 is by a bigger
radius, we should think of the splitting of D into the sets D1, . . . as a
splitting transversely to the G−-orbits.

7.52. Finite entropy. Now for each n, we define µ|Qn to be the re-
stricted measure normalized to a probability measure. Then the en-
tropy Hµ|Qn (P) ≤ log c+ κn since the partition P restricted to Qn has
at most ≤ cenκ many elements by construction. Also

Hµ(P) = Hµ(Q̃) +Hµ(P|Q̃),

and the latter quantity may be expressed as the weighted average of
the entropies Hµ|Qn (P) so that finally

Hµ(P) ≤ Hµ(Q̃) + log c+ κ
∑

nµ(Pn) <∞.

7.53. Upper bound for atom. We claim that the partition P has
the property that for any x, an.x ∈ Ω, we have

[x]∨∞
n=0 a

−nP ⊂

(
n⋂
k=0

a−kBG
r a

k

)
. x,

which is quite similar to what we proved in the case of a hyperbolic
torus automorphism. The idea is that, although we do not learn much
information about the orbits during the time it spends near the cusp
(our partition element Q0 = X \ Ω ∈ P is rather crude there and
moreover the injectivity radius is not uniform there), we compensate
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by learning a great deal about the point at the time at which it leaves
Ω.

To prove the claim assume x, anx ∈ Ω and y = g.x ∈ [x]∨∞
i=0 a

−nP
for some g ∈ Br. Then x ∈ Qi = D for some i and x ∈ Dj for some
j ≤ N(i). This means that ai.x ∈ Ω and we will first show the claim
for n = i. By equivalence of y = g.x to x and by construction of the
set Dj we get that x = uxhx.zj with ux ∈ BG−

r/4 and hx ∈ BG
e−αnr/8

and similarly for y, where zj ∈ D is the center of the ball Bj used to
define Dj. We may remove zj form the formulas and obtain first that
y = g.x = uyhyh

−1
x u−1

x .x which implies g = uyhyh
−1
x u−1

x ∈ BG
r as r

is an injectivity radius. If r is sufficiently small we obtain from this
g = uh with u = uyu

−1
x ∈ BG−

r/2 and h = ux(hyh
−1
x )u−1

x ∈ Be−αnr/2 as
conjugation by a small element does not change the metric much. This
shows that akga−k = (akua−k)(akhak) ∈ BG−

r/2B
G
r/2 for k = 1, . . . , i by

Lemma 7.45 as needed if n = i.
If n > i we repeat the argument as needed (initially with ai.x and

aig.x replacing x and g.x). This shows the claim.
The claim implies that

[x]A ⊂ BG−G0

r .x

for a.e. x ∈ Ω, where we define A =
∨∞
n=0 a

−nP . Indeed for a.e. x ∈ Ω
we have infinitely many n with an.x ∈ Ω by Poincarè recurrence.

Moreover, if µ is not compactly supported, then µ(Qn) 6= 0 for infin-
itely many n which implies that the above atom is actually contained in
BG−
r (x) for a.e. x ∈ Ω. In fact, suppose µ(Qn0) > 0 then for a.e. x ∈ Ω

we know that there are infinitely many n with an.x ∈ Qn0 . Take one
such x and assume that g.x is equivalent to x and g = uh with u ∈ G−
and h ∈ G0, this implies anga−n = anua−nh = u′h is the displacement
between an.x and ang.x which implies h ∈ BG

e−αn0r/2
. As we know this

for infinitely many n0 we obtain h = e.
If however, we have µ(Qn) = 0 for all but finitely many n, then P is

actually a finite partition modµ and the last statement may not hold.
However, in this case we may artificially split one of the sets of positive
measure into countably many sets of positive measures such that for
every ε we have a partition element of positive measure contained in
a set of the form BG−

r/4Bε(xε). Making these new partition elements
small enough, we may assume that their measure decays rapidly which
ensures that the resulting partition still has finite entropy. With this
refined partition the above holds also in this case.

Notice that the above statement regarding the upper bound BG−
r .x

of the atom were stated for x ∈ Ω, but that a slightly weaker form
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also holds for a.e. x ∈ X. In fact, if x ∈ X and n ≥ 1 is such that
an.x ∈ Ω satisfies the inclusion [an.x]A ⊂ BG−

r an.x then we have that
[x]A ⊂ BG−

s .x for some s that depends on n.

7.54. Lower bound for atom. To finish the proof we wish to show
that (7.48a) also holds for the partition P . So suppose x ∈ Ω and
δ > 0 satisfies (7.48a). Here we will use the fact that we “widened”
the balls Bj in the direction of G− to obtain the sets Dj ⊂ Qi. We

may assume δ < r/8, and pick some u ∈ BG−

δ . As Q̃ is contained
in the σ-algebra generated by

∨
n≥0 a

−n.Q we know that x and u.x

belong to the same Qi = D ∈ Q̃. Suppose x ∈ Dj which shows

x = uxhx.zj with ux ∈ BG−

r/4 and hx ∈ BG
e−αir/8 where zj ∈ Bj ∩ Ω is

the center of the ball Bj that was used to construct Dj. Now clearly
u.x = (uux)hx.zj and uuxhx ∈ BG

r/2. As the diameter of Ω is at most

r/8 by definition, we obtain uuxhx ∈ BG
r/8 since r is an injectivity radius

on Ω. Together with hx ∈ BG
r/8 this implies uux ∈ BG−

r/4 . (To see this

notice that by left invariance of the metric we have d(g, e) = d(e, g−1) ≤
d(e, h) + d(h, g−1) = d(e, h) + d(gh, e) for all g, h ∈ G.) This implies
that u.x also belongs to BG−

r/4 .Bj and D. In fact this shows u.x ∈ Dj,

for if u.x /∈ Dj then necessarily u.x ∈ Dj′ for some j′ < j but then
by symmetry of the argument between x and u.x we would have also
x /∈ Dj. Repeating the argument as needed starting with ai.x and
aiu.x shows that x and u.x are equivalent with respect to

∨∞
n=0 a

−nP .
The points x ∈ X \ Ω are dealt with in the same manner as before
by choosing a minimal n with an.x ∈ Ω. This finishes the proof of
Proposition 7.43. �

7.55. Proof of Theorem 7.9. Let U < G− be a closed a-normalized
subgroup. Let µ be an a-invariant and ergodic probability measure on
X = Γ\G. We wish to show that the entropy contribution is bounded
by hµ(a, U) ≤ J where J = − log

∣∣det Ada |u
∣∣ is the negative logarithm

of the absolute value of the determinant of the adjoint representation
of a restricted to the Lie algebra u of U . As we will show we only have
to use convexity of log t for t ∈ R. However, we will have to use it on
every atom [x]a−1.A for an a-decreasing σ-algebra which is subordinate
to U .

We fix a Haar measure mU on U , and note that

(7.55a) mU(a−1Ba) = eJmU(B) for any measurable B ⊂ U.

For x ∈ X we write Vx ⊂ U for the shape of the A-atom so that Vx.x =
[x]A a.e. Recall that µa

−1.A
x is a probability measure on [x]a−1.A =
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a−1Va.xa.x which is used in the definition of

Hµ(A|a−1.A) = −
∫

log µa
−1.A
x ([x]A).

We wish to compare this to a similar expression where we use (in a
careful manner) the Haar measure mU on U as a replacement for the
conditional measures. We note however, that we will always work with
the given measure µ on X, so our notion of “a.e.” is here always
meant w.r.t. µ. We define τHaar

x to be the normalized push forward of
mU |a−1Va.xa under the orbit map, i.e. we define

τHaar
x =

1

mU(a−1Va.xa)
mU

∣∣
a−1Va.xa

.x,

which again is a probability measure on [x]a−1A.
We define

p(x) = µa
−1.A
x ([x]A)

which appears in the definition of Hµ(A|a−1.A). By analogy we also
define

pHaar(x) = τHaar
x ([x]A) =

mU(Vx)

mU(a−1Va.xa)
e−J

where we used (7.55a). Taking the logarithm and applying the ergodic
theorem (check this) we see that −

∫
log pHaardµ = J .

Now we recall that both A and a−1.A are subordinate to U , which
means that after removing a null set they must be countably equivalent.
In other words, there exists a null set N such that for x /∈ N the A-
atom of x contains an open neighborhood of x in the U -orbit. We
may also assume that for x /∈ N there are infinitely many positive and
negative n with an.x ∈ Y where Y is as in (7.35a). Since U is second
countably, this implies that

[x]a−1.A \N =
∞⋃
i=1

[xi]A \N

where the union is disjoint. For a.e. x we wouldn’t have to be too
careful about the null set N as it is also a null set for the conditional
measure, but note that it may not be a null set for τHaar

x . Therefore,
we write

[x]a−1.A =
∞⋃
i=1

[xi]A ∪Nx

where Nx is a null set for µa
−1.A
x but maybe not for τHaar

x . We may
assume µa

−1.A
x ([xi]A) > 0, otherwise we just remove this atom from the
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list and increase Nx accordingly. This shows

∞∑
i=1

µa
−1.A
x ([xi]) = 1

but only
∞∑
i=1

τHaar
x ([xi]) ≤ 1.

We now integrate log pHaar − log p over the atom [x]a−1.A to get

(7.55b)

∫
log pHaardµa

−1.A
x −

∫
log pdµa

−1.A
x ,

but as both functions are constant on the A-atoms (and as Nx is a null
set w.r.t. the measure w.r.t. which we integrate) this integral is nothing
but the countable sum

=
∞∑
i=1

(
log

τHaar
x ([xi])

µa−1.A
x ([xi])

)
µa
−1.A
x ([xi])

Using now convexity of log t for t ∈ R with µa
−1.A
x ([xi]) as the weights

at ti = τHaar
x ([xi])

µa−1.A
x ([xi])

we get

(7.55c) =
∞∑
i=1

log(ti)µ
a−1.A
x ([xi]A) ≤ log

( ∞∑
i=1

tiµ
a−1.A
x ([xi])

)

= log

( ∞∑
i=1

τHaar
x ([xi])

)
= log τHaar

x

( ∞⋃
i=1

[xi]A

)
≤ 0.

Integrating this inequality over all of X and recalling the relation of
p with hµ(a, U) = Hµ(A|a−1.A) and of pHaar with J gives the desired
inequality.

In case of equality we use strict convexity of log t: If hµ(a, U) = J ,
then the integral of the non-positive (due to (7.55c)) expression in
(7.55b) vanishes. Therefore, for a.e. atom (7.55b) vanishes, or equiva-
lently we must have 0 on both sides of (7.55c). However, this means
that τHaar

x (Nx) = 0 and that ti = 1 for all i by strict convexity of log t.

Notice that ti = 1 means that the conditional measure µa
−1.A
x gives the

same weight to the A-atoms [xi]A as does the normalized Haar measure
τHaar
x on the a−1.A-atom.

Using that Hµ(akA|a−`A) = (k+`)hµ(a, U) = (k+`)J for any k, ` ≥
0 together with the same argument we obtain that the conditional
measure µa

−`.A
x gives the same weight to the akA-atoms as does the
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normalized Haar measure on the a−`.A-atom. For a.e. x the a−`.A-
atom can be made arbitrarily large as there is a sequence `n →∞ with
a`n .x ∈ Y . Now fix `, then the various akA-atoms for all k ≥ 0 generate
the Borel σ-algebra on the a−`.A-atom, at least on the complement of
N which is a null set both for µa

−`A
x and for the normalized Haar

measure on the atom. This follows as for µa
−`.A
x -a.e. y the akA atom

can be made to have arbitrarily small diameter since for y /∈ N there
is a sequence kn →∞ with a−kn .y ∈ Y . This shows that µa

−`A
x equals

the normalized Haar measure on the atom [x]a−`A. Using this for all `
we see that the leaf-wise measure µUx is the Haar measure on U , and
so that µ is U -invariant (c.f. Problem 6.27). This concludes the proof
of Theorem 7.9. �

8. The product structure

8.1. In the previous chapter we consider the measure µ on Γ\G invari-
ant under the action of a diagonalizable element a ∈ G, and studied in
some detail the leafwise measures induced by µ on orbits of unipotent
groups U contracted by a. When considering the action of a multipa-
rameter diagonalizable group A ⊂ G, it is often possible to find some
a ∈ A which contracts some nontrivial unipotent group U− but which
acts isometrically on orbits of some other group T (which may well
be contacted by some other element a′ ∈ A). In this case there is a
surprisingly simple relation between the leafwise measures of the group
generated by U− and T (which typically would be simply the product
group) and the leafwise measures for each of these groups: essentially,
the leafwise measures for TU− will be the product of the leafwise mea-
sures for T0 and U−!

Even though a key motivation to looking at these conditional mea-
sures is our desire to understand action of multiparameter diagonal
groups, we will make use of a single diagonalizable a ∈ G (more pre-
cisely — an element of the class A defined in §7.14). Let U− ⊂ G− be
a-normalized, and contracted by a. Finally let T ⊂ G0 = CG(a) cen-
tralize a and assume that T normalizes U− (this is not a very restrictive
condition: in particular, the reader can easily verify that the full con-
tracting subgroup for a is normalized by T ). We define H = T n U−
and will show below that the leaf-wise measure for H is proportional
to the product of the leaf-wise measures for T and and U−.

8.2. This simple relation was discovered by M.E. and A. Katok and is
one of the key ingredients in the paper [EK03], and extended in [EK05]
(cf. also [Lin06, §6]). A weaker form of this relation can be derived
from the work of H. Hu [Hu93] on entropy of smooth Zd-actions, and
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the relation between entropy and leafwise measures, and was used by
Katok and Spatzier in [KS96].

