1.1. Equivalent Norms

(a) Let $n = \dim X$ and let $\{e_1, \ldots, e_n\}$ be a basis for X. Then every $x \in X$ is of the form $x = \sum_{k=1}^n x_k e_k$ with uniquely determined components $x_1, \ldots, x_n \in \mathbb{R}$. Recall that

$$||x||_{\infty} \coloneqq \max_{k \in \{1,\dots,n\}} |x_k|$$

defines a norm on X. We show that any given norm $\|\cdot\|$ is equivalent to $\|\cdot\|_{\infty}$ and therefore any two norms are equivalent to each other. We have

$$\|x\| = \left\|\sum_{k=1}^{n} x_k e_k\right\| \le \sum_{k=1}^{n} \|x_k e_k\| = \sum_{k=1}^{n} |x_k| \|e_k\| \le n \left(\max_{k \in \{1, \dots, n\}} |x_k|\right) \left(\max_{k \in \{1, \dots, n\}} \|e_k\|\right) = nM \|x\|_{\infty}$$
(*)

where

$$M := \left(\max_{k \in \{1,\dots,n\}} \|e_k\|\right)$$

is a finite constant. The triangle inequality implies $||x|| - ||y||| \le ||x - y||$. Combined with (*) we have

$$|||x|| - ||y||| \le ||x - y|| \le nM||x - y||_{\infty}$$

for every $x, y \in X$. This implies that $\|\cdot\| \colon (X, \|\cdot\|_{\infty}) \to \mathbb{R}$ is a continuous map. We restrict this map to $K := \{x \in X \mid \|x\|_{\infty} = 1\}$ which is a closed and bounded subset in a finite-dimensional space, hence compact. Therefore, the function $\|\cdot\|$ attains its extrema on K. Let $x_1, x_2 \in X$ such that

$$m_1 := \min_{x \in K} ||x|| = ||x_1||, \qquad m_2 := \max_{x \in K} ||x|| = ||x_2||$$

Since $||x_1||_{\infty} = 1$ we have $x_1 \neq 0$ and $m_1 > 0$. For arbitrary $x \in X \setminus \{0\}$ we have

$$\left(\frac{1}{\|x\|_{\infty}}x\right) \in K \quad \Rightarrow \quad 0 < m_1 \le \left\|\frac{1}{\|x\|_{\infty}}x\right\| \le m_2 < \infty.$$

Multiplication with $||x||_{\infty}$ implies

 $0 < m_1 ||x||_{\infty} \le ||x|| \le m_2 ||x||_{\infty} < \infty.$

Any other given norm $\left\|\cdot\right\|'$ satisfies analogously

 $0 < m'_1 ||x||_{\infty} \le ||x||' \le m'_2 ||x||_{\infty} < \infty.$

The combination of the two last inequalities proves

$$\exists C > 0 \ \forall x \in X : \quad C^{-1} \|x\|' \le \|x\| \le C \|x\|'.$$

last update: 25 September 2017

(b) Let d be the metric on \mathbb{R}^2 induced by the Euclidean norm. We define d' on \mathbb{R}^2 by

$$d'(x,y) = \begin{cases} 0, & \text{if } x = y\\ 1, & \text{if } x \neq y \end{cases}$$

Let z be a point on the Euclidean unit circle $\mathbb{S}^1 \subset \mathbb{R}^2$ let $z_n = \frac{1}{n}z$. Then, $d(0, z_n) = \frac{1}{n}$ and $d'(0, z_n) = 1$. Since an inequality of the form $1 \leq C\frac{1}{n}$ can not hold for every $n \in \mathbb{N}$ if C is finite, d and d' are not equivalent.

(c) Let $X = C^1([0,1])$. Let $\|\cdot\|$ and $\|\cdot\|'$ be the two norms on X given by

$$\|u\| := \|u\|_{C^0} = \sup_{x \in [0,1]} |u(x)|, \qquad \|u\|' := \max\left\{\sup_{x \in [0,1]} |u(x)|, \sup_{x \in [0,1]} |u'(x)|\right\}$$

For $n \in \mathbb{N}$ we consider
 $f_n: [0,1] \to \mathbb{R}$
 $x \mapsto \frac{e^{-nx}}{n}.$
 $\frac{1}{2}$
 $\int_{0}^{1} \frac{f_2}{1} x$

Then, $f_n \in C^1([0,1])$ for every $n \in \mathbb{N}$. Moreover, $||f_n|| = \frac{1}{n}$ and $||f_n||' = 1$. Since an inequality of the form $1 \leq C\frac{1}{n}$ can not hold for every $n \in \mathbb{N}$ if C is finite, $||\cdot||$ and $||\cdot||'$ are not equivalent.

