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2.1. A metric on sequences

(a) The function d : S × S → R is well-defined because for any (xn)n∈N, (yn)n∈N ∈ S,

0 ≤ d
(
(xn)n∈N, (yn)n∈N

)
=
∑
n∈N

2−n |xn − yn|
1 + |xn − yn|

≤
∑
n∈N

2−n <∞.

Symmetry and the requirement d((xn)n∈N, (yn)n∈N) = 0 ⇔ ∀n ∈ N : xn = yn both
follow from the respective property of |xn − yn|. It remains to prove the triangle
inequality. For every x, y, z ∈ R we observe

|x− z|
1 + |x− z| = 1− 1

1 + |x− z|

≤ 1− 1
1 + |x− y|+ |y − z|

= |x− y|+ |y − z|
1 + |x− y|+ |y − z|

= |x− y|
1 + |x− y|+ |y − z| + |y − z|

1 + |x− y|+ |y − z|

≤ |x− y|
1 + |x− y| + |y − z|

1 + |y − z| .

Replacing x, y, z by xn, yn, zn in the definition of d proves the triangle inequality.

(b) Completeness of (S, d) will follow from the following two claims.

Claim 1. If (X(k))k∈N = ((x(k)
n )n∈N)k∈N is a Cauchy-sequence in (S, d), then (x(k)

n )k∈N
is a Cauchy sequence in (R, |·|) for every n ∈ N.

Proof. Let n0 ∈ N be arbitrary but fixed. Let 0 < ε < 1. By assumption there exists
N ∈ N such that for every k, ` > N

d(X(k), X(`)) =
∑
n∈N

2−n |x(k)
n − x(`)

n |
1 + |x(k)

n − x(`)
n |

<
ε

2n0(1 + ε) .

In particular, since every summand is non-negative,

2−n0
|x(k)

n0 − x
(`)
n0 |

1 + |x(k)
n0 − x(`)

n0 |
<

ε

2n0(1 + ε) .

This implies |x(k)
n0 −x

(`)
n0 | < ε for every k, ` > N which means that (x(k)

n0 )k∈N is a Cauchy
sequence.
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Claim 2. Let (X(k))k∈N = ((x(k)
n )n∈N)k∈N be a sequence in S. If x(k)

n
k→∞−−−→ xn in (R, |·|)

for every n ∈ N, then X(k) k→∞−−−→ X = (xn)n∈N in (S, d).

Proof. Let ε > 0 and let Nε ∈ N such that
∞∑

n=Nε+1
2−n = 2−Nε ≤ ε

2 .

By assumption, there exists N ∈ N such that |x(k)
n − xn| < ε

2 for every k ≥ N and all
the finitely many n ∈ {1, . . . , Nε}. Hence

d(X(k), X) =
Nε∑

n=1
2−n |x(k)

n − xn|
1 + |x(k)

n − xn|
+

∞∑
n=Nε+1

2−n |x(k)
n − xn|

1 + |x(k)
n − xn|

≤ ε

2

Nε∑
n=1

2−n +
∞∑

n=Nε+1
2−n ≤ ε

2 + ε

2 = ε.

Let (X(k))k∈N = ((x(k)
n )n∈N)k∈N be a Cauchy-sequence in (S, d). Since (R, |·|) is

complete, (x(k)
n )k∈N has a limit xn ∈ R for every n ∈ N by Claim 1. Then, by Claim 2,

(X(k))k∈N converges to (xn)n∈N in (S, d). Therefore, (S, d) is complete.

(c) Given arbitrary s = (sn)n∈N ∈ S and r > 0, we consider the ball

Br(s) := {x ∈ S | d(x, s) < r}.

The claim is Sc ∩Br(s) 6= ∅. Let Nr ∈ N such that
∞∑

n=Nr+1
2−n = 2−Nr < r

and let x = (xn)n∈N ∈ Sc be given by

xn =

sn, for n ∈ {1, . . . , Nr},
0, for n > Nr.

Then

d(x, s) =
∞∑

Nr+1
2−n |sn − 0|

1 + |sn − 0| ≤
∞∑

n=Nr+1
2−n < r.

Hence x ∈ Sc ∩ Br(s). Since s ∈ S and r > 0 were arbitrary, it follows that Sc is
dense in (S, d).