8.3. Example. The following is an example (for G = SL(3,R)) to
have in mind: Let

a =

e−2

e
e

 U− =


1 ∗ ∗

1 0
1

 T =


1 0 0

1 ∗
1


so that

H =


1 ∗ ∗

1 ∗
1


8.4. Short reminder. Recall that the equivalence classes by pro-
portionality of the leaf-wise measure live in a compact metric space,
because of the growth property from Theorem 6.29. More precisely, re-
call that we have a function ρ > 0 such that

∫
ρdµTx <∞ a.e. Taking a

sequence {fi ≤ ρ}∞i=1 ⊂ Cc(T ) spanning a dense subset, we may define

d([ν1], [ν2]) :=
∞∑
i=1

2−i
∣∣∣∣∫ fidν1∫

ρdν1

−
∫
fidν2∫
ρdν2

∣∣∣∣
for any two equivalence classes of Radon measures with

∫
ρdνi < ∞.

If we chose a representative of the equivalence class we may assume∫
ρdνi = 1. This way, the metric just defined corresponds to the weak∗

topology in the space of Radon measures{
ν :

∫
ρdν = 1

}
⊂
{
ν :

∫
ρdν ≤ 1

}
.

This way the leaf-wise measure µTx can be interpreted as a measurable
function with values in a compact metric space.

We also recall the property of leaf-wise measures (Theorem 6.3.(iii)):

(8.4a) [µTx ] = [(µTt.x).t]

whenever t ∈ T , and x, t.x ∈ X ′ (a set of full measure). The following
proposition extends this by explaining how µTx transforms under the
bigger group H = TU−.

8.5. Proposition. There exists X ′ ⊂ X of full measure, such that for
every x ∈ X ′ and h ∈ H such that h.x ∈ X ′, we have

[µTx ] = [(µTh.x)t]

where h = th′ = h′′t for some h′′, h′ ∈ U− and t ∈ T .
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As a special case, the special case of t = e of this proposition implies
the following (note, however that Proposition 8.5 is a substantially
stronger statement — cf. §8.9):

8.6. Corollary. Let u ∈ U−. Then x, u.x ∈ X ′ implies [µTx ] = [µTu.x].

8.7. Proof of Proposition 8.5: As explained above the map x 7→
[µTx ] is Borel measurable, from Γ\G to a compact metric space. By
Luzin’s Theorem, for any ε > 0, there exists a compact Kε ⊂ Γ\G such
that:

• µ(Kε) > 1− ε,
• x 7→ [µTx ] is continuous, and
• (8.4a) holds whenever x, t.x ∈ Kε.

Define

Xε =
{
x ∈ Kε : sup

n

1

n

n−1∑
i=0

1Kc
ε
(ai.x) < 1/2

}
Then using the maximal ergodic theorem one easily verifies that µ(Xε) >
1− 2ε.

If x, h.x ∈ Xε, then there is a sequence ni →∞ such that anix, anih.x ∈
Kε. Passing to a subsequence if necessary, we may assume that anix→
x0. By continuity on Kε we have

[µTani .x]→ [µTx0
].

For h.x, we can rewrite and get

anih.x = anith′.x = t(anih′a−ni)ani .x→ t.x0,

since the term in parentheses anih′a−ni → e as ni → ∞. So again by
continuity we have

[µTanih.x]→ [µTt.x0
].

On the other hand, [µTx ] = [µTa.x] a.s., so modifying X ′ε if necessary, we
have for every x ∈ X ′ε

[µTx ] = [µTani .x] = [µTx0
] = [(µTt.x0

)]t = [µTanih.x]t = [µTh.x]t

as desired for x, h.x ∈ Xε. We conclude the proof by letting ε = 1
n
↘ 0,

choosing Kε increasing, and defining X ′ to be the union of the X 1
n
. �

8.8. Corollary (Product structure). Let H = T n U− be as above.
There exists X ′ ⊂ X of full measure, such that for every x ∈ X ′ we
have

µHx ∝ ι(µTx × µU−x ),

where ι : (t, u) ∈ T × U− 7→ tu ∈ H.
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8.9. Remark: All the essential facts for this corollary have already
been proved as we explain now. Suppose for a minute that the product
formula as in the last corollary holds, then indeed the leaf-wise measure
for T of a point u.x with u ∈ U− should be the same as for x, but as
usual we should allow for null sets and just state this for a.e. u ∈ U−
(w.r.t. the natural measure µU

−
x there). This is what we proved in

Corollary 8.6 for a.e. x. (Recall that µ(X \ X ′) = 0 implies that for
µ-a.e. x ∈ X and µU

−
x -a.e. u we have u.x ∈ X ′.)

However, this property does not imply that µHx is a product measure:
E.g. if µHx were a measure supported on a measurable graph from T to
U− then µU

−
x would typically be trivial and this would make the above

true while µHx may not be a product measure.
Proposition 8.5, on the other hand, does contradict the prevalence

of this type of leafwise measures. We may rephrase Proposition 8.5 as
follows: for µ-a.e. x and µHx -a.e. h = tu (with t ∈ T and u ∈ U−) we
know that the leaf-wise measure µTh.x is, apart from the shift by t (and
possibly a proportionality factor), the same as µTx . This property is
incompatible with a graph-like measure we described above unless the
graph describes a constant map (which is compatible with the product
structure we claim). To convert this heuristic into an argument we
need to prove another lemma regarding leaf-wise measures.

8.10. Lemma. Let H be a locally compact second countable group acting
nicely on X (say, locally and measure-theoretically free), and let µ be a
Radon (i.e. locally finite) measure on X. Assume H = LM = ι(L×M)
is topologically isomorphic (under the product map ι(`,m) = `m for
` ∈ L,m ∈ M) to the product of two closed subgroups L,M < H.
Then L acts by restriction on X and on H by left translation, and so
gives rise to families of leaf-wise measures µLx and (µHx )Lh for x ∈ X and
h ∈ H. Then there exists X ′ ⊂ X of full measure such that whenever
x ∈ X ′ we have [(µHx )Lh ] = [µLh.x] for µHx -a.e. h ∈ H.

Roughly speaking the above is what we should expect: µHx is the
measure on H such that µHx .x describes µ along on the orbit H.x.
Similarly, (µHx )Lh is the measure on L for which (µHx )Lhh describes µHx
on the coset Lh, and so we expect that (µHx )Lh be such that (µHx )Lhh.x
describes µ on the orbit Lh.x which suggests the conclusion.

8.11. Proof: Let Ξ ⊂ X be an R-cross-section for the action of H
and some set of positive measure (see Definition 6.6). Let ÃH be the
σ-algebra BH

R ×B(Ξ) on BH
R ×Ξ, where B(Ξ) is the Borel σ-algebra on

Ξ. The map ι(h, x) = h.x is injective on BH
R × Ξ by definition, and so

AH = ι(ÃH) is a countably generated σ-ring of Borel sets. The atom
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[x]AH is an open H-plaque for any x ∈ ι(BH
R × Ξ) = BH

R .Ξ (namely
equal to BH

R .z for some z ∈ Ξ).

We further define ÃL := {LB∩BH
R : B ∈ B(M)} where B(M) is the

Borel σ-algebra on M , which is by assumption a global cross-section
of L in H. The σ-ring AL = ι(ÃL×B(Ξ)) is countably generated, and
[x]AL is an open L-plaque for all x ∈ ι(BH

R × Ξ). Note that AL ⊃ AH .
The measures µHx and µLx can be defined by the values of conditional

measures with respect to a countable collection of σ-rings A(i)
H and

A(i)
L constructed as above. On each of these σ-rings a corresponding

compatibility condition is satisfied due to the inclusion A(i)
L ⊃ A

(i)
H ; this

implies the lemma. �

8.12. Proof of Corollary 8.8: Take x ∈ X to be typical (i.e., outside
of the union of bad null sets from Proposition 8.5, and Lemma 8.10
applied to both L = T , M = U− and L = U−, M = T ). We are going
to combine these statements, but for this it will be easier to restrict µHx
to the bounded product set Q = BT

r B
U−
r ⊂ H for some r > 0, which

we may envision as a rectangle with sides BT
r and BU−

r .
Using L = T Lemma 8.10 is telling us that the conditional measures

for µHx |Q with respect to the σ-algebra BT
r × B(BU−

r ) can be obtained
from the leaf-wise measures µTh.x (for µHx -a.e. h ∈ Q). As usual, we have
to shift the leaf-wise measure for T back to the space in question, which
after applying the lemma may be taken to be H, and restrict to the
atoms of the σ-algebra in question, where we use A = BT

r × B(BU−
r ).

This gives

(8.12a)
(
µHx
)A
h
∝
(
µTh.xh

)∣∣
Q
.

However, Proposition 8.5 gives an independence of µTtu.x in terms of
u ∈ U− for µHx -a.e. h = tu ∈ Q, more precisely

(8.12b) µTtu.xt ∝ µTx .

Using (8.12a)-(8.12b) together, we obtain that the conditional measures
of µHx |Q with respect to BT

r × B(BU−
r ) at h = tu ∈ Q is equal to

µTx |BTr × δu normalized to be a probability measure. However, this just

says that µHx |Q is a product measure which is proportional to ι(µTx ×νr)
for some finite measure νr on BU−

r .
Varying r it is easy to check that one can patch these measure νr

together (i.e. that they extend each other up to a proportionality factor)
to obtain a Radon measure ν on U− and that µHx is in fact proportional
to ι(µTx × ν). We wish to show that ν ∝ µU−x .

As ι(µTx × ν) is a product measure it is clear what the conditional
measures for it are with respect to a σ-ring whose atoms are of the
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form tV for open subsets V ⊂ U−. However, this corresponds really
to the right action of U− on H while we have to use the left action if
we want to apply Lemma 8.10 for L = U− and M = T . Luckily U− is
a normal subgroup, so at least the orbits of these two actions are the
same even though the way these two actions identify the orbit with the
group differs. We now analyze this in more detail.

Restrict again to Q = BT
r B

U−
r ⊂ H and consider the σ-algebra

A′ = B(BT
r )× BU−

r , whose atoms are tBU−
r for t ∈ BT

r . We know that
the conditional measure of µHx |Q at h = tu equals ι(δt×νr). Considering
now the action of U− by left multiplication on H we see that the atom
of h = tu ∈ Q corresponds to the set Vh = tBU−

r h−1 ⊂ U−. Using these
σ-rings for all positive integers r we characterize the leaf-wise measures
of µHx with respect to the U−-action and obtain that (µHx )

U−
h must be

proportional to (the push forward) t ν h−1 for µHx -a.e. h.
To summarize we know

(8.12c) µ
U−
h.x ∝ (µHx )

U−
h ∝ t ν h−1 where h = tu.

Clearly the above gives the desired statement if we just set h = e.
However, strictly speaking we are not allowed to use h = e as we only
know these two formulas for µHx -a.e. h ∈ H. Instead we may show
the corresponding claim not for the x we started with but for h.x for
µHx -a.e. h ∈ H. This will show that the corollary holds a.e. In fact, for
µHx -a.e. h = tu we know

µHh.x ∝ µHx h
−1 ∝ ι(µTx × ν)h−1 ∝ ι(µTh.xt× ν)h−1 ∝

∝ ι(µTh.x × tνh−1) ∝ ι(µTh.x × µ
U−
h.x)

by combining Theorem 6.3.(iii) for the action of H on X, with the
product structure at µHx already obtained, with Proposition 8.5, with
the definition of ι(t, u) = tu, and finally with (8.12c). �

From the product structure just proven we can read off an analogue
of Corollary 8.6 for the action of T . We note however that, since T
and U− may not commute, a full analogue of Proposition 8.5 with the
roles of T and U− reversed will in general not hold (unless one allows
conjugation as in the proof above).

8.13. Corollary. Let t ∈ T . Then x, t.x ∈ X ′ implies [µU−x ] = [µ
U−
t.x ].

We refer to Example 6.5.2 for a discussion showing that this mild
coincidence of leaf-wise measures may indeed be a very special property.
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9. Invariant measures and entropy for higher rank
subgroups A, the high entropy method

9.1. As before we consider the space X = Γ\G, where G is an alge-
braic group over a characteristic zero local field k (say k = R or Qp

for simplicity). We fix an algebraic subgroup A ⊂ G which is diago-
nalizable over the ground field k. In algebraic terms A is the group of
k-points of a k-split torus, but we may simply refer to A as a torus and
to its action on X as a torus action. We will assume that we have a
homomorphism α : (k×)n ↪→ G which is defined by polynomials with
coefficients in k and whose range equals A. We may often suppress
the isomorphism and use A and (k×)n interchangeably. For example,
if G = SL(4,R), we could have

α : (t, s) 7→


t2

ts
s

t−3s−2

 .

Let g be the Lie algebra of G. Recall that In zero characteristic, the
functions exp and log are homeomorphisms between a neighborhoods of
0 ∈ g and e ∈ G (at least in zero characteristic). Hence, the restriction
of the adjoint action of A on the Lie algebra g gives a good description
of the behavior of conjugation on G which as we have seen is crucial in
the study of the action of the elements of A on X.

9.2. A character λ is a homomorphism λ : (k×)n ' A→ k× defined by
polynomials with coefficients in k; these polynomials necessarily have
the form λ(t1, . . . , tn) = t`11 · · · t`nn where `1, . . . , `n ∈ Z.

We say that a character λ is a weight (which one also may refer to
as eigenvalue, Lyapunov weight, or root) for the action of A if there is
some nonzero x ∈ g such that for every t ∈ A, we have Ada(x) = λ(a)x.
The set of all such x ∈ g is the weight space gλ. By the assumption
that A is diagonalizable we get a decomposition g =

⊕
λ∈Φ gλ where Φ

is the set of all weights.
For a ∈ A the subspace g−a =

⊕
|λ(a)|<1 gλ is a nilpotent subalgebra,

and exp gives a global homeomorphism from g−a to the horospherical
group G−a < G. Here, the absolute value comes from the Archimedean
norm on R resp. the p-adic norms on Qp. Also, we introduced the
subscript in the notation G−a to explicate the dependence of the horo-
spherical on the element a ∈ A used.

Note that [gλ, gη] ⊂ gλη which follows easily from the formula

Ada([x, y]) = [Ada(x), Ada(y)] x, y ∈ g.
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Note that in general gλ is not a sub-Lie-algebra if λ2 is also a weight.