1.2. Intrinsic Characterisations

(a) If the norm $\|\cdot\|$ is induced by the scalar product $\langle \cdot, \cdot \rangle$, then the parallelogram identity holds:

$$\begin{aligned} \|x+y\|^2 + \|x-y\|^2 \\ &= \langle x+y, x+y \rangle + \langle x-y, x-y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\ &= 2 \|x\|^2 + 2 \|y\|^2. \end{aligned}$$

Conversely, we assume that $\|\cdot\|$ satisfies the parallelogram identity and claim that

$$\langle x, y \rangle := \frac{1}{4} ||x + y||^2 - \frac{1}{4} ||x - y||^2$$

defines an scalar product which induces $\|\cdot\|$.

• Symmetry. Since ||x - y|| = ||(-1)(y - x)|| = ||y - x|| and since x + y = y + x, we have $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$.

• Linearity. Let $x, y, z \in V$. We use the parallelogram identity in the following way.

$$||(x+z) + y||^{2} + ||(x+z) - y||^{2} = 2||x+z||^{2} + 2||y||^{2}.$$

We rewrite the equation above to obtain

$$||x + y + z||^{2} = 2||x + z||^{2} + 2||y||^{2} - ||x - y + z||^{2} = A$$

and switch the roles of x and y to get

$$||x + y + z||^2 = 2||y + z||^2 + 2||x||^2 - ||y - x + z||^2 =: B.$$

Therefore,

$$||x + y + z||^{2} = \frac{A}{2} + \frac{B}{2}$$

= $||x + z||^{2} + ||y||^{2} + ||y + z||^{2} + ||x||^{2} - \frac{||x - y + z||^{2} + ||y - x + z||^{2}}{2}.$ (1)

Analogously,

$$||x + y - z||^{2} = ||x - z||^{2} + ||y||^{2} + ||y - z||^{2} + ||x||^{2} - \frac{||x - y - z||^{2} + ||y - x - z||^{2}}{2}.$$
 (2)

Note that the last term of (1) agrees with the last term of (2). Hence, we have

$$\langle x+y,z\rangle = \frac{1}{4} ||x+y+z||^2 - \frac{1}{4} ||x+y-z||^2 = \frac{1}{4} (||x+z||^2 + ||y+z||^2 - ||x-z||^2 - ||y-z||^2) = \langle x,z\rangle + \langle y,z\rangle.$$

Let $n \in \mathbb{N}$. By induction on the number of summands in the first slot, we have

$$\langle nx, z \rangle = \left\langle \sum_{k=1}^{n} x, z \right\rangle = \sum_{k=1}^{n} \langle x, z \rangle = n \langle x, z \rangle$$

Moreover, since $\langle 0, y \rangle = \frac{1}{4} (||y||^2 - ||y||^2) = 0$,

$$0 = \langle 0, y \rangle = \langle x - x, y \rangle = \langle x, y \rangle + \langle -x, y \rangle \qquad \Rightarrow \langle -x, y \rangle = -\langle x, y \rangle.$$

Consequently, $\langle mx, z \rangle = m \langle x, z \rangle$ for every $m \in \mathbb{Z}$. Let $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then,

$$\left\langle \frac{m}{n}x,z\right\rangle = \frac{n}{n}m\left\langle \frac{1}{n}x,z\right\rangle = \frac{m}{n}\left\langle \frac{n}{n}x,z\right\rangle = \frac{m}{n}\langle x,z\rangle,$$

last update: 25 September 2017

 $3/_{5}$

which implies $\langle qx, z \rangle = q \langle x, z \rangle$ for every $q \in \mathbb{Q}$.

Let $\lambda \in \mathbb{R}$ and let $(q_n)_{n \in \mathbb{N}}$ be a sequence of rational numbers converging to λ for $n \to \infty$. Since the triangle inequality $|||x|| - ||y||| \le ||x - y||$ implies that the norm is a continuous map, we have

$$\langle \lambda x, z \rangle = \frac{1}{4} \|\lambda x + z\|^2 - \frac{1}{4} \|\lambda x - z\|^2 = \lim_{n \to \infty} \left(\frac{1}{4} \|q_n x + z\|^2 - \frac{1}{4} \|q_n x - z\|^2 \right)$$
$$= \lim_{n \to \infty} \langle q_n x, z \rangle = \lim_{n \to \infty} q_n \langle x, z \rangle = \lambda \langle x, z \rangle.$$

Linearity in the second argument follows by symmetry.

• Positive-definiteness. For all $x \in V$, we have

$$\langle x, x \rangle = \frac{1}{4} ||x + x||^2 - \frac{1}{4} ||x - x||^2 = \frac{1}{4} ||2x||^2 = ||x||^2 \ge 0.$$

This also shows that $\|\cdot\|$ is induced by $\langle\cdot,\cdot\rangle$. Moreover, $\langle x,x\rangle = 0 \Leftrightarrow \|x\| = 0 \Leftrightarrow x = 0$.