2/5 last update: 1 October 2017



d-math
Prof. A. Carlotto

Functional Analysis I
Solution to Problem Set 2

ETH Zürich
Autumn 2017

2.2. A metric on C0(Rm)
Recall that K1 ⊂ K2 ⊂ . . . ⊂ Rm is a given family of compact sets such that
Kn ⊂ K◦n+1 for every n ∈ N and ⋃n∈NKn = Rm.

(a) The solution is identical to the solution of Problem 2.1 (a) after replacing |·| by
‖·‖C0(Kn) in each summand.

(b) In the following, the restriction of f ∈ C0(Rm) to K ⊂ Rm is denoted by f |K .

Claim 1. If (fk)k∈N is a Cauchy-sequence in (C0(Rm), d), then (fk|Kn)k∈N is a Cauchy-
sequence in

(
C0(Kn), ‖·‖C0(Kn)

)
for each of the compact sets Kn ⊂ Rm.

Claim 2. Let (fk)k∈N be a sequence in C0(Rm) and let f ∈ C0(Rm). If fk|Kn

k→∞−−−→ f |Kn

in C0(Kn) for every n ∈ N, then fk
k→∞−−−→ f in (C0(Rm), d).

Proof. The proofs are identical to the proofs of Claim 1 and 2 in 2.1 (b) after replacing
xk

n by fk|Kn and |·| by ‖·‖C0(Kn) in each summand.

Let (fk)k∈N be a Cauchy-sequence in (C0(Rm), d). Since
(
C0(Kn), ‖·‖C0(Kn)

)
is com-

plete, (fk|Kn)k∈N has a limit gn ∈ C0(Kn) for every n ∈ N by Claim 1. In particular,
given any n ∈ N pointwise convergence fk(x)→ gn(x) holds for every x ∈ Kn. Since
the pointwise limit is unique, gn+1|Kn = gn for every n ∈ N. Therefore, there exists a
well-defined function f : Rm → R such that gn = f |Kn .

Because Kn ⊂ K◦n+1 and ⋃n∈NKn = Rm, every point x ∈ Rm has a neighbourhood on
which f inherits the continuity of gn for some n ∈ N. Thus, f ∈ C0(Rm). Then, by
Claim 2, (fk)k∈N converges to f in (C0(Rm), d). Therefore, (C0(Rm), d) is complete.

(c) Let f ∈ C0(Rm) be arbitrary. Since Kn is compact with Kn ⊂ K◦n+1, we have

εn := dist
(
Kn, (K◦n+1){

)
> 0.

For every n ∈ N we define the function ϕ ∈ C0
c (Rm) by

ϕn(x) =

1− 1
εn

dist(x,Kn), if dist(x,Kn) ≤ εn,

0, else

and consider fk := ϕkf . By construction, fk|Kn

k→∞−−−→ f |Kn for every n ∈ N. Therefore,
fk

k→∞−−−→ f in (C0(Rm), d) by Claim 2 of (b). Since fk ∈ C0
c (Rm) for every k ∈ N and

since f ∈ C0(Rm) was arbitrary, we have shown that C0
c (Rm) is dense in (C0(Rm), d).
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2.3. Statements of Baire
For a metric space (M,d) we shall prove equivalence of

(i) Every residual set Ω ⊂M is dense in M .
(ii) The interior of every meagre set A ⊂M is empty.
(iii) The empty set is the only subset of M which is open and meagre.
(iv) Countable intersections of dense open sets are dense.

“(i)⇒ (ii)” Let A ⊂M be a meagre set. Then, A{ is residual and dense in M by (i).
Hence, ∅ = (M \ A{)◦ = A◦.

“(ii)⇒ (iii)” Let A ⊂M be open and meagre. Then A = A◦ and A◦ = ∅ by (ii).

“(iii)⇒ (iv)” Let A = ⋂
n∈NAn be a countable intersection of dense open sets An ⊂M .

Since An is dense, (A{
n)◦ = ∅. Since An is open, A{

n is closed. Thus, (A{
n)◦ = (A{

n)◦ = ∅,
which means that A{

n is nowhere dense. Thus, A{ = ⋃
n∈NA

{
n is meagre. (A{)◦ is open

and meagre, hence empty by (iii). This implies that A is dense in M .