9.3. Define an equivalence relation on Φ by λ ∼ η iff there exist pos-
itive integers n,m such that λn = ηm. This means that λ and η are
weights in the same “direction” — characters are in a one-to-one cor-
respondence with Zn and under this correspondence λ ∼ η if and only
if they are on the same ray from the origin. For a nontrivial weight
λ ∈ Φ we define the coarse Lyapunov subalgebra

g[λ] :=
⊕
η∼λ

gη.

We note that exp gives a globally defined homeomorphism between
g[λ] and a unipotent subgroup G[λ] which we will refer to as the coarse
Lyapunov subgroup.

Note that λ is nontrivial (i.e. not the constant homomorphism) im-
plies that gλ can be made part of some g−a for some correctly chosen
a ∈ A. Moreover, two weights λ and η are equivalent if and only if
their corresponding weight spaces are contained in g−a for the same set
of a ∈ A. In this sense, one might say that weights are equivalent if
they cannot be distinguished by any elements of a in terms of whether
or not the weight space is being contracted.

Similarly, the coarse Lyapunov subgroup G[λ] is the intersection of
stable horospherical subgroups for various elements of A and is a small-
est nontrivial such subgroup. Dynamically speaking, we may say that
the orbits of the coarse Lyapunov subgroups are the smallest nontrivial
intersections one can obtain by intersecting stable manifolds of various
elements of A.

9.4. In this section, we study the structure of the conditional measures
on these coarse Lyapunov groups. This study due to Einsiedler and
Katok [EK03, EK05] by itself gives sufficient information to yield the
following measure classification theorem:

9.5. Theorem (Einsiedler and Katok [EK03]). Let Γ be a discrete sub-
group in G = SL(3,R) and define X = Γ\G. Let A be the full diagonal
subgroup of G and suppose µ is an A-invariant and ergodic probability
measure on X. Let

a =

t 0 0
0 s 0
0 0 t−1s−1

 ∈ A
and suppose that

hµ(a) >
1

2

(∣∣log | t
s
|
∣∣+
∣∣log |t2s|

∣∣+
∣∣log |ts2|

∣∣).
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λ

η

κ

exponent of t

exponent of s

Figure 1. Weights for the Heisenberg group

Then µ is the Haar measure mX on X and in particular Γ is a lattice.

We note that the expression in the parenthesis is the entropy of the
Haar measure mX . Hence, the theorem (as well as its generalizations
below) says that an ergodic measure whose entropy is close to that of
the Haar measure must be the Haar measure.

In the next section we present a completely different technique (the
low entropy method) that will allow us to sharpen the above theorem,
treating all positive entropy measures.

9.6. Fixing some a ∈ A for which g−a is nontrivial (equivalently, there
is some λ ∈ Φ so that |λ(a)| < 1). we obtain a decomposition g−a =⊕

i=1,...,` g
[λi] into finitely many of these “coarse” eigenspaces. The g[λi]

are nilpotent subalgebras, corresponding to subgroups G[λi].
We order these coarse Lyapunov weights [λ1], [λ2], . . . , [λ`] so that

for each i, the weight λi, or more precisely the corresponding to point
in Zk is not in the convex cone generated by the points corresponding
to λi+1, . . . , λ` (is exposed). This ordering guarantees that for every i
there will be an element a ∈ A so that λi(a) = 1 but |λj(a)| < 1 for
i < j < `.

9.7. Example: Take G = SL(3,R), and A the full diagonal sub-

group. Let α be the character α : (t, s) 7→

t s
t−1s−1

. Here

g is the algebra of traceless matrices. Suppose now a = α(t, s) with
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|t| < |s| < |t−1s−1|. Then g−a is the algebra of upper triangular nilpo-
tent matrices. Moreover, the coarse Lyapunov subalgebras are the
1-dimensional spaces

g[λ] =

0 ∗ 0
0 0

0

 , g[η] =

0 0 ∗
0 0

0

 , and g[κ] =

0 0 0
0 ∗

0

 ,

with the corresponding weights λ = ts−1, η = t2s and κ = ts2. As
Figure 1 shows, λ1 = λ, λ2 = η and λ3 = κ is a legitimate ordering
(as would be the reverse ordering and λ, κ, η, but not η, λ, κ). We also
have the corresponding subgroups

G[1] =

1 ∗ 0
1 0

1

 , G[2] =

1 0 ∗
1 0

1

 , and G[3] =

1 0 0
1 ∗

1

 .

where G[1] and G[3] each commute with G[2], and the commutator
[G[1], G[3]] = G[2].

9.8. Theorem. Let A = α((k×)n), and suppose µ is an A-invariant
measure on X = Γ\G. Fix some a ∈ A, and choose an allowed order
of the coarse Lyapunov subalgebras (as described above). Then for µ-
a.e. x ∈ X, we have

µG
−

x ∝ ι(µG
[1]

x × µG[2]

x × · · · × µG[k]

x )

where ι(g1, g2, . . . , gk) = g1g2 · · · gk is the product map.

9.9. Proof: By assumption [λ1] is exposed within the set of all Lya-
punov weights appearing in G− so that there exists some a′ ∈ A with
G[1] ⊂ G0

a′ and U = G[2] · · ·G[k] = G−a ∩G−a′ . It follows easily that U is a
normal subgroup of G−a and that G−a ' G[1] nU where the isomorphism
is just the map ι taking the product. From Corollary 8.8 we deduce

that µG
−
a

x ∝ ι(µG
[1]

x × µUx ). Repeating the argument, starting with G[2]

inside U , the theorem follows. �

9.10. Corollary.

hµ(a,G−) =
k∑
i=1

hµ(a,G[i])

This follows from Theorem 9.8 since the left hand side is

lim
n→∞

log µG
−

x (anBG−
1 a−n)

n
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and we have already shown that the particular shape of the set BG−
1

used in the definition does not matter. Using the product set

BG[1]

1 BG[2]

1 · · ·BG[k]

1

instead we obtain with the theorem that the left hand side splits into
the corresponding expression for G[i]. Hence in this setting our term
‘entropy contribution’ is quite accurate. We note, however, that in
general such a formula does not hold for a finer foliation than the
coarse Lyapunov subalgebras.

9.11. Getting invariance. In fact, more is true. Let us for now
continue Example 9.7 (which will lead to the proof of Theorem 9.5),
and consider f ∈ Cc(G−a ), and observe that∫

f(g)dµx,G− =

∫
f(g1g2g3)dµ[1]

x (g1)dµ[2]
x (g2)dµ[3]

x (g3)

=

∫
f(g3g2g1)dµ[3]

x (g3)dµ[2]
x (g2)dµ[1]

x (g1)

where µ
[i]
x := µG

[i]

x . This follows from Theorem 9.8 by using the two
allowed orders 1, 2, 3 resp. 3, 2, 1. Notice that, since both G[1] and
G[3] commute with G[2], we can rewrite g1g2g3 = g2g1g3, and g3g2g1 =
g2g3g1 = (g2[g3, g1])g1g3. Inserting this above, and taking the leaf-wise

measure for the G[2]-action on G−a we find that µ
[2]
x ∝ µ

[2]
x [g3, g1] for

µ1-a.e. g1 and µ3-a.e. g3 (by using Lemma 8.10 and by recalling that
[g3, g1] ∈ G[2]).

Now, if [g3, g1] has infinite order, in other words if the element [g3, g1]
is nontrivial, then µ2 must be [g3, g1]-invariant; since otherwise, succes-

sive translations by [g3, g1] would cause µ2(BG[2]

r ) to grow exponentially,

contradicting Theorem 6.29. Since the set {g2 : (µ
[2]
x ).g2 = µ

[2]
x } is

closed, it follows that if both µ
[1]
x and µ

[3]
x are non-atomic, we must

have µ
[2]
x invariant under [suppµ

[1]
x , suppµ

[3]
x ].

This is a significant restriction. By Poincaré Recurrence, we know

that µ
[1]
x = δe or suppµ

[1]
x contains arbitrarily small (and large) ele-

ments; and similarly for µ
[2]
x . In the example of the Heisenberg group

above, there are only three possible cases: either µ
[1]
x or µ

[3]
x is trivial,

or else the closed group generated by [suppµ
[1]
x , suppµ

[3]
x ] equals G[2],

and so µ
[2]
x is a Haar measure on G[2].

9.12. Proof of Theorem 9.5: The above shows (in the notation of

Example 9.7) that if µ
[1]
x and µ

[3]
x are both nontrivial at x, then a.s. µ2

is the Haar measure on G[2]. Lemma 7.16 shows that the set of points
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where µ
[i]
x is trivial is A-invariant, and so has either measure zero or

one by ergodicity. Supposing that µ
[1]
x and µ

[3]
x are both nontrivial a.e.,

we get that µ2 = µG
[2]

x equals the Haar measure on G[2] a.e. and so that
µ is invariant under G[2] by Problem 6.27. We now bring in entropy
and the assumption to the theorem to justify the assumptions to this
‘commutator argument’.

Let now a ∈ A be as in the theorem. There are essentially two
cases for elements of A: An element a ∈ A is called regular if all of its
eigenvalues are different, and is called singular if two eigenvalues are the
same. If a is regular, then we may assume it is as in Example 9.7, for
otherwise we get a group isomorphic to the Heisenberg group embedded
in some other way into SL(3,R). If a is singular we may assume (again
in the notation of Example 9.7) that t = s with |t| < 1.

We define the opposite weight spaces

g[−1] =

0 0 0
∗ 0 0
0 0 0

 , g[−2] =

0 0 0
0 0 0
∗ 0 0

 , and g[−3] =

0 0 0
0 0 0
0 ∗ 0

 ,

and similarly the coarse Lyapunov subgroups.
In the singular case G−a = G[2]G[3] and

hµ(a) = hµ(a,G−a ) = hµ(a,G[2]) + hµ(a,G[3])

by Theorem 7.6 and Corollary 9.10. By Theorem 7.9 each summand
on the right is bounded by 3

∣∣log |t|
∣∣ (which is precisely the entropy

contribution for the Haar measure). By assumption on the entropy we
have hµ(a) > 3

∣∣log |t|
∣∣ (i.e. entropy is more than one half of the maximal

entropy), so that both entropy contributions are positive. In turn, this

shows that both leaf-wise measures µ
[2]
x and µ

[3]
x are nontrivial a.e. By

symmetry of entropy hµ(a) = hµ(a−1) we also get that both µG
[−2]

x

and µG
[−3]

x are nontrivial a.e. However, the two subgroups G[2] and
G[−3] do not commute and have commutator G[1]. Moreover, the three
groups G[2], G[1], and G[−3] generate a stable horospherical subgroup
G−a′ (for some regular a′ ∈ A) which is isomorphic to the Heisenberg
group studied so far. By the above commutator argument we get that
µ is invariant under G[1]. Note that we could also have used the tripe
G[3], G[−1], and G[−2] to obtain invariance under G[−1]. So we obtain
in the singular case that in fact all leaf wise measures of the coarse
Lyapunov subgroups are nontrivial a.e. (and some of them are Haar
measures). This is enough to imply that µ is invariant under all coarse
Lyapunov subgroups (and so must be the Haar measure mX) by the
commutator argument: Any of the coarse Lyapunov subgroups G[i] is
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the commutator of two other coarse Lyapunov subgroups G[j] and G[k]

such that all three of them generate a stable horospherical subgroup
(isomorphic to the Heisenberg group).

In the regular case there are a few more possibilities. We know
that hµ(a) = hµ(a,G[1]) + hµ(a,G[2]) + hµ(a,G[3]). In this case the
upper bounds coming from Theorem 7.9 are for the three summands
log | s

t
|, − log |t2s|, resp. − log |ts2|. Note that the second term equals

the sum of the other two, so that our assumption translates to the
assumption that at least two out of the three entropy contributions
must be positive — any particular entropy contribution coming from
one coarse Lyapunov subgroup cannot give more than one half of the
maximal entropy. Hence we conclude that at least two of the three leaf-
wise measure µG

[1]

x , µG
[2]

x , or µG
[3]

x must be nontrivial a.e. From the above

we know that if µG
[1]

x and µG
[3]

x are nontrivial a.e., then µG
[2]

x is actually
the Haar on G[2] a.e. and so again nontrivial a.e. Using again symmetry
of entropy and the same commutator argument within various stable
horospherical subgroups the theorem follows easily. �

9.13. Problem. Prove the following version of the high entropy the-
orem for quotients of G = SLn(R) (starting with n = 3). Suppose µ
is an A-invariant and ergodic probability measure on X = Γ\G such
that all nontrivial elements of A have positive entropy. Deduce that µ
is the Haar measure on X.

Generalizing the commutator argument leads to the following theo-
rem.

9.14. Theorem. (High entropy theorem) Let µ be an A-invariant and
ergodic probability measure on X = Γ\G. Let [ζ] and [η] be coarse
Lyapunov weights such that [ζ] 6= [η] 6= [ζ−1]. Then for a.e. x, µ is
invariant under the group generated by [suppµx,G[ζ] , suppµx,G[η] ]. In
fact the same holds with suppµx,G[ζ] and suppµx,G[η] replaced by the
smallest Zariski closed A-normalized subgroups containing the supports.

To prove this in general we need a few more preparations.

9.15. Invariance subgroups. Let a ∈ A and assume U ⊂ G−a is
a-normalized. We define for any x the closed subgroup

StabUx = {u ∈ U : uµUx = µUx } < U.

Over R, there are very few closed subgroups, which restricts the pos-
sibilities for StabUx . Also there is always the connected component
(StabUx )0 of the identity in StabUx . We claim that actually (StabUx )0 =
StabUx for a.e. x.
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To see this let d(x) be the distance from (StabUx )0 to StabUx \(StabUx )0

(using a left invariant metric) and define d(x) = 0 if the claim holds
for x.

Now an StabUx a
−n = StabUan.x (see Lemma 7.16), and since a con-

tracts U , we must have d(anx) → 0 as n → ∞. Thus, we see that
d(x) = 0 for a.e. x by Poincaré recurrence. Therefore, StabUx is con-
nected.

