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1.1. Equivalent Norms

(a) Let n = dimX and let {e1, . . . , en} be a basis for X. Then every x ∈ X is of the
form x = ∑n

k=1 xkek with uniquely determined components x1, . . . , xn ∈ R. Recall
that

‖x‖∞ := max
k∈{1,...,n}

|xk|

defines a norm on X. We show that any given norm ‖·‖ is equivalent to ‖·‖∞ and
therefore any two norms are equivalent to each other. We have

‖x‖ =
∥∥∥∥ n∑

k=1
xkek

∥∥∥∥ ≤ n∑
k=1
‖xkek‖ =

n∑
k=1
|xk|‖ek‖

≤ n
(

max
k∈{1,...,n}

|xk|
)(

max
k∈{1,...,n}

‖ek‖
)

= nM‖x‖∞ (∗)

where
M :=

(
max

k∈{1,...,n}
‖ek‖

)
is a finite constant. The triangle inequality implies

∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x− y‖. Combined
with (∗) we have∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x− y‖ ≤ nM‖x− y‖∞

for every x, y ∈ X. This implies that ‖·‖ : (X, ‖·‖∞)→ R is a continuous map. We
restrict this map to K := {x ∈ X | ‖x‖∞ = 1} which is a closed and bounded subset
in a finite-dimensional space, hence compact. Therefore, the function ‖·‖ attains its
extrema on K. Let x1, x2 ∈ X such that

m1 := min
x∈K
‖x‖ = ‖x1‖, m2 := max

x∈K
‖x‖ = ‖x2‖

Since ‖x1‖∞ = 1 we have x1 6= 0 and m1 > 0. For arbitrary x ∈ X \ {0} we have( 1
‖x‖∞

x
)
∈ K ⇒ 0 < m1 ≤

∥∥∥∥ 1
‖x‖∞

x
∥∥∥∥ ≤ m2 <∞.

Multiplication with ‖x‖∞ implies

0 < m1‖x‖∞ ≤ ‖x‖ ≤ m2‖x‖∞ <∞.

Any other given norm ‖·‖′ satisfies analogously

0 < m′1‖x‖∞ ≤ ‖x‖
′ ≤ m′2‖x‖∞ <∞.

The combination of the two last inequalities proves

∃C > 0 ∀x ∈ X : C−1‖x‖′ ≤ ‖x‖ ≤ C‖x‖′.
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(b) Let d be the metric on R2 induced by the Euclidean norm. We define d′ on R2 by

d′(x, y) =

0, if x = y

1, if x 6= y

Let z be a point on the Euclidean unit circle S1 ⊂ R2 let zn = 1
n
z. Then, d(0, zn) = 1

n

and d′(0, zn) = 1. Since an inequality of the form 1 ≤ C 1
n
can not hold for every

n ∈ N if C is finite, d and d′ are not equivalent.

(c) Let X = C1([0, 1]). Let ‖·‖ and ‖·‖′ be the two norms on X given by

‖u‖ := ‖u‖C0 = sup
x∈[0,1]

|u(x)|, ‖u‖′ := max
{

sup
x∈[0,1]

|u(x)|, sup
x∈[0,1]

|u′(x)|
}

For n ∈ N we consider

fn : [0, 1]→ R

x 7→ e−nx

n
. f1

f2

x+
0

+
1

+1
2

+1

Then, fn ∈ C1([0, 1]) for every n ∈ N. Moreover, ‖fn‖ = 1
n
and ‖fn‖′ = 1. Since an

inequality of the form 1 ≤ C 1
n
can not hold for every n ∈ N if C is finite, ‖·‖ and ‖·‖′

are not equivalent.

1.2. Intrinsic Characterisations

(a) If the norm ‖·‖ is induced by the scalar product 〈·, ·〉, then the parallelogram
identity holds:

‖x+ y‖2 + ‖x− y‖2

= 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉
= 2‖x‖2 + 2‖y‖2.

Conversely, we assume that ‖·‖ satisfies the parallelogram identity and claim that

〈x, y〉 := 1
4‖x+ y‖2 − 1

4‖x− y‖
2

defines an scalar product which induces ‖·‖.
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• Symmetry. Since ‖x− y‖ = ‖(−1)(y − x)‖ = ‖y − x‖ and since x+ y = y + x, we
have 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

• Linearity. Let x, y, z ∈ V . We use the parallelogram identity in the following way.

‖(x+ z) + y‖2 + ‖(x+ z)− y‖2 = 2‖x+ z‖2 + 2‖y‖2.

We rewrite the equation above to obtain

‖x+ y + z‖2 = 2‖x+ z‖2 + 2‖y‖2 − ‖x− y + z‖2 =: A

and switch the roles of x and y to get

‖x+ y + z‖2 = 2‖y + z‖2 + 2‖x‖2 − ‖y − x+ z‖2 =: B.

Therefore,

‖x+ y + z‖2 = A

2 + B

2

= ‖x+ z‖2 + ‖y‖2 + ‖y + z‖2 + ‖x‖2 − ‖x− y + z‖2 + ‖y − x+ z‖2

2 . (1)
Analogously,

‖x+ y − z‖2

= ‖x− z‖2 + ‖y‖2 + ‖y − z‖2 + ‖x‖2 − ‖x− y − z‖
2 + ‖y − x− z‖2

2 . (2)

Note that the last term of (1) agrees with the last term of (2). Hence, we have

〈x+ y, z〉 = 1
4‖x+ y + z‖2 − 1

4‖x+ y − z‖2

= 1
4

(
‖x+ z‖2 + ‖y + z‖2 − ‖x− z‖2 − ‖y − z‖2

)
= 〈x, z〉+ 〈y, z〉.

