4.1. Algebraic basis

(a) Towards a contradiction, we assume that X has a countably infinite algebraic basis $\{e_1, e_2, \ldots\}$. For $n \in \mathbb{N}$ we define the linear subspaces $A_n = \operatorname{span}\{e_1, \ldots, e_n\} \subset X$.

As finite dimensional subspace, A_n is closed. Suppose that A_n has non-empty interior. Then there exist $x \in A_n$ and $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset A_n$. Since A_n is a linear subspace, we may subtract $x \in A_n$ from the elements in $B_{\varepsilon}(x)$ to obtain $B_{\varepsilon}(0) \subset A_n$. For the same reason,

$$A_n \supset \{\lambda y \mid \lambda > 0, \ y \in B_{\varepsilon}(x)\} = X.$$

This however implies dim $X \leq n$ which contradicts our assumption that the algebraic basis of X is countably infinite. Thus $(\overline{A_n})^\circ = A_n^\circ = \emptyset$ which means that A_n is nowhere dense. By assumption,

$$X = \bigcup_{n \in \mathbb{N}} A_n,$$

which implies that X is meagre – a contradiction to the Baire Lemma stating that Xbeing complete is of second category.

(b) Let X be the space of polynomials $p: [0,1] \to \mathbb{R}$ with real coefficients endowed with the norm $\|\cdot\|_{C^0([0,1])}$. Let $f_n: [0,1] \to \mathbb{R}$ be given by the monomial $f_n(x) = x^n$. Then, $\{f_n \mid n \in \mathbb{N}\}$ is a countable algebraic basis for X. According to (a), the space $(X, \|\cdot\|_{C^0([0,1])})$ must be incomplete.

4.2. Closed subspaces

Claim 1. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a sequence of sequences $x^{(k)} = (x^{(k)}_n)_{n\in\mathbb{N}} \in \ell^1$ and let $x = (x_n)_{n \in \mathbb{N}} \in \ell^1$. Then, the following implication is true.

$$\lim_{k \to \infty} \|x^{(k)} - x\|_{\ell^1} = 0 \quad \Rightarrow \quad \forall n \in \mathbb{N} : \quad \lim_{k \to \infty} |x_n^{(k)} - x_n| = 0.$$

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. By assumption, there exists $K_{\varepsilon} \in \mathbb{N}$ such that

$$\forall k \ge K_{\varepsilon}: \quad |x_n^{(k)} - x_n| \le \sum_{n=1}^{\infty} |x_n^{(k)} - x_n| = ||x^{(k)} - x||_{\ell^1} < \varepsilon.$$

Claim 2. $U = \{(x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n} = 0\}$ is closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Proof. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a sequence of sequences $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in U$ converging to $x = (x_n)_{n \in \mathbb{N}}$ in ℓ^1 . By definition, $x_{2n}^{(k)} = 0$ for every $n \in \mathbb{N}$. According to Claim 1,

$$x_{2n} = \lim_{k \to \infty} x_{2n}^{(k)} = 0$$

rerv $n \in \mathbb{N}$. Thus, $x \in U$.

for every $n \in \mathbb{N}$. Thus, $x \in U$.

last update: 15 October 2017

Claim 3. $V = \{(x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n-1} = nx_{2n}\}$ is closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Proof. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a sequence of sequences $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in V$ converging to $x = (x_n)_{n\in\mathbb{N}}$ in ℓ^1 . By definition, $x_{2n-1}^{(k)} = nx_{2n}^{(k)}$ for every $n \in \mathbb{N}$. By Claim 1,

$$x_{2n-1} = \lim_{k \to \infty} x_{2n-1}^{(k)} = \lim_{k \to \infty} n x_{2n}^{(k)} = n x_{2n}$$

for every $n \in \mathbb{N}$. Thus, $x \in V$.

Claim 4. $c_c := \{(x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \ge N : x_n = 0\} \subset U \oplus V.$

Proof. Let $x \in c_c$. Then, x = u + v with $u = (u_m)_{m \in \mathbb{N}}$ and $v = (v_m)_{m \in \mathbb{N}}$ given by

$$u_m = \begin{cases} x_m - nx_{m+1}, & \text{if } m = 2n - 1, \\ 0, & \text{if } m \text{ is even} \end{cases} \quad v_m = \begin{cases} nx_{m+1}, & \text{if } m = 2n - 1, \\ x_m, & \text{if } m \text{ is even.} \end{cases}$$

The assumption $x \in c_c$ implies $v, u \in c_c \subset \ell^1$. Then, $u \in U$ holds by construction and $v \in V$ follows from $v_{2n-1} = nx_{2n-1+1} = nx_{2n} = nv_{2n}$ for every $n \in \mathbb{N}$.

Claim 5. The space c_c is dense in $(\ell^1, \|\cdot\|_{\ell^1})$.