9.16. Problem. Over Qp it doesn’t make sense to speak of the con-
nected component (as it would be the trivial group in any case), but
we can speak of the maximal algebraic subgroup contained in StabUx .
For this recall that exp and log are polynomial isomorphisms between
the Lie algebra of U and U . Also sub-Lie algebras are mapped under
this map to Zariski closed subgroups of U . We may define (StabUx )0

to be the exponential image of the largest subalgebra contained in the
logarithmic image of StabUx . (The reader may verify that over R this
defines the connected component.) Show that (StabUx )0 = StabUx a.e.
(The situation is in a sense opposite to the real case where one had to
apply the contraction by a to obtain small elements — over Qp we can
simply take a power of an element of StabUx to obtain small elements
but one has to apply the expansion a−1 and Poincaré recurrence to
obtain big elements of StabUx .)

9.17. StabUx is normalized by A. If U is one-dimensional, then this
follows simply from StabUx = (StabUx )0. However, in general this is a
special property which again is a result of Poincaré recurrence.

In fact, as StabUx = (StabUx )0 it is uniquely determined by its Lie
algebra sx. Notice that san.x = Adna sx a.e. However, A is generated
by elements a ∈ A whose eigenvalues are all powers of a single number
t. For these it follows that either sa.x = sx or that san.x approaches
a sub Lie algebra h for which Ada h = h. In fact, this follows from
considering the alternating tensor product of the Lie algebra of U of
degree equal to the dimension of sx (which is independent of x for a.e.
x by ergodicity of A): The action of the class A element a on that
space still has all eigenvalues equal to a power of t and either the point
corresponding to sx is an eigenvector for that action or it approaches
one when the iterates of a are applied to it. By Poincaré recurrence
the latter is not possible for a.e. x, hence the conclusion.

In particular, the above shows that StabU = StabUx is independent of
x for a.e. x as µ is A-ergodic. This makes the following lemma useful
for H = U and L = StabU .
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9.18. Lemma. Let H act on X, and L < H be a subgroup. Suppose
that for every l ∈ L, we have lµHx = µHx for a.e. x ∈ X. Then µ is
L-invariant.

This follows literally from Problem 6.27 and Lemma 8.10, but also
purely from the argument behind Problem 6.27.

9.19. Proof of Theorem 9.14. We take two coarse Lyapunov weights
[ζ] and [η] satisfying [ζ] 6= [η] 6= [ζ−1] as in the theorem. Then there
exists an A-normalized subgroup H ⊂ G−a (for some a ∈ A) which
is a product of coarse Lyapunov subgroups for which [ζ], [η] are both
exposed. This implies as in Theorem 9.8 that

µHx ∝ ι(µG
[ζ]

x × µG[η]

x × µUx ) ∝ ι(µG
[η]

x × µG[ζ]

x × µUx )

where U is the product of all coarse Lyapunov subgroups that are
contained in H except for G[ζ] and G[η]. The argument in 9.11 now
shows that µUx must be invariant under [suppµG

[ζ]

x , suppµG
[η]

x ] ∈ StabU .
Together with the above discussion, this implies that µ is invariant
under [suppµG

[ζ]

x , suppµG
[η]

x ] for a.e. x as claimed.
We now wish to prove the additional claim that µ is, for a.e. x, also

invariant under the commutators [h[ζ], h[η]] of elements of the smallest
Zariski closed a-normalized subgroups P [ζ] 3 h[ζ] and P [η] 3 h[η] con-
taining suppµG

[ζ]

x resp. suppµG
[η]

x . We may assume ζ (and similarly η)
is an indivisible weight, i.e. all other weights which are coarsely equiv-
alent to ζ are powers of ζ. Now notice that Zariski closed subgroups of
the unipotent group G[ζ] are precisely the exponential images of sub-
algebras of the Lie algebra of G[ζ]. To prove the above we are first
claiming that if g[ζ] ∈ suppµG

[ζ]

x and h[η] ∈ suppµG
[η]

x and we write

log g[ζ] = u[ζ] = uζ + uζ2 + · · ·
log h[η] = v[η] = vη + vη2 + · · ·

with uξ, vξ ∈ gξ, then a.s. exp[uζm , vηn ] preserves the measure µ (or

equivalently µG
[ζmηn]

x ). For this we have to proceed by induction on the
complexity of the subgroup U . If U is the trivial subgroup, there is
nothing to prove as in this case G[ζ] and G[η] commute. For the general
case we have to compare the group theoretic commutator

[g[ζ], h[η]] = (g[ζ])−1(h[η]])−1g[ζ]h[η]

with the Lie theoretic commutator in the Lie algebra g. By the Campbell-
Baker-Hausdorff formula the former equals

(9.19a) [g[ζ], h[η]] = exp
(
[u[ζ], v[η]] + · · ·

)
,
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where the dots indicate a finite sum of various iterated commutators
of u[ζ] and v[η] with [u[ζ], v[η]]. Let us refer to [u[ζ], v[η]] as the main
term. Note that in log g the only term of weight ζη is [uζ , vη] (which is
part of the main term), as all terms indicated by the dots only contain
terms of weight ζkη` with k + ` ≥ 3. As g ∈ StabU and this group
is A-normalized and equals the exponential image of its Lie algebra,
we see that [uζ , uη] belongs to the Lie algebra of StabU . We note

that this implies that exp[uζ , vη] preserves µG
[ζη]

x which implies that

exp[uζ , vη] ∈ suppµG
[ζη]

x . If we replace η by ζη and h[η] by exp[uζ , vη],
we obtain a situation as before but with a smaller dimensional subgroup
U ′ replacing U . By the inductive hypothesis we conclude that all terms
of the form exp[uζm , [uζ , vη]] preserve the measure. However, this now
shows that the term inside the exponential in (9.19a) corresponding

to weight ζ2η is the sum of [uζ
2
, vη] (which is part of the main term)

and of a multiple of [uζ , [uζ , vη]]. As before we conclude that this sum
belongs to the Lie algebra of StabU , which in return shows the same for
[uζ

2
, vη] (and similarly for [uζ , vη

2
]). Proceeding inductively one shows

in the same manner that all components [uζm , uηn ] of the main term
belongs to the Lie algebra of StabU .

As the Lie bracket is bilinear, it is clear that we may multiply the
various components uζm and uηn by scalars without affecting the con-
clusion. It remains to show that if [u1, v] and [u2, v] for u1, u2 ∈ g[ζ]

and v ∈ g[η] belong to the Lie algebra of StabU , then the same is true
for [[u1, u2], v]. However, this follows from the Jacobi identity

[[u1, u2], v] = −[[v, u1], u2]− [[u2, v], u1]

where the terms on the right belong to the Lie algebra of StabU by
what we already established.

The above together shows that we may take u, v in the Lie algebra

generated by log suppµ
[ζ]
x resp. generated by log suppµ

[η]
x and obtain

that [u, v] belongs to the Lie algebra generated by StabU . This together
with the Campbell-Baker-Hausdorff formula is the desired result. �

As a corollary, we have the following entropy gap principle.

9.20. Theorem. Let G be a simple algebraic group defined over R and
connected in the Hausdorff topology. Let Γ < G be a discrete subgroup.
Say A ⊂ G is a split torus of rank at least 2. Suppose µ is an A-
invariant and ergodic probability measure on X = Γ\G. Then for every
a, there exists h0 < hmX (a) such that hµ(a) > h0 implies that µ = mX

is the Haar measure on X.
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We note that the entropy hmX (a) of the Haar measure mX on X is
determined by a concrete formula involving only Ada, and so is inde-
pendent of Γ. If Γ is not assumed to be a lattice, we still write hmX (a)
for this expression. With this in mind, we do not have to assume in
the above theorem that Γ is a lattice, rather obtain this as part of the
conclusion if only hµ(a) > h0.

9.21. Example: We illustrate Theorem 9.20 as well as another for-
mulation of the high entropy theorem in the case of G = SL3(R) (as in
Problem 9.13).

Say

a =

e−t 1
et

 G−a =

1 G[1] G[2]

1 G[3]

1


We have

hmX (a) =
3∑
i=1

hλ(a,G
[i]) = t+ 2t+ t.

If we take h0 = 3t, then hµ(a) > 3t implies that there is an entropy
contribution from all 3 expanding directions, and so all three leaf-wise
measures are non-trivial almost everywhere. Therefore the support of
each µx,G[i] is all of G[i], and the high-entropy method then implies that

µ is invariant under all G[i], and therefore invariant under G, so µ is
the Haar measure on X.

Now suppose

a =

e−2t

et

et

 G−a =

1 G[1] G[2]

1
1


we have central directions that are neither expanded nor contracted by
a. Here, we have

hmX (a) = 3t+ 3t

and hµ(a) > h0 = 3t = 1
2
hmX (at) implies that the Zariski closure of

suppµx,G[i] is a.s. all of G[i], and so by taking the commutator we get

invariance of µ under the central direction as well (eg., since [G[1], G[−2]]
is the lower central direction, µ is invariant under this direction as well.)

Now suppose we know that, for every a, we have hµ(a) > 0. By ex-

amining the element a =

e−2t

et

et

 as above, we find that either

µx,G[1] or µx,G[2] is nontrivial almost everywhere. If we assume that, say,
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µx,G[2] is trivial (and hence that suppµx,G[1] is Zariski dense in G[1] a.s.),

then we can use the element a =

e−t e−t

e2t

 to show that µx,G[3]

has Zariski dense support in G[3] a.s., and we get invariance under G[2]

anyway. By similarly arguments using other singular elements a, we
can get invariance under any G[i], and so µ must be the Haar measure
on X.

9.22. Lemma. Let V < U be a-normalized closed subgroups of the
stable horospherical subgroup G−. Suppose that suppµUx ⊂ V for a.e.
x. Then

hµ(a, U) ≤ hmX (a, V ) < hmX (a, U)

(In fact, the second inequality is uniform in V ).

Note that the assumption on the support of µUx implies that hµ(a, V ) =
hµ(a, U). With this in mind the lemma follows from Theorem 7.9.

9.23. Lemma. Under the hypotheses of 9.20, for h0 large enough and
µ-a.e. x, we have that G[η] is the smallest a-normalized Zariski closed
subgroup containing the support of µx,G[η].

This follows by combining Lemma 9.22 and Corollary 9.10.

9.24. Proposition. For any nontrivial a, the group G is generated by
[G[λ], G[η]] for [η] 6= [λ] 6= [η−1] and η(a) 6= 1 6= λ(a).

We see that Theorem 9.20 follows from Theorem 9.14 together with
Proposition 9.24 and Lemma 9.23.

9.25. Proof of Proposition 9.24. Let V be a lower dimensional
subgroup of the group of characters of A. Let

w = span{gλ, [gη, gλ] : λ, η /∈ V }
We claim that w is a Lie ideal of g. To check this, we first take x ∈
gδ ⊂ w (first type of elements) for some δ /∈ V , and some z ∈ gζ and
look at [x, z]. There are two cases:

(i) If ζ /∈ V , then [x, z] ∈ w by definition due to the second type
of elements of w .

(ii) If ζ ∈ V , then [x, z] ∈ gδη ⊂ w due to the first type of elements
since δη /∈ V .

Assume now [x, y] ∈ w with x ∈ gλ, y ∈ gη, and λ, η /∈ V as in the
second type of elements of w. Also let as before z ∈ gζ . There are four
cases:
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(i) If ζ /∈ V then by the above cases [[x, y], z] ∈ w. So we may
assume ζ ∈ V .

(ii) In the remaining case we use the Jacobi identity

[[x, y], z] = −[[y, z], x]− [[z, x], y]

which leads to the expressions [[y, z], x] and [[z, x], y]. However,
[y, z] ∈ gηζ with ηζ /∈ V and λ /∈ V shows that [[y, z], x] is an
expression of the second type in the definition of w. The same
holds for [[z, x], y] which shows that [[x, y], z] ∈ w as claimed.

As V is assumed to be lower dimensional and the weights span, w is
nontrivial and hence equal to g by the assumption that G is simple.

Now we let V be the kernel of the evaluation map λ 7→ λ(a) and
let ζ ∈ V be a nontrivial weight. Then the above claim shows that all
elements of the Lie algebra gζ can be written as sums of Lie commuta-
tors of elements of gη, gλ with η, λ /∈ V . Here we cannot have [η] = [λ]
or [η] = [λ−1] as otherwise the commutator would belong to a weight
space gζ also satisfying [η] = [ζ] or [η] = [ζ−1] which is impossible as
η /∈ V but ζ ∈ V .

Similarly we may now set V equal to the subgroup of characters
equivalent to a given nontrivial λ or its inverse λ−1. Applying again
the above we see that the elements of the weight space gλ can be written
as sums of Lie commutators of elements of gη, gλ with [η] 6= [λ] 6= [η−1].
(By the argument above we do not have restrict ourselves any longer
to weight spaces that do not commute with a). Therefore, all elements
of all nonzero weight spaces can be generated by the Lie brackets that
we consider.

Finally, note that the Lie algebra generated (set V equal to the
trivial group) by all nonzero weight spaces is the whole of g, so that g
is generated indeed by the Lie brackets that we consider. �

10. Invariant measures for higher rank subgroups A, the
low entropy method

10.1. In this section we sketch the proof of a theorem regarding A-
invariant measures where only positivity of entropy is assumed (instead
of entropy close to being maximal). In addition to the ideas we already
discussed they use one more method, which we refer to as the low
entropy method. This method was first used in [Lin06]; one of the
main motivations being the Arithmetic Quantum Unique Ergodicity
Conjecture which is partially resolved in that paper — see §13.

10.2. A basic feature of this method is that it gives a prominent role
to the dynamics of the unipotent groups normalized by A, even though
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these unipotent groups a-priori do not preserve the measure in any
way. Ideas of Ratner, particularly from her work on the horocycle flow
[Rat82a, Rat82b, Rat83] are used in an essential way.

