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4.1. Algebraic basis

(a) Towards a contradiction, we assume thatX has a countably infinite algebraic basis
{e1, e2, . . .}. For n ∈ N we define the linear subspaces An = span{e1, . . . , en} ⊂ X.

As finite dimensional subspace, An is closed. Suppose that An has non-empty interior.
Then there exist x ∈ An and ε > 0 such that Bε(x) ⊂ An. Since An is a linear
subspace, we may subtract x ∈ An from the elements in Bε(x) to obtain Bε(0) ⊂ An.
For the same reason,

An ⊃ {λy | λ > 0, y ∈ Bε(x)} = X.

This however implies dimX ≤ n which contradicts our assumption that the algebraic
basis of X is countably infinite. Thus (An)◦ = A◦n = ∅ which means that An is
nowhere dense. By assumption,

X =
⋃

n∈N
An,

which implies that X is meagre – a contradiction to the Baire Lemma stating that X
being complete is of second category.

(b) Let X be the space of polynomials p : [0, 1]→ R with real coefficients endowed
with the norm ‖·‖C0([0,1]). Let fn : [0, 1]→ R be given by the monomial fn(x) = xn.
Then, {fn | n ∈ N} is a countable algebraic basis for X. According to (a), the space
(X, ‖·‖C0([0,1])) must be incomplete.

4.2. Closed subspaces
Claim 1. Let (x(k))k∈N be a sequence of sequences x(k) = (x(k)

n )n∈N ∈ `1 and let
x = (xn)n∈N ∈ `1. Then, the following implication is true.

lim
k→∞
‖x(k) − x‖`1 = 0 ⇒ ∀n ∈ N : lim

k→∞
|x(k)

n − xn| = 0.

Proof. Let ε > 0 and n ∈ N. By assumption, there exists Kε ∈ N such that

∀k ≥ Kε : |x(k)
n − xn| ≤

∞∑
n=1
|x(k)

n − xn| = ‖x(k) − x‖`1 < ε.

Claim 2. U = {(xn)n∈N ∈ `1 | ∀n ∈ N : x2n = 0} is closed in (`1, ‖·‖`1).

Proof. Let (x(k))k∈N be a sequence of sequences x(k) = (x(k)
n )n∈N ∈ U converging to

x = (xn)n∈N in `1. By definition, x(k)
2n = 0 for every n ∈ N. According to Claim 1,

x2n = lim
k→∞

x
(k)
2n = 0

for every n ∈ N. Thus, x ∈ U .
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Claim 3. V = {(xn)n∈N ∈ `1 | ∀n ∈ N : x2n−1 = nx2n} is closed in (`1, ‖·‖`1).

Proof. Let (x(k))k∈N be a sequence of sequences x(k) = (x(k)
n )n∈N ∈ V converging to

x = (xn)n∈N in `1. By definition, x(k)
2n−1 = nx

(k)
2n for every n ∈ N. By Claim 1,

x2n−1 = lim
k→∞

x
(k)
2n−1 = lim

k→∞
nx

(k)
2n = nx2n

for every n ∈ N. Thus, x ∈ V .

Claim 4. cc := {(xn)n∈N ∈ `∞ | ∃N ∈ N ∀n ≥ N : xn = 0} ⊂ U ⊕ V .

Proof. Let x ∈ cc. Then, x = u+ v with u = (um)m∈N and v = (vm)m∈N given by

um =

xm − nxm+1, if m = 2n− 1,
0, if m is even

vm =

nxm+1, if m = 2n− 1,
xm, if m is even.

The assumption x ∈ cc implies v, u ∈ cc ⊂ `1. Then, u ∈ U holds by construction and
v ∈ V follows from v2n−1 = nx2n−1+1 = nx2n = nv2n for every n ∈ N.

Claim 5. The space cc is dense in (`1, ‖·‖`1).

Proof. Let x ∈ `1. Let x(k) = (x(k)
n )n∈N ∈ cc be given by

x(k)
n =

xn for n < k,

0 for n ≥ k.

Then,

‖x(k) − x‖`1 =
∞∑

n=k

|xn|
k→∞−−−→ 0.

Claim 6. The sequence x = (xm)m∈N defined as follows is in `1 but not in U ⊕ V .

xm =

0, if m is odd,
1

n2 , if m = 2n.

Proof. Since ∑∞n=1
1

n2 <∞ we have x ∈ `1. Suppose x = u+ v for u ∈ U and v ∈ V .
Then, u2n = 0 implies v2n = x2n = 1

n2 for every n ∈ N. By definition of V , we have
v2n−1 = nv2n = 1

n
for every n ∈ N. However, ∑∞n=1

1
n

= ∞ implies v /∈ `1 which
contradicts the definition of V .

Claims 4, 5 and 6 imply that

U ⊕ V ⊃ cc = `1 ) U ⊕ V.

Therefore, U ⊕ V cannot be closed.
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4.3. Normal convergence
If (X, ‖·‖) is a Banach space, and (xk)k∈N any sequence in X with ∑∞k=1‖xk‖ < ∞,
then (sn)n∈N given by sn = ∑n

k=1 xk is a Cauchy sequence (and hence convergent)
since by assumption, every ε > 0 allows Nε ∈ N such that for every m ≥ n ≥ Nε,

‖sm − sn‖ ≤
m∑

k=n+1
‖xk‖ ≤

∞∑
k=Nε+1

‖xk‖ < ε.

