D-MATH	Functional Analysis I	ETH Zürich
Prof. A. Carlotto	Problem Set 10	Autumn 2017

Definition. Let (X, τ) be a topological space. Denoting the set of all neighbourhoods of a point $x \in X$ by

$$\mathcal{U}_x = \{ U \subset X \mid \exists O \in \tau : x \in O \subset U \},\$$

we call $\mathcal{B}_x \subset \mathcal{U}_x$ a *neighbourhood basis* of x in (X, τ) , if $\forall U \in \mathcal{U}_x \ \exists V \in \mathcal{B}_x : V \subset U$.

Definition. A topological space (X, τ) is called *metrizable* if there exists a metric (namely a distance function) $d: X \times X \to \mathbb{R}$ on X (as defined in problem 1.1) such that, denoting $B_{\varepsilon}(a) = \{x \in X \mid d(x, a) < \varepsilon\}$, there holds

$$\tau = \{ O \subset X \mid \forall a \in O \ \exists \varepsilon > 0 : \ B_{\varepsilon}(a) \subset O \} \}.$$

(a) Show that any metrizable topology τ satisfies the first axiom of countability which means that each point has a countable neighbourhood basis.

In the following, $(X, \|\cdot\|_X)$ is a normed space and τ_w denotes the weak topology on X.

(b) Prove that

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \big((-\varepsilon, \varepsilon) \big) \mid n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon > 0 \right\}$$

is a neighbourhood basis of $0 \in X$ in (X, τ_w) .

(c) Prove the following lemma: Let $f_1, \ldots, f_n \in X^*$ and $f \in X^*$ be given. Let

$$N := \{ x \in X \mid f_1(x) = \ldots = f_n(x) = 0 \}.$$

Then f(x) = 0 for every $x \in N$ if and only if $f = \lambda_1 f_1 + \ldots + \lambda_n f_n$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

(d) Using (b) and (c), show that if (X, τ_w) were first countable, then $(X^*, \|\cdot\|_{X^*})$ would admit a countable algebraic basis.

(e) Assume that the normed space $(X, \|\cdot\|_X)$ is infinite-dimensional and conclude from (a), (d) and problem 4.1 (a) that the topological space (X, τ_w) is not metrizable.

10.2. Sequential closure \checkmark

Let X be a set and τ a topology on X. Given a subset $\Omega \subset X$, we use the notation

$$\overline{\Omega}_{\tau} := \bigcap_{\substack{A \supset \Omega, \\ X \setminus A \in \tau}} A$$

for the closure of Ω in the topology τ and

$$\overline{\Omega}_{\tau\text{-seq}} := \{ x \in X \mid \exists (x_n)_{n \in \mathbb{N}} \text{ in } \Omega : x_n \xrightarrow{\tau} x \text{ as } n \to \infty \}$$

for the sequential closure of Ω induced by the topology τ , which is based on the notion of convergence in topological spaces:

$$(x_n \xrightarrow{\tau} x) \quad \Leftrightarrow \quad (\forall U \in \tau, \ x \in U \quad \exists N \in \mathbb{N} \quad \forall n \ge N : \quad x_n \in U).$$

(a) Prove that if $A \subset X$ is closed, then A is sequentially closed. Prove the inclusion $\overline{\Omega}_{\tau\text{-seq}} \subset \overline{\Omega}_{\tau}$ for any subset $\Omega \subset X$.

(b) Let $(X, \tau) = (\ell^2, \tau_w)$, where τ_w denotes the weak topology on ℓ^2 . Find a set $\Omega \subset \ell^2$ for which the inclusion $\overline{\Omega}_{w-\text{seq}} \subset \overline{\Omega}_w$ proven in (a) is strict.

10.3. Convex hull $\mathbf{a}_{\mathbf{k}}^{*}$

Definition. Let $(X, \|\cdot\|_X)$ be a normed space. The convex hull of $A \subset X$ is defined as

$$\operatorname{conv}(A) \mathrel{\mathop:}= \bigcap_{\substack{B \supset A, \\ B \text{ convex}}} B$$

(a) Prove the following representation theorem for convex hulls

$$\operatorname{conv}(A) = \left\{ \sum_{k=1}^{n} \lambda_k x_k \mid n \in \mathbb{N}, \ x_1, \dots, x_n \in A, \ \lambda_1, \dots, \lambda_n \ge 0, \ \sum_{k=1}^{n} \lambda_k = 1 \right\}.$$

(b) Using part (a), prove Mazur's Lemma: If $(x_k)_{k\in\mathbb{N}}$ is a sequence in X satisfying $x_k \xrightarrow{w} x$ as $k \to \infty$, then there exists a sequence $(y_n)_{n\in\mathbb{N}}$ of convex linear combinations

$$y_n = \sum_{k=1}^n a_{kn} x_k, \quad n \in \mathbb{N}, \quad a_{1n}, \dots, a_{kn} \ge 0, \quad \sum_{k=1}^n a_{kn} = 1,$$

such that $||y_n - x||_X \to 0$ as $n \to \infty$.

(c) Let $(X, \|\cdot\|_X)$ be a normed space and let $A, B \subset X$ be compact, convex subsets. Using part (a), prove that $conv(A \cup B)$ is compact.

due: 27 November 2017 assignment: 20 November 2017

2/3

10.4. Non-compactness $\textcircled{\sc 2}$

In each of the Banach spaces below, find a sequence which is bounded but does not have a convergent subsequence.

- (a) $\left(L^{p}([0,1]), \|\cdot\|_{L^{p}([0,1])}\right)$ for $1 \le p \le \infty$,
- (b) $(c_0, \|\cdot\|_{\ell^{\infty}})$ where $c_0 \subset \ell^{\infty}$ is the space of sequences converging to zero.

10.5. Separability

Let $(X, \|\cdot\|_X)$ be a normed space. Prove that the following statements are equivalent.

- (i) $(X, \|\cdot\|_X)$ is separable.
- (ii) $B = \{x \in X \mid ||x||_X \le 1\}$ is separable.
- (iii) $S = \{x \in X \mid ||x||_X = 1\}$ is separable.