We first present this method which has been extended to fairly gen-
eral situations in [EL08] in one particular case (the reader who is averse
to p-adic numbers is welcome to replace SL(2,Qp) by SL(2,R) in the
discussion below).

10.3. Theorem. Let X = Γ\ SL(2,R)× SL(2,Qp), where Γ is an irre-

ducible lattice in G = SL(2,R)×SL(2,Qp). Let A =

((
∗
∗

)
× e
)

be

the (one parameter) diagonal subgroup in the SL(2,R) factor. Suppose
µ is an A-invariant probability measure such that

• µ is SL(2,Qp)-recurrent.
• Almost all A-ergodic components of µ have positive entropy

under the A-flow.

Then µ is the Haar measure on X.

10.4. We recall that a lattice Γ in G1 × G2 is said to be irreducible if
the kernel of the projection to each factor is finite. For the case at hand
of G1 = SL(2,R) and G2 = SL(2,Qp) this is equivalent to both projec-
tions being dense. This assumption of irreducibility is clearly necessary;
the assumption that Γ is a lattice (i.e. that it has finite covolume) is
not, though it is not clear that classifying probability measures in this
case is a very natural question. An example of an irreducible lattice in
SL(2,R)× SL(2,Qp) is SL(2,Z[1

p
]) (embedded diagonally).

10.5. We remark that unlike many measure classification theorems it is
not possible to reduce Theorem 10.3 to the case of µ being A-ergodic.
This is because if one takes an arbitrary measure µ satisfying the con-
dition of the theorem and take its ergodic decomposition with respect
to the A action there is no reason to expect the ergodic components
to remain SL(2,Qp)-recurrent. The fact that we are considering gen-
eral invariant measures requires us to demand that not only does µ
have positive entropy under A, but that each ergodic component has
positive entropy.

10.6. The requirement that µ be SL(2,Qp)-recurrent is clearly neces-
sary, there are plenty of A invariant measures on Γ\ SL(2,R)×SL(2,Qp)
with all A-ergodic components having positive entropy. E.g., when
Γ = SL(2,Z[1

p
]) as above, Γ\ SL(2,R) × SL(2,Qp) is a compact ex-

tension of SL(2,Z)\ SL(2,R) (with the action of A respected by the
corresponding projection map) and hence any A invariant measure on
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SL(2,Z)\ SL(2,R) can be lifted to an invariant measure on Γ\ SL(2,R)×
SL(2,Qp) with exactly the same entropy(29).

10.7. Outline of Proof. The starting point. Let T = SL(2,Qp)

and U =

(
1 ∗

1

)
; then U = G−α and T < CG(α) ∩ CG(U) for e.g.(30)

α =

((
e−1

e

)
,

(
1

1

))
∈ A. In particular, the assumptions to

Corollary 8.8 are satisfied and the conditional measure for the subgroup
H = TU is a product measure. By Corollary 8.13 there is a subset of
full measure X ′ ⊂ X such that we have µUx = µUy whenever x, y ∈ X ′
belong to the same SL(2,Qp)-orbit. This shows that we can find many
close-by points with the same leaf-wise measures, i.e. y = (g1, g2).x
with the displacements g1 ∈ SL(2,R) and g2 ∈ SL(2,Qp) both close to
the identity and µUx = µUy .

As we have already observed in Example 6.5.2 the coincidence of
leaf-wise measures can have strong implications. This is the case here.
By replacing both x and y by u.x and u.y for some (in a certain sense)
typical u ∈ U , we bring the polynomial shearing properties of the U -
flow in the picture.

10.8. Polynomial divergence. If, starting with y = (g1, g2).x, one
moves along the U -orbit, the displacement of x′ = u.x and y′ = u.y is
the conjugate (ug1u

−1, g2) and the U -action by conjugation is shearing
depending polynomially on the time parameter in U . More precisely,

given x and y = (g1, g2).x with g1 =

(
a b
c d

)
/∈ U (an assumption

which we will need to justify), we apply u(s) =

(
1 s

1

)
to both to get

xs =

(
1 s

1

)
.x

ys =

(
1 s

1

)
(g1, g2).x = (g(s), g2)xs

We compute

(10.8a) g(s) = u(s)g1u(−s) =

(
a+ cs b+ (d− a)s− cs2

c d− cs

)
.

(29)This last claim requires some justification; what is immediate and is sufficient
for our purpose is that the lifted measure would have at least the same entropy as
the original measure.

(30)Here e is the constant 2.71828 . . . ; below and above e is also used to denote
the identity element of G.
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Hence the terms contributing to the divergence are |d−a| and
√
|c|.

(As it turns out using the square root puts the two terms on more
equal footing). For S = min

(
1
|d−a| ,

1√
|c|

)
, we expect to have g(S) ≈(

1 r
1

)
= u(r) for some nontrivial r. More precisely: it is possible

that by some coincidence for s = S the terms (d − a)s and cs2 might
cancel each other, but this would be an exception: for most s ∈ [−S, S]
the top right coordinate b+(d−a)s−cs2 in (10.8a) will be of the order
1 (for a linear polynomial this is obvious, for the general quadratic
polynomial one only needs that s is sufficiently far from both roots).
Also g(s) = u(s)g1u(−s) is bounded for s ∈ [−S, S], and except for the
top right entry, for s in that range, all other entries will very close to the
corresponding entries in the identity matrix (i.e. to one for the diagonal
elements, and to zero for the bottom left corner): indeed, the diagonal

entries are a+ cs and d− ds which are close to 1 as |cs| ≤ |c|S ≤
√
|c|

and the bottom left entry c is close to zero (and unchanged).
Hence g(s) will indeed be approximately u(r) for some nontrivial and

bounded r for most s ∈ [−S, S].

10.9. Choosing the correct u(s), two conditions. We will need
to choose some s ∈ [−S, S] such that g(s) has significant size. By the
above discussion this is quite easy and a purely algebraic condition.
At the same time x′ = xs and y′ = ys should have good properties with
respect to the measure µ, which is a measure theoretic condition,
the verification of which requires more work.

Clearly some condition on the points x′ and y′ is needed for them
to give any meaningful information about the measure µ — the most
important for us will be that both x′ and y′ belong to some compact
set K on which is the map sending a point z to the leafwise measure µUz
is continuous. We can also assume that this set K is contained in the
conull set on which Theorem 6.3 (iii) holds so that (by applying that
theorem to both x and y) we can deduce from our original assumption
µUx = µUy that µUx′ = µUy′ .

If we could take a limit, taking the original points x, y from a se-
quence xk, yk ever closer together (which forces rk → ∞), the limit
points x′′, y′′ of a common subsequence of two points x′k, y

′
k will end

up being different points on the same U -orbit. Restricting everything
to a large compact set K where z 7→ µUz is continuous we would ob-
tain µUx′′ = µUy′′ and since y′′ = u.x′′ for some nontrivial u ∈ U also
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µUx′′ ∝ µUy′′u by Theorem 6.3 (iii). This leads to U -invariance of µ

almost(31) as in the last section.
For this to work we need to ensure that given the two close-by points

xk, yk with the same leaf-wise measures (and other good properties that
hold on sets of large measure) we can find some u(sk) ∈ U such that
x′k = u(sk).xk, y

′
k = u(sk).yk ∈ K and the displacement is significant

but of bounded size. As explained above it is easy to find some Sk
depending on the displacement g

(k)
1 such that u(s)g

(k)
1 u(s)−1 is signif-

icant but bounded for all s ∈ [−Sk, Sk] except those belonging to two
small subintervals of [−Sk, Sk]. So basically we have two requirements
for sk, it shouldn’t belong to one of two small subintervals which have
been found using purely algebraic properties, and we also want both
points x′k = u(sk).xk, y

′
k = u(sk).yk to belong to the compact set K

on which everything behaves nicely — which is a measure theoretic
property involving µ since all we know about K is that it has large
µ-measure.

10.10. A maximal ergodic theorem. To prove the latter property
we need a kind of ergodic theorem for the U -action with respect to µ,
even though we do not know invariance under U . A maximal ergodic
theorem for the U -action would imply that for a given set of large
measure K, the set of points x, for which there is some scale S for
which it is not true that for most s ∈ [−S, S] we have u(s).x ∈ K, has
small µ-measure (and so can be avoided in the argument). However,
here the correct notion of most must come from the measure µUx instead
of the Lebesgue measure as µ is not known to be invariant under U .

There are several versions of such maximal ergodic theorems in the
literature starting from Hurewicz [Hur44]; see also [Bec83]. In [Lin06]
a variant proved in the appendix to that paper jointly with D. Rudolph
was used. An alternative approach which we have employed in [EL08]
is to use the decreasing Martingale theorem by using the sequence of σ-
algebras a−nA, where A is subordinate to U on a set of large measure
and a-decreasing as in Definition 7.25. The latter approach has the
advantage of working in greater generality.

10.11. Compatibility issue. Assume now that a sufficient form of
such a maximal ergodic theorem holds for the U -action. This then
implies, starting with sufficiently good behaved initial points xk, yk

(31)The cautious reader may be concerned about the lack of ergodicity assump-
tion here. Indeed one first only obtains that some ergodic component is U -invariant,
but one may apply the whole argument to the measure restricted to the subset where
µUx is not the Lebesgue measure to obtain a contradiction.
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(with µUxk = µUyk), that for µUxk-most s ∈ [Sk, Sk] (say for 90%) we
have u(s).xk, u(s).yk ∈ K. Even so there is still a gap in the above
outline: Can we ensure that the two subintervals of [−Sk, Sk], where

u(s)g
(k)
1 u(s)−1 is too little, have also small mass with respect to µUxk?

This is desired as it would ensure the compatibility of the algebraic
and measure-theoretic properties needed, since in this case for µUxk-

most s ∈ [−Sk, Sk] both properties would hold. However, if e.g. µUxk
is trivial, i.e. is supported on the identity only, this is not the case.
Luckily by assumption entropy is positive for a.e. ergodic component
which translates to µUxk being nontrivial a.e. Even so, µUxk could give
large mass to very small subintervals and the compatibility of the two
conditions does not seem automatic.

10.12. Self-similarity of leaf-wise measures. What rescues the
argument is a kind of self-similarity of the measures µUx . E.g. if one
assumes a doubling condition of the form that there exists some ρ ∈
(0, 1) for which

(10.12a) µUx (BU
ρS) <

1

2
µx(B

U
S ) for all S > 0,

then sufficiently small symmetric subintervals of a given interval [−S, S]
also get small µUx -mass. (Given such a ρ we then would adjust the mean-
ing of ’significant’ in the discussion of §10.8 and §10.9.) There is no rea-
son why such a strong regularity property of the conditional measures
should hold. However, the A-action on X together with Lemma 7.16
implies some regularity properties: E.g. by Poincaré recurrence there
are infinitely many S such that (after rescaling) µUx restricted to BU

S

is very similar to µUx restricted to BU
1 . To obtain something similar to

(10.12a) we notice first that there is some ρ > 0 such that

(10.12b) µUx (BU
ρ ) <

1

2

except possibly on a set Z of small µ-measure. Then one can apply the
standard maximal ergodic theorem for the action of

α(r) =

((
e−r

er

)
,

(
1

1

))
∈ A

to show that for µ-most x and for any given K of large µ-measure,
most r ∈ [0, R] satisfy that

(10.12c) µUx (BU
ρe2r) <

1

2
µUx (BU

e2r)
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(which is equivalent by Lemma 7.16 to α(r).x satisfying (10.12b)). As
it turns out the weaker (10.12c) is sufficient and one does not need
(10.12a).

10.13. The heart of the argument, choosing t. Given the two
points xk, yk and with them the parameter Sk we would need the reg-
ularity (10.12c) for r = 1

2
logSk in order to apply the arguments from

above. This may or may not happen but we can increase our chance
of succeeding by looking not only at the given points xk, yk but also at
all the points αtxk, α

tyk for some t ∈ [0, Tk] for the appropriate choice
of Tk (which in this case turns out to be Tk = 1

2
logSk).

This is the technical heat of the argument, and we sketch the proof
below. To simplify matters, we assume that either |d − a| �

√
|c| or

|d − a| �
√
|c| (with � used here in a somewhat loose sense that we

refrain from making more precise in this sketch).
We will only chose values of t for which the new points αtxk, α

tyk
have good properties with respect to µ (i.e. belong to a previously
defined set of points with good properties etc.), which in view of the
(standard) maximal inequality holds for most t ∈ [0, Tk] if the original
points xk, yk were chosen from a suitable set of large measure.

Suppose first |d − a| �
√
|c|. In this case, the parameters a, d

and with it Sk are unchanged when xk and yk are replaced by αt.xk
and αt.yk. Therefore, the regularity property (10.12c) is needed for
the point αt.xk and scale r = 1

2
logSk, which is equivalent to (10.12c)

holding at the original point x for r′ = t+ 1
2

logSk.
At this stage we still have the freedom to chose t almost arbitrarily

in the range 0 ≤ t ≤ 1
2

logSk. As (10.12c) can he assumed to hold at x
for most r′ ∈ [0, logSk] we can indeed chose t so that at αt.xk (10.12c)
holds for precisely the value of r we need.

In the second case |d−a| �
√
|c|, the important parameter

√
|c| and

with it Sk do change when xk and yk are replaced as above. The danger
here is that if the parameter Sk changes in a particular way, it may be
that one is still interested in the regularity property (10.12c) for x and
the very same r = 1

2
logSk even after introducing t. The reader may

verify that this is not the case, after calculating the parameter Sk(t)
for the points αt.xk and αt.yk as a function of t one sees that t+Sk(t) is
affine with a linear component 1

2
t. As before a density argument gives

that it is possible to find t as required. In the general case, the function
one studies may switch between having linear part t and having linear
part 1

2
t, i.e. may be only piecewise linear, but this does not alter the

density argument for finding t. Moreover, one easily checks that αt.xk
and αt.yk are still close together.
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Having found t, one has the required regularity property to apply
the density argument for s ∈ [−Sk, Sk] and obtains x′k, y

′
k ∈ K which

differ mostly by some element of U of bounded but significant size. As
mentioned before, taking the limit along some subsequence concludes
the argument.

