11.1. Dual Operators

Every statement follows directly from the property which characterises dual operators. You can apply (a) and (b) to show (c).

11.2. Isomorphisms and Isometries

- (a) Apply 11.1 (c).
- (b) Due to part (a) it suffices to show $||T^*y^*||_{X^*} = ||y^*||_{Y^*}$ for every $y^* \in Y^*$.
- (c) Combine part (a) respectively (b) with the result of problem 11.1 (d).
- (d) Apply part (a) twice and reuse the result of problem 11.1 (d).

11.3. Minimal Energy

(a) Show that the linear operator $T: L^2(\Omega) \to L^2(\Omega)$ mapping $f \mapsto Tf$ given by

$$(Tf)(x) = \int_{\Omega} g(x-y)f(y) \,\mathrm{d}y$$

is well defined. Analyse the image of a weakly convergent sequence under T. Recall that the L^2 -scalar product satisfies the continuity property proven in problem 9.6 (b). (b) Verify the requirements needed for the direct method in the calculus of variations.

11.4. Compact Operators

(a) A sequence in $\overline{T(B_1(0))}$ can be approximated by a sequence in $T(B_1(0))$ which is the image of a (bounded) sequence in $B_1(0)$.

(b) Use (a) and a diagonal sequence argument.

(c) In finite dimensions, sets which are bounded and closed are compact.

- (d) Use (a) and continuity of T respectively S.
- (e) Apply the Eberlein–Šmulian theorem.