(b) If the metric d is induced by the norm $\|\cdot\|$, then

$$d(x + v, y + v) = ||(x + v) - (y + v)|| = ||x - y|| = d(x, y),$$
$$d(\lambda x, \lambda y) = ||\lambda x - \lambda y|| = ||\lambda(x - y)|| = |\lambda|||x - y||.$$

Conversely, we assume that the metric d is translation invariant and homogeneous and claim that

$$||x|| := d(x,0)$$

defines a norm which induces d. The function $\|\cdot\|$ is indeed a norm, because for all $x, y, z \in V$ and $\lambda \in \mathbb{R}$, we have

$$\begin{split} \|x\| &= 0 \iff d(x,0) = 0 \iff x = 0, \\ \|\lambda x\| &= d(\lambda x,0) = d(\lambda x,\lambda 0) = |\lambda| |d(x,0) = |\lambda| \|x\|, \\ \|x + y\| &= d(x + y,0) \le d(x + y,y) + d(y,0) = d(x,0) + d(y,0) = \|x\| + \|y\|. \end{split}$$

Moreover, $\|\cdot\|$ induces the metric *d* since for all $x, y \in V$

$$||x - y|| = d(x - y, 0) = d(x, y).$$

1.3. Infinite-dimensional vector spaces and separability

(a) Suppose by contradiction, $L^p(\Omega)$ has finite dimension $d \in \mathbb{N}$. Since $\emptyset \neq \Omega \subset \mathbb{R}^n$ is open there exist d+1 disjoint balls $B_i := B_{r_i}(x_i) \subset \Omega$ for $i = 1, \ldots, d+1$. Let

$$\varphi_i(x) = \max\left\{0, 1 - \frac{4|x - x_i|^2}{r_i^2}\right\}.$$
 $(x_i)^{\varphi_i}$

Then, $\varphi_1, \ldots, \varphi_{d+1} \in C_c(\Omega) \subset L^p(\Omega)$ with disjoint supports. Moreover, since the subset $\{\varphi_1, \ldots, \varphi_{d+1}\}$ contains more than *d* Elements, it must be linearly dependent. Let $\lambda_1, \ldots, \lambda_{d+1} \in \mathbb{R}$ be not all equal to 0 such that

$$\sum_{i=1}^{d+1} \lambda_i \varphi_i = 0.$$

However, if we multiply by φ_j for any $j \in \{1, \ldots, d+1\}$ and integrate over Ω ,

$$0 = \int_{\Omega} \sum_{i=1}^{d+1} \lambda_i \varphi_i \varphi_j \, \mathrm{d}\mu = \int_{\Omega} \lambda_i \varphi_j^2 \, \mathrm{d}\mu = \lambda_j \int_{\Omega} \varphi_j^2 \, \mathrm{d}\mu \qquad \Rightarrow \lambda_j = 0.$$

(b) We define $I_n := (\frac{1}{n+1}, \frac{1}{n}) \subset (0, 1)$ for $n \in \mathbb{N}$ and consider the characteristic function χ_{I_n} of I_n , i.e.

$$\chi_{I_n}(x) := \begin{cases} 1, & \text{if } x \in I_n, \\ 0, & \text{if } x \in (0,1) \setminus I_n \end{cases}$$

Given any subset $\emptyset \neq M \subset \mathbb{N}$ we define the function $f_M \in L^{\infty}((0,1))$ by

$$f_M(x) := \sum_{n \in M} \chi_{I_n}(x)$$

Since the intervals I_n are pairwise disjoint, open and non-empty, we have $||f_M||_{L^{\infty}} = 1$ for every $\emptyset \neq M \subset \mathbb{N}$. For the same reason,

$$\|f_M - f_{M'}\|_{L^{\infty}} = 1.$$

if $M \neq M'$. Therefore, the balls $B_M = \{g \in L^{\infty}((0,1)) \mid ||g - f_M||_{L^{\infty}} < \frac{1}{3}\}$ are pairwise disjoint. If $S \subset L^{\infty}((0,1))$ is any dense subset, then $S \cap B_M \neq \emptyset$ for every $\emptyset \neq M \subset \mathbb{N}$. Thus, there is a surjective map $S \to \{B_M \mid \emptyset \neq M \subset \mathbb{N}\}$. Since there are uncountably many different subsets of \mathbb{N} , the set S must be uncountable as well. Therefore, $L^{\infty}((0,1))$ does not admit a countable dense subset.

last update: 25 September 2017