10.14. Justification for g1 /∈ U . Let us finish the outline of the proof
of Theorem 10.3 by justifying the assertion in §10.8 that one can find
x, y = (g1, g2).x with g1 /∈ U and the same U leaf-wise measure using
the recurrence of the SL2(Qp)-action. By construction, y = (e, h).x
for some big h ∈ SL2(Qp), and we have already verified that the U
leafwise measure at x and y are the same using the product lemma.
What remains is to explain why we can guarantee that g1 6∈ U .

By Poincaré recurrence we may assume that our initial point x sat-
isfies that there is a sequence tn →∞ with αtn .x→ x. If now g1 ∈ U ,
then αtng1α

−tn → e and applying αtn to (e, h).x = y = (g1, g2).x we
would obtain (e, h).x = (e, g2).x. As h is big, but g2 is small, we ob-
tain the nontrivial identity x = (e, h−1g2).x which is impossible as the
lattice Γ is irreducible.

11. Combining the high and low entropy methods.

11.1. Consider now the action of the diagonal group A on the space
Xn = SL(n,Z)\ SL(n,R). The method of proof of Theorem 10.3 can
be adapted to study the A-invariant measures also in this case, but
there are some extra twists; specifically we will need to combine in the
low entropy method we have developed in the previous section with
the high entropy method presented in §9. This has been carried out in
the paper [EKL06] of the authors and A. Katok, and the results of this
subsection are taken from that paper.

11.2. We recall the following conjecture regarding invariant measures
on Xn = SL(n,Z)\ SL(n,R), which is due to Margulis, Katok and
Spatzier, and Furstenberg (cf. [Mar00]):

11.3. Conjecture. Let A be the group of diagonal matrices in SL(n,R),
n ≥ 3. Then any A-invariant and ergodic probability measure µ on Xn

is homogeneous.

It is not hard to classify the possible homogeneous measures (see
e.g. [LW01]). For n prime, the situation is particularly simple: any A-
invariant homogeneous probability measure on Xn is either the natural
measure on a periodic A-orbit, or the SL(n,R) invariant measure m on
Xn.
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11.4. In [EKL06] we give together with A.Katok the following partial
result towards Conjecture 11.3:

11.5. Theorem ([EKL06, Theorem 1.3]). Let A be the group of diago-
nal matrices as above and n ≥ 3. Let µ be an A-invariant and ergodic
probability measure on Xn. Then one of the following holds:

(i) µ is an A-invariant homogeneous measure which is not sup-
ported on a periodic A-orbit.

(ii) for every one-parameter subgroup {at} < A, hµ(at) = 0.

By the classification of A-invariant homogeneous measures alluded
to in §11.3, if (i) holds µ is not compactly supported.

11.6. For 1 ≤ i 6= j ≤ n, let Uij denote the one parameter unipotents
subgroup of SL(n,R) which consists of all matrices that have 1 on the
diagonal and 0 at all other entries except the (i, j) entry, and let µ be an
A-invariant and ergodic probability measure on Xn which has positive
entropy with respect to some a0 ∈ A. Let G− denote the group of
upper triangular matrices with 1 on the diagonal which is indeed a
horospheric subgroup for an appropriate choice of a ∈ A as in §7.3;
without loss of generality we can assume that µ has positive entropy
with respect to the same a. By Theorem 7.6 and our assumption
regarding positive entropy of µ it follows that the leaf with measure
µG
−

x are nontrivial almost everywhere (this requires a bit of explanation,
as µ is A-ergodic but not necessarily a-ergodic; however if one takes
the ergodic decomposition of µ with respect to a one gets from the
ergodicity of µ under A that each ergodic component has the same
entropy with respect to a and one can apply Theorem 7.6 to each
components separately). Using the product structure of µG

−
x given by

Corollary 8.8 and the ergodicity under A it follows that there is some

i < j so that µ
Uij
x =: µijx is nontrivial almost everywhere. For notational

simplicity suppose this happens for (i, j) = (1, n).

11.7. One can now apply the argument described in §10.7– §10.14 to
the group U1n and an appropriate α = diag(α1, . . . , αn) ∈ A (we as-
sume all the αi > 0) . One obvious requirement for α is that it contracts
U1n, i.e. that α1 < αn. It turns out though that in the proof (specif-
ically, in §10.13) additional more subtle conditions on α need to be
imposed that are nonetheless easy to satisfy: indeed in this case what
one needs is simply that

α1 < min
1<i<n

αi ≤ max
1<i<n

αi < αn.
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For example, we can take α = diag(e−1, 1, . . . , 1, e) which together with
U1n and Un1 form a subgroup of SL(n,R) isomorphic to SL(2,R).

11.8. We recall what was the outcome of the argument given in §10.7–
§10.14 for G = SL(2,R) × SL(2,Qp). The end result of that long
argument was finding two distinct “µ-typical” points x, y with the same
leafwise measures (i.e. µUx = µUy ) with y = u.x for some nontrivial
u ∈ U .

An appropriate adaptation of this argument to the case at hand (i.e.
G = SL(n,R)) will yield at the end two µ-typical points x, y with the
same U1n-leafwise measures which differ by some element u obtained in
a limiting procedure involving the shearing properties of U1n. It turns
out that in this case these limiting directions u may not belong to U1n

but rather one has u ∈ CG(U1n)∩G−; note that this group CG(U1n)∩G−
is precisely the group generated by the 1-parameter unipotent groups
Uij with either i = 1 or j = n (or both).

11.9. Playing around with leafwise measures, one can show that the
measure µ has satisfy one of the following two possibilities:

(i) One can find a subset X ′ ⊂ Xn of full measure such that every
two points x, y ∈ X ′ on the same CG(U1n) ∩ G−-orbit are in
fact on the same U1n orbit.

(ii) There are (i, j) 6= (1, n) with i = 1 or j = n so that µijx is
nontrivial a.s. .

If (i) holds, then the points x, y obtained in §11.8 in fact differ along
U1n from which one can deduce, exactly as in the proof of Theorem 10.3,
that µ is U1n invariant where we are clearly at the endgame; e.g. one
can apply Ratner’s measure classification theorem, though it is better
to first get some more information out of the proof, specifically invari-
ance along Un1. Ratner’s measure classification theorem for semisimple
groups (such as the group generated by U1n and Un1) is substantially
simpler than the general case (for a simple proof see [Ein06]), and also
the analysis of all possible cases is much simpler if one first establishes
invariance under this bigger group.

If (ii) holds, by using the time-symmetry of entropy for the element
a = diag(e−1, 1, . . . , 1, e) we obtained that there are some (i′, j′) with
i′ = 1 or j′ = n or both so that µj

′i′
x is nontrivial a.s. (note the switch in

the order of the indices!). If (i′, j′) 6= (1, n) we can apply Theorem 9.14
to obtain that µ is invariant under the group [Uj′i′ , U1n] (which is either
Uj′n or U1i′): again arriving at the endgame of the proof. If (i′, j′) =
(1, n) we obtain similarly that µ is invariant under [Un1, Uij].
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11.10. The above simplified discussion neglects to mention one cru-
cial point. In Theorem 10.3, a crucial assumption was that Γ is irre-
ducible, an assumption which only entered in order to show that there
are nearby “typical” points x and y which differ in a shearable direction
(i.e., not by an element in U × SL(2,Qp)) — c.f. §10.14.

The same issue arises also in the case of SL(n,R). For the particular
lattice we are considering, namely SL(n,Z), one can show such nearby
“shearable” pairs exist; but for a general lattice, even in SL(n,R), this
problem can actually happen, and is precisely the source of an impor-
tant class of counterexamples discovered by M. Rees to the most opti-
mistic plausible measure classification conjecture for multidimensional
diagonalizable groups [Ree82] (for a more accessible source, see [EK03,
Section 9]; the same phenomena has been discovered independently in
a somewhat different context by S. Mozes [Moz95]).

12. Application towards Littlewood’s Conjecture

12.1. In this section we present an application of the measure classifi-
cation results we have developed in the previous sections towards the
following conjecture of Littlewood:

12.2. Conjecture (Littlewood (c. 1930)). For every u, v ∈ R,

(12.2a) lim
n→∞

n‖nu‖‖nv‖ = 0,

where ‖w‖ = minn∈Z |w − n| is the distance of w ∈ R to the nearest
integer.

12.3. The work we present here toward this conjecture was first pre-
sented in the paper [EKL06] which is joint paper of A. Katok and us.
The presentation of this work is taken essentially verbatim from [Lin07,
Sec. 6].

12.4. It turns out that Littlewood’s conjecture would follow from the
Conjecture 11.3. The reduction is not trivial and is essentially due to
Cassels and Swinnerton-Dyer [CSD55], though there is no discussion
of invariant measures in that paper(32). A more recent discussion of
the connection highlighting Cassels’ and Swinnerton-Dyer’s work can
be found in [Mar97].

(32)It is worthwhile to note that this remarkable paper appeared in 1955, many
years before Conjecture 11.3 was made, and even before 1967 when Furstenberg
made his related discoveries about scarcity of invariant sets and measures for the
maps x 7→ 2x mod 1 and x 7→ 3x mod 1 on R/Z! The same paper also implicitly
discusses the connection between Oppenheim’s conjecture and the action of SO(2, 1)
on X3.
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We need the following criterion for when α, β satisfy (12.2a):

12.5. Proposition. (α, β) satisfy (12.2a) if and only if the orbit of

xα,β = πΓ

1 α β
0 1 0
0 0 1


under the semigroup

A+ = {a(s, t) : s, t ≥ 0} a(s, t) =

es+t 0 0
0 e−s 0
0 0 e−t


is unbounded(33). Moreover, for any δ > 0 there is a compact Cδ ⊂ X3,
so that if limn→∞ n ‖nα‖ ‖nβ‖ ≥ δ then A+.xα,β ⊂ Cδ.

12.6. Before we prove Proposition 12.5 we need to understand better
what it means for a set E ⊂ X3 to be bounded. For this one has the
following important criterion (see e.g. [Rag72, Chapter 10]):

12.7. Proposition (Mahler’s compactness criterion). Let n ≥ 2. A set
E ⊂ Xn is bounded if and only if there is some ε > 0 so that for any
x = πΓ(g) ∈ Xn there is no vector v in the lattice spanned by the rows
of g with ‖v‖∞ < ε.

12.8. Proof of Proposition 12.5. We prove only that A+.xα,β un-
bounded implies that (α, β) satisfies (12.2a); the remaining assertions
of this proposition follow similarly and are left as an exercise to the
reader.

Let ε ∈ (0, 1/2) be arbitrary. By Mahler’s compactness criterion (see
§12.7), if A+.xα,β is unbounded, there is a a ∈ A+ such that in the
lattice generated by the rows of xα,βa

−1 there is a nonzero vector v
with ‖v‖∞ < ε. This vector v is of the form

v = (ne−s−t, (nα−m)es, (nβ − k)et)

where n,m, k are integers at least one of which is nonzero, and s, t ≥ 0.
Since ‖v‖∞ < 1/2, n 6= 0 and ‖nα‖ = (nα − m), ‖nβ‖ = (nβ − k).
Without loss of generality n > 0 and

n ‖nα‖ ‖nβ‖ ≤ ‖v‖3
∞ < ε3.

As ε was arbitrary, (12.2a) follows. �

(33)I.e. A+.xα,β is not compact.
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12.9. We now turn to answering the following question: With the par-
tial information given in Theorem 11.5, what information, if any, do
we get regarding Littlewood’s conjecture?

12.10. Theorem ([EKL06, Theorem 1.5]). For any δ > 0, the set

Ξδ =

{
(α, β) ∈ [0, 1]2 : lim

n→∞
n ‖nα‖ ‖nβ‖ ≥ δ

}
has zero upper box dimension(34)(35).

12.11. We present a variant of the proof of this theorem given in
[EKL06]. The first step of the proof, which is where Theorem 11.5 is
used, is an explicit sufficient criterion for a single point α, β to satisfy
Littlewood’s conjecture (§12.2). This criterion is based on the notion
of topological entropy; see §3.18 for the definition and basic properties
of this entropy.

Let aσ,τ (t) = a(σt, τt), with a(s, t) as in §12.5.

12.12. Proposition. Suppose that (α, β) ∈ R2 does not satisfy (12.2a)
or equivalently that A+.x0 is bounded. Then for any σ, τ ≥ 0, the
topological entropy of aσ,τ acting on the compact set

{aσ,τ (t).xα,β : t ∈ R+}
vanishes.

12.13. Note that by Proposition 12.5 the two assumptions above are
equivalent.

12.14. Proof. Let x0 be as in the proposition such that A+.x0 is
bounded. If the topological entropy were positive, then by the vari-
ational principal, there is an aσ,τ -invariant measure µ supported on

{aσ,τ (t).x0 : t ∈ R+} with hµ(aσ,τ ) > 0.
Define for any S > 0

µS =
1

S2

∫∫ S

0

a(s, t)∗µ ds dt,

with a(s, t)∗µ denoting the push forward of µ under the map x 7→
a(s, t).x. Since a(s, t) commutes with the one parameter subgroup aσ,τ ,
for any aσ,τ -invariant measure µ′ the entropy

hµ′(aσ,τ ) = ha(s,t).µ′(aσ,τ ).

(34)I.e., for every ε > 0, for every 0 < r < 1, one can cover Ξδ by Oδ,ε(r−ε) boxes
of size r × r.

(35)Since (12.2a) depends only on α, β mod 1 it is sufficient to consider only
(α, β) ∈ [0, 1]2.
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If µ has the ergodic decomposition
∫
µξ dν(ξ), the measure µS has

ergodic decomposition S−2
∫∫ S

0

∫
a(s, t).µξ dν(ξ) ds dt and so by §3.4,

for every S
hµS(aσ,τ ) = hµ(aσ,τ ).

