13.1. Definitions of resolvent set 2

Let $(X, \|\cdot\|_X)$ be a Banach space over \mathbb{C} and let $A \colon D_A \subset X \to X$ be a linear operator. Prove that if A has closed graph, then the following sets coincide.

$$\rho(A) = \{ \lambda \in \mathbb{C} \mid (\lambda - A) \colon D_A \to X \text{ is bijective, } \exists (\lambda - A)^{-1} \in L(X, X) \},\$$

 $\tilde{\rho}(A) = \{ \lambda \in \mathbb{C} \mid (\lambda - A) \colon D_A \to X \text{ is injective with dense image,} \\ \exists (\lambda - A)^{-1} \in L(X, X) \}.$

Remark. In the literature, the resolvent set is often defined to be $\tilde{\rho}(A)$ rather than $\rho(A)$. Since any differential operator with smooth coefficients is closable (Satz 3.4.2), this problem shows that the difference is not relevant in many important cases.

13.2. Unitary operators \checkmark

Definition. Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . An invertible linear operator $T \in L(H, H)$ is called *unitary*, if $T^* = T^{-1}$.

- (a) Prove that $T \in L(H, H)$ is unitary if and only if T is a bijective isometry.
- (b) Prove that if $T \in L(H, H)$ is unitary, then its spectrum lies on the unit circle:

 $\sigma(T) \subset \mathbb{S}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}.$

13.3. Integral operators revisited $\textcircled{\baselined{1}}$

Let $\Omega \subset \mathbb{R}^m$ be a bounded subset. Given $k \in L^2(\Omega \times \Omega)$ such that k(x, y) = k(y, x) for almost every $(x, y) \in \Omega \times \Omega$, consider the operator $K \colon L^2(\Omega) \to L^2(\Omega)$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) \, dy$$

and the operator

$$A\colon L^2(\Omega) \to L^2(\Omega)$$
$$f \mapsto f - Kf.$$

Prove that injectivity of A and surjectivity of A are equivalent.

13.4. Resolvents and spectral distance

Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} .

(a) Let $A \in L(H, H)$ be a self-adjoint operator and let $\lambda \in \rho(A)$ be an element in its resolvent set. Show that the resolvent $R_{\lambda} := (\lambda - A)^{-1}$ is a *normal* operator, i.e.

$$R_{\lambda}R_{\lambda}^* = R_{\lambda}^*R_{\lambda}.$$

assignment: 11 December 2017 due: 18 December 2017 1/3

(b) Let $A, B \in L(H, H)$ be self-adjoint operators. The Hausdorff distance of their spectra $\sigma(A), \sigma(B) \subset \mathbb{C}$ is defined to be

$$d(\sigma(A), \sigma(B)) := \max\left\{\sup_{\alpha \in \sigma(A)} \left(\inf_{\beta \in \sigma(B)} |\alpha - \beta|\right), \sup_{\beta \in \sigma(B)} \left(\inf_{\alpha \in \sigma(A)} |\alpha - \beta|\right)\right\}.$$

Prove the estimate

$$d(\sigma(A), \sigma(B)) \le ||A - B||_{L(H,H)}.$$

Remark. The Hausdorff distance d is in fact a distance on compact subsets of \mathbb{C} . In particular, it restricts to an actual distance function on the spectra of bounded linear operators.

13.5. Heisenberg's uncertainty principle 🗱

Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . Let $D_A, D_B \subset H$ be dense subspaces and let $A: D_A \subset H \to H$ and $B: D_B \subset H \to H$ be symmetric linear operators. Under the necessary assumption that $A(D_A \cap D_B) \subset D_B$ and $B(D_A \cap D_B) \subset D_A$, the *commutator*

$$[A, B]: D_{[A,B]} \subset H \to H$$
$$x \mapsto A(Bx) - B(Ax)$$

is a well-defined operator on $D_{[A,B]} := D_A \cap D_B$.

(a) Prove the following inequality:

$$\forall x \in D_{[A,B]}: \qquad 2\|Ax\|_H \|Bx\|_H \ge \Big| \langle x, [A,B]x \rangle_H \Big|.$$

(b) Given the symmetric operator $A: D_A \subset H \to H$ we define the standard deviation

$$\varsigma(A, x) := \sqrt{\langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2}$$

at each $x \in D_A$ with $||x||_H = 1$. Verify $\varsigma(A, x) \in \mathbb{R}$ and prove the following inequality.

$$\forall x \in D_{[A,B]}, \ \|x\|_H = 1: \quad 2\varsigma(A,x)\,\varsigma(B,x) \ge \Big| \langle x, [A,B]x \rangle_H \Big|.$$

Remark. The possible *states* of a quantum mechanical system are given by elements $x \in H$ with $||x||_{H} = 1$. Each *observable* is given by a symmetric linear operator $A: D_A \subset H \to H$. If the system is in state $x \in D_A$, we measure the observable A with uncertainty $\varsigma(A, x)$.

2/3

(c) Let $A: D_A \to H$ and $B: D_B \to H$ be as above. A, B is called *Heisenberg-pair* if

$$[A,B] = i \operatorname{Id}_{D_{[A,B]}}.$$

Under the assumption that B has finite operator norm and $D_B = H$, prove that if A, B is a Heisenberg-pair, then $A: D_A \subset H \to H$ cannot have finite operator norm.

(d) Consider the Hilbert space $(H, \langle \cdot, \cdot \rangle_H) = (L^2([0, 1]; \mathbb{C}), \langle \cdot, \cdot \rangle_{L^2})$ and the subspace

$$C_0^1([0,1];\mathbb{C}) := \{ f \in L^2([0,1];\mathbb{C}) \mid f \in C^1([0,1];\mathbb{C}), \ f(0) = 0 = f(1) \}.$$

Here, we denote elements in the Hilbert space $L^2([0,1];\mathbb{C})$ by f and points in the interval [0,1] by s. We understand $f \in C^1([0,1];\mathbb{C})$ if f has a representative in C^1 and write $f' = \frac{d}{ds}f$ in this case. Recall that in this sense, $C_0^1([0,1];\mathbb{C}) \subset L^2([0,1];\mathbb{C})$ is a dense subspace. The operators

$$P: C_0^1([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C}), \qquad Q: L^2([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C}) \\ f(s) \mapsto if'(s) \qquad f(s) \mapsto sf(s)$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P,Q]: C_0^1([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C})$ is well-defined.

Show that P and Q form a Heisenberg-pair and conclude the uncertainty principle:

$$\forall f \in C_0^1([0,1];\mathbb{C}), \ \|f\|_{L^2([0,1];\mathbb{C})} = 1: \quad \varsigma(P,f)\,\varsigma(Q,f) \ge \frac{1}{2}.$$

The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.