“(iv)⇒ (i)” Let Ω ⊂M be a residual set. Since A = Ω{ is meagre, A = ⋃
n∈NAn for

nowhere dense sets An. Then ∅ = (An)◦ = (M \ (An){)◦ which implies that (An){ is
dense in M . Moreover, (An){ is open since An is closed. Then, (iv) implies density of

Ω = A{ =
⋂

n∈N
A{

n ⊇
⋂

n∈N
(An){.

2.4. Discrete Lp-spaces and inclusions

(a) Let 1 ≤ p < q ≤ ∞. It suffices to prove the inequality ‖x‖`q ≤ ‖x‖`p for all x ∈ `p

which implies the inclusion `p ⊂ `q by definition of the spaces. Since (n−
1
p )n∈N ∈ `q \`p,

the inclusion is strict.

Scaling. Since ‖x‖`q ≤ ‖x‖`p if and only if ‖λx‖`q ≤ ‖λx‖`p for some λ > 0, it suffices
to prove ‖x‖`q ≤ 1 for all x = (xn)n∈N ∈ `p with ‖x‖`p = 1.

Case q =∞. For all n ∈ N we have

|xn| =
(
|xn|p

) 1
p ≤

( ∞∑
k=1
|xk|p

) 1
p

= ‖x‖`p = 1.

Therefore, ‖x‖`∞ = supn∈N|xn| ≤ 1.

Case q < ∞. The assumption ‖x‖`p = 1 implies |xn| ≤ 1 for all n ∈ N. Since
1 ≤ p < q, we have |xn|q ≤ |xn|p for all n ∈ N. This implies the inequality

‖x‖`q =
(∑

n∈N
|xn|q

) 1
q

≤
(∑

n∈N
|xn|p

) 1
q

=
(
‖x‖p

`p

) 1
q = 1

p
q = 1.
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(b) In order to show that An = {x ∈ `q | ‖x‖`p ≤ n} is closed in (`q, ‖·‖`q), we will
prove that the limit of every `q-convergent sequence with elements in An is also in An.

Let (a(k))k∈N be a sequence of elements a(k) = (a(k)
j )j∈N ∈ An. Suppose b = (bj)j∈N ∈ `q

satisfies lim
k→∞
‖a(k) − b‖`q = 0. Then, for every j ∈ N,

|a(k)
j − bj| ≤

(∑
i∈N
|a(k)

i − bi|q
) 1

q

= ‖a(k) − b‖`q

k→∞−−−→ 0.

Let N ∈ N be arbitrary. By continuity of |·|p : R→ R, we have
N∑

j=1
|bj|p = lim

k→∞

N∑
j=1
|a(k)

j |
p ≤ lim sup

k→∞
‖a(k)‖p

`p ≤ np

since the number of summands is finite. In the limit N → ∞, we see ‖b‖p
`p ≤ np,

which implies b ∈ An. Therefore, An is closed in (`q, ‖·‖`q).

Towards a contradiction, suppose An has non-empty interior in the `q- topology. Then
there exist a = (am)m∈N ∈ An and ε > 0 such that

B := {x ∈ `q | ‖a− x‖`q < ε} ⊂ An.

Consider b = (bm)m∈N ∈ `q given by bm = m−
1
p . Indeed, ∑∞m=1 m

− q
p <∞ since p < q.

We define z = (zm)m∈N by

zm = am + εbm

2‖b‖`q

.

Then ‖a− z‖`q = ε
2 and z ∈ B. However, b /∈ `p and a ∈ `p imply z /∈ `p ⊃ An which

contradicts B ⊂ An. Therefore, An has empty interior in (`q, ‖·‖`q).

Being closed with empty interior, An is nowhere dense in (`q, ‖·‖`q). Since `p = ⋃
n∈NAn

we may conclude that `p is meagre in `q.

(c) Since `p1 ⊂ `p2 for p1 < p2 by (a) we have⋃
p∈[1,q[

`p =
⋃

p∈[1,q[∩Q
`p.

By (b), the right hand side is a countable union of meagre subsets of (`q, ‖·‖`q) and
therefore meagre itself (see lecture notes, Beispiel 1.3.2.iii). Being complete, `q is not
meagre in (`q, ‖·‖`q). Therefore, we may conclude strict inclusion⋃

p∈[1,q[∩Q
`p ( `q.
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