All µS are supported on the compact set A+.x0, and therefore there is
a subsequence converging weak∗ to some compactly supported proba-
bility measure µ∞, which will be invariant under the full group A. By
semicontinuity of entropy (§3.15),

hµ∞(aσ,τ ) ≥ hµ(aσ,τ ) > 0,

hence by Theorem 11.5 the measure µ∞ is not compactly supported(36)

— a contradiction. �

12.15. Proposition 12.12 naturally leads us to the question of the size
of the set of (α, β) ∈ [0, 1]2 for which htop(Xα,β, aσ,τ ) = 0. This can be
answered using the following general observation:

12.16. Proposition. Let X ′ be a metric space equipped with a continu-
ous R-action (t, x) 7→ at.x. Let X ′0 be a compact at-invariant(37) subset
of X ′ such that for any x ∈ X ′0,

htop(Yx, at) = 0 Yx = {at.x : t ∈ R+}.
Then htop(X ′0, at) = 0.

12.17. Proof. Assume in contradiction that htop(X ′0, at) > 0. By
the variational principle (§3.21), there is some at-invariant and ergodic
measure µ on X ′0 with hµ(at) > 0.

By the pointwise ergodic theorem, for µ-almost every x ∈ X ′0 the
measure µ is supported on Yx. Applying the variational principle again
(this time in the opposite direction) we get that

0 = htop(Yx, at) ≥ hµ(at) > 0

a contradiction. �

12.18. Corollary. Consider, for any compact C ⊂ X3 the set

XC =
{
x ∈ X3 : A+.x ⊂ C

}
.

Then for any σ, τ ≥ 0, it holds that htop(XC , aσ,τ ) = 0.

(36)Notice that a priori there is no reason to believe µ∞ will be A-ergodic, while
Theorem 11.5 deals with A-ergodic measures. So an implicit exercise to the reader
is to understand why we can still deduce from hµ∞(aσ,τ ) > 0 that µ∞ is not
compactly supported.

(37)Technical point: we only use that at.X ′ ⊂ X ′ for t ≥ 0. The variational
principle (§3.21) is still applicable in this case.
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12.19. Proof. By Proposition 12.12, for any x ∈ XC the topological
entropy of aσ,τ acting on {aσ,τ (t).x : t ∈ R+} is zero. The corollary now
follows from Proposition 12.16. �

12.20. We are now in position to prove Theorem 12.10, or more pre-
cisely to deduce the theorem from Theorem 11.5:

12.21. Proof of Theorem 12.10. To show that Ξδ has upper box
dimension zero, we need to show, for any ε > 0, that for any r ∈ (0, 1)
the set Ξδ can be covered by Oε(r

−ε) boxes of side r, or equivalently
that any r-seperated set (i.e. any set S such that for any x, y ∈ S we
have ‖x− y‖∞ > r) is of size Oδ,ε(r

−ε).
Let Cδ be as in Proposition 12.5. Let d denote a left invariant Rie-

mannian metric on G = SL(3,R). Then d induces a metric, also denote
by d on X3. For a, b ∈ R let

ga,b =

1 a b
0 1 0
0 0 1

 .

Since Cδ is compact, and d is induced from a left invariant Riemannian
metric, there will be r0, c0 such that for any x ∈ Cδ and |a| , |b| < r0

d(x, ga,b.x) ≥ c0 max(|a| , |b|).

For any α, α′, β, β′ ∈ R we have that

xα,β = gα′−α,β′−β.xα′,β′

and more generally for any n

an1,1.xα,β = ge3n(α′−α),e3n(β′−β).a
n
1,1.xα′,β′ .

It follows that if S ⊂ Ξδ is r separated for r = e−3nr0 ∈ (0, r0) then

S ′ = {xα,β : (α, β) ∈ S}

is (n, c0r0)-separated for a1,1 in the sense of §3.18. By definition of Cδ
and Ξδ, we have that (in the notations of §12.18) the set S ′ ⊂ XCδ , a
set which has zero topological entropy with respect to the group a1,1.
It follows that the cardinality of a maximal (n, c0r0)-separated set in S ′

is at most Oδ,ε(exp(εn)); hence for r < r0 the cardinality of a maximal
r-separated subset of Ξδ is Oδ,ε(r

−ε). �
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13. Application to Arithmetic Quantum Unique
Ergodicity

13.1. We begin by recalling some basic facts about harmonic analysis
on Γ\H. Here, H := {x + iy : y > 0} is the upper-half plane model of
the hyperbolic plane (for more details, see [Lan75]). It is isomorphic
to G/K = SL(2,R)/SO(2,R), and carries the Riemannian G-invariant

metric ds2 = dx2+dy2

y2
, where the action of G is given by fractional linear

transformations in the usual way. This metric gives us the invariant
area form d area = dxdy

y
.

We have the Laplacian operator

∆ = y2[∂2
x + ∂2

y ]

which is also invariant under G. We wish to study L2(Γ\H, area) ∼=
L2(Γ\G, µHaar)K for Γ a lattice in G = SL(2,R). Here L2(Γ\G, µHaar)K
denotes the space of K-invariant L2-functions on Γ\G.

13.2. For any φ ∈ Cc(G), we can write a convolution operator

φ ∗ f :=

∫
G

φ(g)f(xg−1)dg

but we will restrict ourselves to K-bi-invariant functions φ ∈ Cc(K\G/K).
In this case, we have the nice property that

φ ∗ ψ ∗ f = (φ ∗ ψ) ∗ f = (ψ ∗ φ) ∗ f = ψ ∗ φ ∗ f

and so these operators form a large commutative algebra. Since the
Laplacian can be written as a limit of such convolution operators, it
commutes with this algebra as well.

13.3. We begin with Γ cocompact (harmonic analysis is much easier in
this case). The mapping Aφ : f 7→ φ ∗ f is a compact, normal operator
(this is false if Γ is not cocompact!). Therefore L2(M) is spanned by
an orthonormal set of eigenfunctions of Aφ. Since ∆ and Aφ commute,
we can find an orthonormal basis of joint eigenfucntions.

In fact, if f is an eigenfunction of ∆, say ∆f = λf , it will auto-
matically be an eigenfunction of the convolution operate Aξ, and the
corresponding eigenvalue is by definition equal to the spherical trans-
form of φ.

Weyl’s Law (true for general compact surfaces) gives the asymptotic
number of eigenvalues of ∆:

#{eigenvalues of ∆ ≤ T} ∼ π · area(M) · T
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13.4. In many cases we will be interested in Γ NOT cocompact; eg.
Γ1 = SL(2,Z) or one of the “principle congruence subgroups” ΓN =
{γ ≡ I mod N}. For simplicity, let us assume for the moment that
M has one cusp (at ∞).

We have some explicit eigenfunctions of ∆ on H. For example,

∆(ys) = s(s− 1)ys = −(1/4 + t2)ys

where we make the convenient substitution s = 1/2 + it. These eigen-
functions correspond to planar waves going up; note that they are
not Γ-invariant. Closely related are the Eisenstein series, which are
Γ-invariant eigenfunctions of the Laplacian, not in L2(Γ\H), satisfying

E1/2+it(z) = y1/2+it + θ(1/2 + it)y1/2−it + (rapidly decaying terms)

We have the following spaces [CS80, Ch. 6-7]:

• L2
Eisenstein spanned by the Eisenstein series, and constituting

the continuous part of the spectrum.
• L2

constants of constant functions.
• L2

cusp of cusp forms, the orthogonal complement of the others.
This consists of the functions f on Γ\H whose integral along
all periodic horocycles vanishes, i.e. (identifying the functions
on Γ\H with Γ-invariant functions on H) functions f so that∫ 1

0
f(x+ iy)dx = 0 for all y > 0.

13.5. Selberg [Sel56] proved that if Γ is a congruence subgroup, i.e.
ΓN < Γ < Γ1 for some N , then Weyl’s Law holds for cusp forms

#{eigenvalues of cusp forms ≤ T} ∼ π · area(M) · T

This is very far from the generic picture, where Phillips and Sarnak
have conjectured that L2

cusp is finite dimensional for generic Γ. While
this remains to present an open question, significant results in this
direction have been obtained by them [PS92] and Wolpert [Wol94].

Why is the case of congruence lattices so special? They carry a lot
of extra symmetry, which makes it a lot easier for cusp forms to arise.
We will now discuss these symmetries.

13.6. Hecke Correspodence.
We will define the Hecke correspondence (for a given prime p) in

several equivalent ways. For simplicity we work with Γ = Γ1.

13.7. First, associate to z ∈ H the p+ 1 points in Γ\H

Tp(z) := Γ\
{
pz,

z

p
,
z + 1

p
, . . . ,

z + p− 1

p

}
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each of these points is a fractional linear image of z, so each branch of
this mapping is an isometry. One needs to check that this passes to
the quotient by Γ; i.e. that if z = γz′ then Tp(z) = Tp(z

′). Since Γ is
generated by the maps z 7→ z + 1 and z 7→ −1

z
, and Tp(z) is obviously

invariant under the former, it remains to check that Tp(z) = Tp(−1
z
),

which is left to the reader.

13.8. We will now give an alternate way to define Tp. It will be more
convenient for us to work in PGL(2,R) instead of SL(2,R), and so
we take Γ = PGL(2,Z) [this is not quite SL(2,Z) because matrices
with determinant −1 are allowed on the one hand, but on the other

hand

(
1

1

)
and

(
−1

−1

)
which were distinct elements of SL(2,R)

are identified in PGL(2,Z), but for our purposes this difference is very

minor]. The matrix γp =

(
p

1

)
∈ comm(Γ), where comm(Γ) denotes

the commensurator of Γ — the set of γ ∈ G such that [Γ : γΓγ−1 ∩
Γ] <∞.

Note that

ΓγpΓ = Γ

(
p

1

)
t
p−1⊔
i=0

Γ

(
1 i
0 p

)
The mapping Tp : Γg 7→ ΓγpΓg gives the same correspondence as above.

Because we defined this correspondence by left multiplication, we
can still quotient by K on the right, to get a correspondence on Γ\H.

13.9. Here is a third way to define the same correspondence. Since we
can identify X2 = PGL(2,Z)\PGL(2,R) with the space of lattices in
R2 (up to homothety), we can define for x ∈ X2 the set Tp(x) to be the
set of all lattices y ∈ X2 homothetic to sublattice of x of index p; or
equivalently as the set of all y ∈ X2 which contain a lattice homothetic
to x as a sublattice of index p.

One should check that this agrees with the previous definitions (in
particular, that Tp(x) consists of p+1 points, which is not obvious from
this defintion).

13.10. Lastly, we consider PGL(2,Z[1
p
])\PGL(2,R)×PGL(2,Qp), the

space of Z[1
p
]-modules that are lattices in R2 × Q2

p, again up to ho-

mothety. By this we mean that an element of this space looks like
Z[1

p
](v1, w1) ⊕ Z[1

p
](v2, w2) where {v1, v2} is an R-basis for R2, and

(w1, w2) is a Qp-basis for Q2
p; and the two points Z[1

p
](v1, w1)⊕Z[1

p
](v2, w2)

and Z[1
p
](λv1, θw1) ⊕ Z[1

p
](λv2, θw2) are identified for any λ ∈ R and

θ ∈ Qp.
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Let π : R2 × Q2
p → R2 be the natural projection, and consider the

map π1 : x 7→ π(x ∩ R2 × Z2
p) for x a lattice as above. Then π1(x) is

a lattice in R2 and it respects equivalence up to homothety. Moreover,
for every lattice y ∈ X2, the inverse image π−1

1 (y) = PGL(2,Zp).x for
some x. We’ve shown that

PGL(2,Z[
1

p
])\PGL(2,R)× PGL(2,Qp)/PGL(2,Zp) ∼= X2

Using (a p-adic version of) the KAK-decomposition, we can write

any gp ∈ PGL(2,Qp) as k1

(
pn

1

)
k2 for some k1, k2 ∈ K and some

integer n. Then the map x 7→ π1(gp · π−1
1 (x)) yields a finite collection

of points: x if n = 0, the set Tp(x) if n = 1, and a finite set which we
will denote by Tpk(x) if n = k > 1. This gives our fourth equivalent
definition of the Hecke correspondence.

13.11. The Hecke correspondence allows us to define an operator, also
denoted by Tp, on L2(Γ\G) (resp. on L2(Γ\H)) by

Tpf(x) =
1
√
p

∑
y∈Tp(x)

f(y)

As a side remark, we note that for the Eisenstein series, the eigen-
values of Tp can be computed explicitly, and we have

TpE1/2+it = cos(t log p)E1/2+it

= (p
√

∆+1/4 + p−
√

∆+1/4)E1/2+it

The operator (p
√

∆+1/4 + p−
√

∆+1/4) is essentially the propagating op-
erator of the wave equation.

This property equating two operators which are defined by com-
pletely different means (eg., one by global symmetries and one by local
differential structure) should be quite rare. This is one indication that
L2

Eisenstein should be very small in the arithmetic situations, and hence
L2

cusp should contain the vast majority of the eigenfunctions. This idea
can be used to give an alternative elementary proof of the existence of
cusp forms [LV07].

One should also note that there are compact surfaces Γ\H with Hecke
symmetries; one way to construct such lattices Γ is via quaternion
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algebras (see e.g. [Mor, Ch. 7]), for example

Γ =

{(
x+
√

2y z +
√

2w

5(z −
√

2w) x−
√

2y

)
: x, y, z, w ∈ Z,

x2 − 2y2 − 5t2 + 10w2 = 1

}
.

13.12. We now discuss quantum unique ergodicity conjecture, in par-
ticular in the arithmetic case. We begin with a general compact Rie-
mannian manifoldM , on which we have the Laplacian ∆M , and we wish
to understand the distribution properties of eigenfunctions of ∆M .

According to Schroedinger, the motion of a free (spinless, non-relativistic)
quantum particle flowing in the absence of external forces on M is given
by the equation

i
∂ψ

∂t
= ∆Mψ

This defines a unitary evolution, i.e. the norm ||ψ(·, t)||L2 is indepen-
dent of t. We will always take ||ψ||L2 = 1.