Conversely, we assume for every sequence (xk)k∈N in X that ∑∞k=1‖xk‖ <∞ implies
convergence of sn = ∑n

k=1 xk in X for n→∞. Let (yn)n∈N be a Cauchy in X. Then,

∀k ∈ N ∃Nk ∈ N ∀n,m ≥ Nk : ‖yn − ym‖ ≤ 2−k.

Without loss of generality, we can assume Nk+1 > Nk. Let xk := yNk+1 − yNk
. Then,

∞∑
k=1
‖xk‖ =

∞∑
k=1
‖yNk+1 − yNk

‖ ≤
∞∑

k=1
2−k <∞,

which by assumption implies that

sn =
n∑

k=1
xk =

n∑
k=1

(yNk+1 − yNk
) = yNn+1 − yN1

converges in X for n→∞. Hence, (yNn)n∈N is a convergent subsequence of (yn)n∈N.
Since (yn)n∈N is Cauchy, it converges to the same limit in X. Thus, X is complete.

4.4. Subsets with compact boundary
If Z ⊂ X has non-empty interior Z◦ 6= ∅, then there exists z ∈ Z and ε > 0 such that
Bε(z) ⊂ Z◦, where Bε(z) denotes the ball of radius ε around z in (X, ‖·‖) and ∂Bε(z)
its boundary. We consider the projection

P : Z \ {z} → ∂Bε(z)

x 7→ z + ε
x− z
‖x− z‖

.

Z
•z

Bε(z)
•x •

P (x)

For every y ∈ ∂Bε the ray γ = {z + t(y − z) | t > 0} must intersect ∂Z since Z is
assumed to be bounded. Therefore, P (∂Z) = ∂Bε(z). Being continuous, P maps
compact sets onto compact sets. Since ∂Z is assumed to be compact, we have that
the sphere ∂Bε(z) is compact. This however contradicts the assumption, that the
dimension of X is infinite.
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4.5. Approaching the sign function

(a) Let f ∈ X := C0([−1, 1]) and ‖·‖X := ‖·‖C0([−1,1]). The given map ϕ : X → R is
linear by linearity of the integral. Moreover,

|ϕ(f)| ≤
∫ 1

0
|f(t)| dt+

∫ 0

−1
|f(t)| dt ≤ 2‖f‖C0([−1,1]) = 2‖f‖X

implies

‖ϕ‖L(X,R) = sup
f∈X\{0}

|ϕ(f)|
‖f‖X

≤ 2.

Since ϕ is linear, continuity follows from boundedness by Satz 2.2.1.

(b) The sign function f(x) = x
|x| is approximated pointwise by the sequence (fn)n∈N

of functions fn ∈ X given by

fn(t) =


−1, for −1 ≤ t < − 1

n
,

nt, for − 1
n
≤ t < 1

n
,

1, for 1
n
≤ t ≤ 1.

In particular, ‖fn‖X = 1 for every n ∈ N. Computing the integrals explicitly, or
applying the dominated convergence theorem, we have

lim
n→∞

ϕ(fn) = 2.

(c) Suppose there exists f ∈ X with ‖f‖X = 1 and |ϕ(f)| = 2. Since ϕ is linear, we
may assume ϕ(f) = 2, otherwise we replace f by −f . Then, the estimates∣∣∣∣∫ 1

0
f(t) dt

∣∣∣∣ ≤ max
x∈[−1,1]

|f(x)| = ‖f‖X = 1,
∣∣∣∣∫ 0

−1
f(t) dt

∣∣∣∣ ≤ 1,

imply by definition of ϕ that∫ 1

0
f(t) dt = −

∫ 0

−1
f(t) dt = 1. (∗)

Since f is bounded from above by 1 we can conclude from (∗) that f |]0,1] ≡ 1. In fact,
if f(t∗) < 1 for some t∗ ∈ ]0, 1], then f < 1 in some neighbourhood of t∗ by continuity
of f which together with the uniform bound f ≤ 1 contradicts (∗).

Analogously, we conclude f |[−1,0[ ≡ −1 which (combined with f |]0,1] ≡ 1) violates
continuity of f at 0.
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4.6. Unbounded map and approximations

(a) The operation T : (xn)n∈N 7→ (nxn)n∈N is linear in each entry and therefore linear
as map T : cc → cc. For every k ∈ N we define the sequence e(k) = (e(k)

n )n∈N ∈ cc by

e(k)
n =

1, if n = k,

0, otherwise.

Then, ‖e(k)‖`∞ = 1 for every k ∈ N but ‖Te(k)‖`∞ = k is unbounded for k ∈ N. As
unbounded linear map, T is not continuous.

(b) For every m ∈ N we define

Tm : cc → cc

(xn)n∈N 7→ (x1, 2x2, 3x3, . . . ,mxm, 0, 0, . . .)

Then Tm is linear. Tm : (cc, ‖·‖∞` )→ (cc, ‖·‖∞` ) is also bounded for every (fixed) m ∈ N
since for every x = (xn)n∈N ∈ cc

‖Tmx‖ = sup
n∈N
|(Tmx)n| = max

n∈{1,...,m}
|nxn| ≤ m‖x‖`∞ .

Hence, Tm is continuous.

Let x = (xn)n∈N ∈ cc be fixed. Then there exists N ∈ N such that xn = 0 for all
n ≥ N which implies Tmx = Tx for all m ≥ N . In particular,

Tmx
m→∞−−−→ Tx.
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