4.1. Algebraic basis 🗱

Definition. Let X be a vector space. An algebraic basis for X is a subset $E \subset X$ such that every $x \in X$ is uniquely given as *finite* linear combination of elements in E.

(a) Let $(X, \|\cdot\|)$ be a complete normed space. Show that any algebraic basis for X is either finite or uncountable.

Hint. Assume that X has a countably infinite algebraic basis $\{e_1, e_2, \ldots\}$ and derive a contradiction to the Baire Lemma by considering the sets $A_n = \text{span}\{e_1, \ldots, e_n\}$.

(b) Find an example of a normed space whose algebraic basis is countably infinite.

4.2. Closed subspaces \clubsuit \diamondsuit

Show that the subspaces

$$U = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n} = 0 \},$$
$$V = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n-1} = nx_{2n} \}$$

are both closed in $(\ell^1, \|\cdot\|_{\ell^1})$ while the subspace $U \oplus V$ is not closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Hint. Prove that if any sequence $(x^{(k)})_{k\in\mathbb{N}}$ of elements $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in \ell^1$ converges to $(x_n)_{n\in\mathbb{N}}$ in ℓ^1 for $k \to \infty$, then each entry $x_n^{(k)}$ converges in \mathbb{R} to x_n for $k \to \infty$. For the second claim, show $c_c \subset U \oplus V$. (Recall c_c from problem 3.3 or 4.6.)

4.3. Normal convergence \checkmark

Let $(X, \|\cdot\|)$ be a normed vector space. Prove that the following statements are equivalent.

(i) $(X, \|\cdot\|)$ is a Banach space.

(ii) For every sequence
$$(x_n)_{n \in \mathbb{N}}$$
 in X with $\sum_{k=1}^{\infty} ||x_n|| < \infty$ the limit $\lim_{N \to \infty} \sum_{n=1}^{N} x_n$ exists.

Hint. A Cauchy sequence converges if and only if it has a convergent subsequence.

4.4. Subsets with compact boundary 🗱

Let $(X, \|\cdot\|)$ be an infinite-dimensional normed vector space an let $Z \subset X$ be a bounded subset with compact boundary. Prove that Z has empty interior: $Z^{\circ} = \emptyset$.

Hint. Assume that $Z^{\circ} \neq \emptyset$. Find a continuous functional that projects the boundary ∂Z to the boundary of a ball inside Z. This will contradict the fact that the unit sphere in an infinite-dimensional normed space is non-compact.

assignment: 9 October 2017 due: 16 October 2017 1/2

4.5. Approaching the sign function $\boldsymbol{\mathscr{C}}$

We consider the space $X = C^0([-1, 1], \mathbb{R})$ with its usual norm $\|\cdot\|_{C^0([-1, 1])}$ and define

$$\varphi \colon X \to \mathbb{R}$$
$$f \mapsto \int_0^1 f(t) \, \mathrm{d}t - \int_{-1}^0 f(t) \, \mathrm{d}t.$$

(a) Show that $\varphi \in L(X, \mathbb{R})$ with $\|\varphi\|_{L(X,\mathbb{R})} \leq 2$.

(b) Find a sequence $(f_n)_{n\in\mathbb{N}}$ in X such that $||f_n||_{C^0([-1,1])} = 1$ for every $n \in \mathbb{N}$ and such that $\varphi(f_n) \to 2$ as $n \to \infty$. This in fact implies $||\varphi||_{L(X,\mathbb{R})} = 2$.

due: 16 October 2017

(c) Prove that there does not exist $f \in X$ with $||f||_{C^0([-1,1])} = 1$ and $|\varphi(f)| = 2$.

4.6. Unbounded map and approximations *C*

As in problem 3.3, we denote the space of compactly supported sequences by

$$c_c := \{ (x_n)_{n \in \mathbb{N}} \in \ell^\infty \mid \exists N \in \mathbb{N} \ \forall n \ge N : \ x_n = 0 \}$$

endowed with the norm $\|\cdot\|_{\ell^{\infty}}$. Consider the map

$$T: c_c \to c_c$$
$$(x_n)_{n \in \mathbb{N}} \mapsto (nx_n)_{n \in \mathbb{N}}$$

(a) Show that T is not continuous.

(b) Construct continuous linear maps $T_m: c_c \to c_c$ such that

 $\forall x \in c_c : \quad T_m x \xrightarrow{m \to \infty} T x.$