Let n ∈ N. By induction on the number of summands in the first slot, we have

〈nx, z〉 =
〈 n∑

k=1
x, z

〉
=

n∑
k=1
〈x, z〉 = n〈x, z〉

Moreover, since 〈0, y〉 = 1
4

(
‖y‖2 − ‖y‖2

)
= 0,

0 = 〈0, y〉 = 〈x− x, y〉 = 〈x, y〉+ 〈−x, y〉 ⇒ 〈−x, y〉 = −〈x, y〉.

Consequently, 〈mx, z〉 = m〈x, z〉 for every m ∈ Z. Let m ∈ Z and n ∈ N. Then,〈
m

n
x, z

〉
= n

n
m
〈 1
n
x, z

〉
= m

n

〈
n

n
x, z

〉
= m

n
〈x, z〉,
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which implies 〈qx, z〉 = q〈x, z〉 for every q ∈ Q.

Let λ ∈ R and let (qn)n∈N be a sequence of rational numbers converging to λ for
n→∞. Since the triangle inequality |‖x‖ − ‖y‖| ≤ ‖x− y‖ implies that the norm is
a continuous map, we have

〈λx, z〉 = 1
4‖λx+ z‖2 − 1

4‖λx− z‖
2 = lim

n→∞

(
1
4‖qnx+ z‖2 − 1

4‖qnx− z‖2
)

= lim
n→∞
〈qnx, z〉 = lim

n→∞
qn〈x, z〉 = λ〈x, z〉.

Linearity in the second argument follows by symmetry.

• Positive-definiteness. For all x ∈ V , we have

〈x, x〉 = 1
4‖x+ x‖2 − 1

4‖x− x‖
2 = 1

4‖2x‖
2 = ‖x‖2 ≥ 0.

This also shows that ‖·‖ is induced by 〈·, ·〉. Moreover, 〈x, x〉 = 0⇔ ‖x‖ = 0⇔ x = 0.

(b) If the metric d is induced by the norm ‖·‖, then

d(x+ v, y + v) = ‖(x+ v)− (y + v)‖ = ‖x− y‖ = d(x, y),

d(λx, λy) = ‖λx− λy‖ = ‖λ(x− y)‖ = |λ|‖x− y‖.

Conversely, we assume that the metric d is translation invariant and homogeneous
and claim that

‖x‖ := d(x, 0)

defines a norm which induces d. The function ‖·‖ is indeed a norm, because for all
x, y, z ∈ V and λ ∈ R, we have

‖x‖ = 0 ⇔ d(x, 0) = 0 ⇔ x = 0,

‖λx‖ = d(λx, 0) = d(λx, λ0) = |λ|d(x, 0) = |λ|‖x‖,

‖x+ y‖ = d(x+ y, 0) ≤ d(x+ y, y) + d(y, 0) = d(x, 0) + d(y, 0) = ‖x‖+ ‖y‖.

Moreover, ‖·‖ induces the metric d since for all x, y ∈ V

‖x− y‖ = d(x− y, 0) = d(x, y).
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1.3. Infinite-dimensional vector spaces and separability

(a) Suppose by contradiction, Lp(Ω) has finite dimension d ∈ N. Since ∅ 6= Ω ⊂ Rn

is open there exist d+ 1 disjoint balls Bi := Bri
(xi) ⊂ Ω for i = 1, . . . , d+ 1. Let

ϕi(x) = max
{

0, 1− 4|x− xi|2

r2
i

}
.

Ω Bi

+ ++
xi

ϕi

Then, ϕ1, . . . , ϕd+1 ∈ Cc(Ω) ⊂ Lp(Ω) with disjoint supports. Moreover, since the
subset {ϕ1, . . . , ϕd+1} contains more than d Elements, it must be linearly dependent.
Let λ1, . . . , λd+1 ∈ R be not all equal to 0 such that

d+1∑
i=1

λiϕi = 0.

However, if we multiply by ϕj for any j ∈ {1, . . . , d+ 1} and integrate over Ω,

0 =
∫

Ω

d+1∑
i=1

λiϕiϕj dµ =
∫

Ω
λiϕ

2
j dµ = λj

∫
Ω
ϕ2

j dµ ⇒ λj = 0.

(b) We define In := ( 1
n+1 ,

1
n
) ⊂ (0, 1) for n ∈ N and consider the characteristic

function χIn of In, i. e.

χIn(x) :=

1, if x ∈ In,

0, if x ∈ (0, 1) \ In.

Given any subset ∅ 6= M ⊂ N we define the function fM ∈ L∞((0, 1)) by

fM(x) :=
∑

n∈M

χIn(x)

Since the intervals In are pairwise disjoint, open and non-empty, we have ‖fM‖L∞ = 1
for every ∅ 6= M ⊂ N. For the same reason,

‖fM − fM ′‖L∞ = 1.

if M 6= M ′. Therefore, the balls BM = {g ∈ L∞((0, 1)) | ‖g − fM‖L∞ < 1
3} are

pairwise disjoint. If S ⊂ L∞((0, 1)) is any dense subset, then S ∩BM 6= ∅ for every
∅ 6= M ⊂ N. Thus, there is a surjective map S → {BM | ∅ 6= M ⊂ N}. Since there
are uncountably many different subsets of N, the set S must be uncountable as well.
Therefore, L∞((0, 1)) does not admit a countable dense subset.
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