11.1. Dual Operators $\mathbf{\mathscr{I}}$

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. Recall that if $T \in L(X, Y)$, then its dual operator T^* is in $L(Y^*, X^*)$ and it is characterised by the property

 $\forall x \in X \quad \forall y^* \in Y^*: \quad \langle T^*y^*, x \rangle_{X^* \times X} = \langle y^*, Tx \rangle_{Y^* \times Y}.$

Prove the following facts about dual operators.

(a)
$$(\mathrm{Id}_X)^* = \mathrm{Id}_{X^*}$$

(b) If $T \in L(X, Y)$ and $S \in L(Y, Z)$, then $(S \circ T)^* = T^* \circ S^*$.

- (c) If $T \in L(X, Y)$ is bijective with inverse $T^{-1} \in L(Y, X)$, then $(T^*)^{-1} = (T^{-1})^*$.
- (d) Let $\mathcal{I}_X : X \hookrightarrow X^{**}$ and $\mathcal{I}_Y : Y \hookrightarrow Y^{**}$ be the canonical inclusions. Then, $\forall T \in L(X,Y) : \quad \mathcal{I}_Y \circ T = (T^*)^* \circ \mathcal{I}_X.$

11.2. Isomorphisms and Isometries $\textcircled{\sc op}$

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $T \in L(X, Y)$. Prove the following.

(a) If T is an isomorphism with $T^{-1} \in L(Y, X)$, then T^* is an isomorphism.

(b) If T is an isometric isomorphism, then T^* is an isometric isomorphism.

(c) If X and Y are both reflexive, then the reverse implications of (a) and (b) hold.

(d) If $(X, \|\cdot\|_X)$ is a reflexive Banach space isomorphic to the normed space $(Y, \|\cdot\|_Y)$, then Y is reflexive.

11.3. Minimal Energy 😋

Let $m \in \mathbb{N}$ and let $\Omega \subset \mathbb{R}^m$ be a bounded subset. For $g \in L^2(\mathbb{R}^m)$, we define the map

$$V \colon L^{2}(\Omega) \to \mathbb{R}$$
$$f \mapsto \int_{\Omega} \int_{\Omega} g(x - y) f(x) f(y) \, dy \, dx$$

and given $h \in L^2(\Omega)$, we define the map

$$E: L^{2}(\Omega) \to \mathbb{R}$$
$$f \mapsto \|f - h\|_{L^{2}(\Omega)}^{2} + V(f).$$

(a) Prove that V is weakly sequentially continuous.

(b) Under the assumption $g \ge 0$ almost everywhere, prove that E restricted to

$$L^{2}_{+}(\Omega) := \{ f \in L^{2}(\Omega) \mid f(x) \ge 0 \text{ for almost every } x \in \Omega \}$$

attains a global minimum.

assignment: 27 November 2017 due: 4 December 2017

1/2

11.4. Compact Operators 🗱

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We denote by

 $K(X,Y) = \{T \in L(X,Y) \mid \overline{T(B_1(0))} \subset Y \text{ compact}\}\$

the set of *compact operators* between X and Y. Prove the following statements.

(a) $T \in L(X, Y)$ is a compact operator if and only if every bounded sequence $(x_n)_{n \in \mathbb{N}}$ in X has a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $(Tx_{n_k})_{k \in \mathbb{N}}$ is convergent in Y.

(b) If $(Y, \|\cdot\|_Y)$ is complete, then K(X, Y) is a closed subspace of L(X, Y).

(c) Let $T \in L(X, Y)$. If its range $T(X) \subset Y$ is finite-dimensional, then $T \in K(X, Y)$.

(d) Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. If T or S is a compact operator, then $S \circ T$ is a compact operator.

(e) If X is reflexive, then any operator $T \in L(X, Y)$ which maps weakly convergent sequences to norm-convergent sequences is a compact operator.