The Born interpretation of the “wave function” ψ is that the function
|ψ|2d(vol) defines a probability measure on M , representing the average
position of a particle in the state ψ; i.e., for any (measurable) region
A ⊂M , the probability of finding our particle in A at time t is given by∫
A
|ψ(x, t)|2d vol(x), where d vol is the Riemannian volume on M . Note

that if ψ is an eigenfunction of ∆M , then the time dependence of ψ only
appears as a phase; i.e. ψ(x, t) = e−iλtψ(x, 0). Hence eigenfunctions
give rise to steady states, or invariant quantum distributions, dµ̃ψ =
|ψ|2d vol.

One can (see below) lift these µ̃ψ to measures µψ on the unit cotan-
gent bundle S∗M which satisfy:

(i)
∣∣∣∫ f̃dπ∗µψ − ∫ f̃dµ̃ψ∣∣∣ < λ−0.1 for any f ∈ C∞(M)

(ii)
∣∣∫ Hfdµψ∣∣ < λ−0.1 for any f ∈ C∞(S∗M), where H is differ-
entiation along the geodesic flow.

Suppose now that {ψi} is a sequence of (normalized) eigenfunctions
whose eigenvalues λi → ∞, denote by µ̃i = µ̃ψi the corresponding
measures, and let µi be the corresponding lifts. The above conditions
guarantee that any weak-* limit point µ∞ of the µi will satisfy

• π∗µ∞ = µ̃∞ (the weak-* limit of the corresponding µ̃i).
•
∫
Hfdµ∞ = 0, i.e., ∂

∂t

∫
f(gt.x)dµ∞ = 0. This means that µ∞

is gt invariant.

We call the µ’s “microlocal lifts” of the µ̃’s.
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13.13. Definition. Any weak-* limit µ∞ of {µi} as above is called a
quantum limit.

13.14. Here we will be interested in the special case of M = Γ\H
for Γ an arithmetic lattice; e.g. Γ a congruence subgroup of SL(2,Z),
or one of the arithmetic compact quotients mentioned earlier. These
manifolds carry the extra symmetry of the Hecke operators, and since
all of these operators commute, we can find a basis of L2 (or L2

cusp in
the non-compact case) consisting of joint eigenfunctions of ∆M and all
of the Tp (such joint eigenfunctions are called Hecke-Maass forms).
Any weak-* limit of µψi , where all of the ψi are Hecke-Maass forms, is
called an arithmetic quantum limit.

13.15. For now, we assume that M is compact. Snirlman, Colin de
Verdiere, and Zelditch have shown that if {ψi}∞i=1 is a full set of (normal-

ized) eigenfunctions ordered by eigenvalue, then the average 1
N

∑N
i=1 µψi

converges to the Liouville measure on S∗M . If we assume that the ge-
odesic flow on M is ergodic with respect to Liouville measure (eg.,
if M has negative sectional curvature), then outside a set E of in-
dices of density zero (i.e., limN→∞

1
N

#{i ∈ E : i < N} = 0), the
sequence {µi}i/∈E converges to Liouville measure; this is because an
ergodic measure cannot be written as a proper convex combination of
other invariant measures.

13.16. Conjecture (Rudnick-Sarnak [RS94]). Let M be a compact,
Riemannian manifold of negative sectional curvature. Then the Liou-
ville measure on S∗M is the unique quantum limit.

13.17. Theorem ([Lin06, Theorem 1.4]). Say M = Γ\H, for Γ arith-
metic (of finite covolume, but not necessarily co-compact). Then the
only arithmetic quantum limits are scalar multiples of Liouville mea-
sure (i.e., the measure is a Haar measure).

Note that in Theorem 13.17 we do not know that the limit measure
is a probability measure. If Γ is cocompact, then this is immediate;
but in the case of Γ a congruence subgroup of SL(2,Z), there remains
the possibility that some (or possibly all) of the mass escapes to the
cusp in the limit.

13.18. Corollary. Let f ∈ Cc(M) such that
∫
M
f = 0. Then for a

sequence {ψi} of Hecke-Maass forms, we have∫
M

f |ψi|2d area(x)→ 0

as i→∞.
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13.19. For example, we could take f in Corollary 13.18 to also be
a Hecke-Maass form (recall these are orthogonal to constants, so the
hypothesis is satisfied). In fact, since these span L2

cusp, the statement of
Corollary 13.18 will hold for all such f iff it holds for all Hecke-Maass
forms.

An identity of Watson shows that the quantity
∫
ψ1ψ2ψ3d area can

be expressed in terms of L-functions, specifically∣∣∣∣∫ ψ1ψ2ψ3d area

∣∣∣∣2 =
π4Λ(1

2
, ψ1 × ψ2 × ψ3)

Λ(1, sym2ψ1)Λ(1, sym2ψ2)Λ(1, sym2ψ3)
.

Hence good estimates on the completed L-function Λ(1
2
, ψ1 × ψ2 × ψ3)

would imply Arithmetic QUE. Unfortunately, the best estimates we
have for this L-functions gives only a trivial bound, and so Theo-
rem 13.17 does not follow from existing technology in this direction.
The Generalized Riemann Hypothesis (GRH) would imply a bound of

. λ
−1/4
i , which would not only imply Theorem 13.17, but would give

an optimal rate of convergence. Further discussion of many of these
topics can be found in the survey [Sar03].

13.20. We also note that Theorem 13.17 has been extended to other
Γ\G by Silberman and Venkatesh; e.g. for G = SL(p,R) and Γ a con-
gruence lattice therein [SV04, SV06].

13.21. As a first step, we wish to construct the measures µi from the
µ̃i, which satisfy the conditions of 13.12. The “standard” way to do
this is via pseudodifferential calculus (see e.g. []), but we wish to give
a representation-theoretic construction, which will respect the Hecke
symmetries that we wish to exploit.

Given any φ ∈ L2(Γ\H) = L2(Γ\ SL(2,R))K , we can translate the
function via g.φ(x) = φ(xg−1) for any g ∈ SL(2,R). Taking all possible
translates, we get a representation

Vφ = 〈g.φ : g ∈ G〉 = 〈ψ ∗ φ : ψ ∈ Cc(G)〉

where the action of ψ is by convolution as in 13.2. This representation
is unitary (since the Riemannian measure is G-invariant), and also irre-
ducible (this is not quite obvious, but follows from the general theory).
Moreover, the isomorphism class of this representation is completely
determined by the eigenvalue of φ.

In fact, we can write down an explicit model Ṽt ∼= Vφ for this repre-
sentation (where t is determined by ∆Mφ = (1

4
+ t2)φ) . The Hilbert

space on which are representation acts will be simply L2(K). To un-
derstand the action of G = SL(2,R), extend any function f on K to a
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function f̃ on G using the NAK decomposition of SL(2,R),

g = nâk =

(
1 s

1

)(
a

a−1

)(
cos θ sin θ
− sin θ cos θ

)
via

f̃(nâk) = a1+2itf(k)

now define g.f as the restriction of the left translation of f̃ by g to K.
It can be shown by an explicit calculation that this representation is
unitary as long as t ∈ R, i.e. as long as the eigenvalue of φ under the
Laplacian is ≥ 1/4 (for our purposes, this is all we care about).

We choose a vector Φ ∈ Vφ that corresponds to the (normalized)
Dirichlet kernel

f(k(θ)) =
1√

2n+ 1

sin (n+ 1
2
)θ

sin θ
2

an n-th order approximation to the δ-function. We then set µi =
|Φi|2d vol (here d vol is the Riemannian volume on Γ\G), and we will
see that the µi are close to being invariant under the geodesic flow.

What is the role of n in all of this? There are two competing prop-
erties:

• The larger the value of n, the closer f is to a δ function, and
the better the invariance properties of µi. The problem is that
then µi loses much of its relation to µ̃i (i.e., π∗µi and µ̃i become
farther apart).
• The smaller the value of n, the closer f is to a constant func-

tion, which means that µi agrees well with µ̃i, but µi loses its
invariance properties.

However, as t → ∞, both approximations improve; hence if we “split
the difference” by choosing an appropriate value of n for each t, we will
get both desired properties in the limit.

13.22. We now wish to explain why large n values make µi more in-
variant. We define the following differential operators:

Hf =
∂

∂s
f

(
g

(
es

e−s

))
V f =

∂

∂s
f

(
g

(
cosh(s) sinh(s)
sinh(s) cosh(s)

))
Wf =

∂

∂θ
f(gk(θ))
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H is differentiation along the geodesic flow, V is differentiation along
the perpendicular direction to the geodesic flow, and W is differentia-
tion in the rotational direction (i.e., fixing the point in M and letting
the direction of the tangent vector vary).

We have the Casimir element

ω = H2 + V 2 −W 2

which commutes with rotations, and coincides (up to a scalar) with
∆M on the subspace {f : Wf = 0} = L2(Γ\G)K . Every vector ψ ∈ Vφ
is an eigenfunction of ω, with eigenvalue 1 + 4t2.

For t large, consider

〈ωΦ,Φf〉 = 〈Φ, ω(Φf)〉
= 〈Φ, (ωΦ)f〉+ 〈Φ,Φ(ωf)〉+

+ 2〈Φ, HΦHf〉+ 2〈Φ, V ΦV f〉+ 2〈Φ,WΦWf〉.
Note that the first terms in both lines are equal:

〈ωΦ,Φf〉 = 〈Φ, (ωΦ)f〉 = (1 + 4t2)〈Φ,Φf〉,
and also that for fixed f , the quantity 〈Φ,Φ(ωf)〉 = Of (1) as the
eigenvalue t tends to infinity. On the other hand, if n is large (but
much smaller than t), Φ is close to being an eigenfunction of H of large
eigenvalue (∼ it), and both ||V Φ|| and ||WΦ|| are much less than t||Φ||.
Dividing by the “eigenvalue for H” we must have 〈Φ,ΦHf〉 = o(1).

But what is 〈Φ,ΦHf〉? By definition, it is the integral
∫
Hfdµi of

the derivative of f along the geodesic flow. Since this tends to 0 as t
gets large, we get

∂

∂t

∫
f(·at)dµ∞ = 0

if µ∞ is a weak-* limit point of the µi; i.e., we have that µ∞ is at-
invariant.

13.23. We have shown that any weak-* limit point of the measures µ̃i
is a projection of a measure µ∞ on Γ\ SL(2,R) which is at-invariant.
But as we know well, there are many at-invariant measures here, even
with positive entropy!

Thus in order to classify quantum limits, we will have to use addi-
tional information about these limits. At this stage, we will abandon
the properties coming from the φi being eigenfunctions of ∆ (though
we have not harnessed the full power of this assumption), and use
properties of Hecke eigenfunctions.

The fact that the φi are Hecke eigenfunctions implies (since the Hecke
operators are defined by translations) that Φi (indeed, any vector in
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Vφi) is a Hecke eigenfunction. Now, one certainly cannot expect |Φi|2
to be a Hecke eigenfunction, but traces of this symmetry do survive in
the measures µi as well as their limit µ∞.

13.24. Recall the Hecke correspondence (fourth formulation) given via
the projection map

PGL(2,Z
[

1

p

]
)\PGL(2,R)× PGL(2,Qp)→ PGL(2,Z)\PGL(2,R).

For each x we have a set of points Tp(x), and its iterates, giving a Hecke
tree which is the projection of a full PGL(2,Qp)-orbit of x.

13.25. Definition. A measure µ on PGL(2,Z)\PGL(2,R) is p-Hecke
recurrent if there is a measure µ̃ on

PGL(2,Z
[

1

p

]
)\PGL(2,R)× PGL(2,Qp)

such that π∗µ̃ = µ and µ̃ is PGL(2,Qp)-recurrent.

13.26. Problem: Show that the property of p-Hecke recurrence is
independent of the lifting; i.e., µ is p-Hecke recurrent if and only if any
lifting measure µ̃ is PGL(2,Qp)-recurrent.

13.27. Let G be an abstract p+1-regular tree, with a distinguished base
point. For a more direct definition of p-Hecke recurrence, we can define
leafwise measures µGx on these Hecke trees (our space is foliated into
Hecke orbits), and then as before Hecke recurrence will hold whenever
these leafwise measures are infinite a.e.

Note that unlike the case of group actions, there is no canonical
labeling on the p-Hecke tree of a point x ∈ X in terms of the nodes of
G. The only inherent structure on these p-Hecke trees is the (discrete)
tree metric; and a construction of leafwise measures in such cases is
given in [Lin06].

To avoid having to introduce this formalism we can consider in-
stead the corresponding non-locally finite measure µx,p = µGx .x on
PGL(2,Z)\PGL(2,R).

13.28. These leafwise measures (more precisely, their image under the
embedding of the abstract p + 1-regular tree G to p-Hecke trees in
PGL(2,Z)\PGL(2,R) satisfy a.s. that

µx,p(y)

µx,p(x)
= lim

r→0

µ(Br(y))

µ(Br(x))

where Br(x) = x.BG
r (1) is a small ball around x in the group G.
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Now, since Φi are Hecke eigenfunctions, the restriction of Φi to each
Hecke tree will give an eigenfunction of the tree Laplacian. Hecke
recurrence will then follow (after a short argument that can be found
in e.g. [Lin06, Sec. 8]) from

13.29. Lemma. Let G be a p + 1-regular tree, and φ : G → C a func-
tion such that ∆Gφ = λpφ. Then φ /∈ L2(G); in fact, there exists a
(universal) constant independent of λp, such that∑

d(x,y)≤R

|φ|2 ≥ cR|φ(x)|2

13.30. This implies that our quantum limit will be both at-invariant
and Hecke recurrent. By Theorem 10.3, if a.e. ergodic component of
µ has positive entropy (this was shown for arithmetic quantum limits
by Bourgain-Lindenstrauss [BL03]), then µ is G-invariant; i.e., µ is a
multiple of Haar measure.
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