Proof. Let $x \in \ell^1$. Let $x^{(k)} = (x_n^{(k)})_{n \in \mathbb{N}} \in c_c$ be given by

$$x_n^{(k)} = \begin{cases} x_n & \text{for } n < k, \\ 0 & \text{for } n \ge k. \end{cases}$$

Then,

$$\|x^{(k)} - x\|_{\ell^1} = \sum_{n=k}^{\infty} |x_n| \xrightarrow{k \to \infty} 0.$$

Claim 6. The sequence $x = (x_m)_{m \in \mathbb{N}}$ defined as follows is in ℓ^1 but not in $U \oplus V$.

$$x_m = \begin{cases} 0, & \text{if } m \text{ is odd,} \\ \frac{1}{n^2}, & \text{if } m = 2n. \end{cases}$$

Proof. Since $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ we have $x \in \ell^1$. Suppose x = u + v for $u \in U$ and $v \in V$. Then, $u_{2n} = 0$ implies $v_{2n} = x_{2n} = \frac{1}{n^2}$ for every $n \in \mathbb{N}$. By definition of V, we have $v_{2n-1} = nv_{2n} = \frac{1}{n}$ for every $n \in \mathbb{N}$. However, $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ implies $v \notin \ell^1$ which contradicts the definition of V.

Claims 4, 5 and 6 imply that

 $\overline{U \oplus V} \supset \overline{c_c} = \ell^1 \supsetneq U \oplus V.$

Therefore, $U \oplus V$ cannot be closed.

last update: 15 October 2017

4.3. Normal convergence

If $(X, \|\cdot\|)$ is a Banach space, and $(x_k)_{k\in\mathbb{N}}$ any sequence in X with $\sum_{k=1}^{\infty} \|x_k\| < \infty$, then $(s_n)_{n\in\mathbb{N}}$ given by $s_n = \sum_{k=1}^n x_k$ is a Cauchy sequence (and hence convergent) since by assumption, every $\varepsilon > 0$ allows $N_{\varepsilon} \in \mathbb{N}$ such that for every $m \ge n \ge N_{\varepsilon}$,

$$||s_m - s_n|| \le \sum_{k=n+1}^m ||x_k|| \le \sum_{k=N_{\varepsilon}+1}^\infty ||x_k|| < \varepsilon.$$

Conversely, we assume for every sequence $(x_k)_{k\in\mathbb{N}}$ in X that $\sum_{k=1}^{\infty} ||x_k|| < \infty$ implies convergence of $s_n = \sum_{k=1}^n x_k$ in X for $n \to \infty$. Let $(y_n)_{n\in\mathbb{N}}$ be a Cauchy in X. Then,

$$\forall k \in \mathbb{N} \quad \exists N_k \in \mathbb{N} \quad \forall n, m \ge N_k : \quad \|y_n - y_m\| \le 2^{-k}.$$

Without loss of generality, we can assume $N_{k+1} > N_k$. Let $x_k := y_{N_{k+1}} - y_{N_k}$. Then,

$$\sum_{k=1}^{\infty} ||x_k|| = \sum_{k=1}^{\infty} ||y_{N_{k+1}} - y_{N_k}|| \le \sum_{k=1}^{\infty} 2^{-k} < \infty,$$

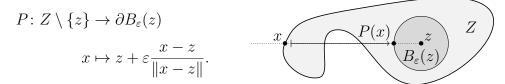
which by assumption implies that

$$s_n = \sum_{k=1}^n x_k = \sum_{k=1}^n (y_{N_{k+1}} - y_{N_k}) = y_{N_{n+1}} - y_{N_1}$$

converges in X for $n \to \infty$. Hence, $(y_{N_n})_{n \in \mathbb{N}}$ is a convergent subsequence of $(y_n)_{n \in \mathbb{N}}$. Since $(y_n)_{n \in \mathbb{N}}$ is Cauchy, it converges to the same limit in X. Thus, X is complete.

4.4. Subsets with compact boundary

If $Z \subset X$ has non-empty interior $Z^{\circ} \neq \emptyset$, then there exists $z \in Z$ and $\varepsilon > 0$ such that $B_{\varepsilon}(z) \subset Z^{\circ}$, where $B_{\varepsilon}(z)$ denotes the ball of radius ε around z in $(X, \|\cdot\|)$ and $\partial B_{\varepsilon}(z)$ its boundary. We consider the projection



For every $y \in \partial B_{\varepsilon}$ the ray $\gamma = \{z + t(y - z) \mid t > 0\}$ must intersect ∂Z since Z is assumed to be bounded. Therefore, $P(\partial Z) = \partial B_{\varepsilon}(z)$. Being continuous, P maps compact sets onto compact sets. Since ∂Z is assumed to be compact, we have that the sphere $\partial B_{\varepsilon}(z)$ is compact. This however contradicts the assumption, that the dimension of X is infinite.

last update: 15 October 2017

4.5. Approaching the sign function

(a) Let $f \in X := C^0([-1,1])$ and $\|\cdot\|_X := \|\cdot\|_{C^0([-1,1])}$. The given map $\varphi \colon X \to \mathbb{R}$ is linear by linearity of the integral. Moreover,

$$|\varphi(f)| \le \int_0^1 |f(t)| \, \mathrm{d}t + \int_{-1}^0 |f(t)| \, \mathrm{d}t \le 2 \|f\|_{C^0([-1,1])} = 2 \|f\|_X$$

implies

$$\|\varphi\|_{L(X,\mathbb{R})} = \sup_{f \in X \setminus \{0\}} \frac{|\varphi(f)|}{\|f\|_X} \le 2.$$

Since φ is linear, continuity follows from boundedness by Satz 2.2.1.

(b) The sign function $f(x) = \frac{x}{|x|}$ is approximated pointwise by the sequence $(f_n)_{n \in \mathbb{N}}$ of functions $f_n \in X$ given by

$$f_n(t) = \begin{cases} -1, & \text{for } -1 \le t < -\frac{1}{n}, \\ nt, & \text{for } -\frac{1}{n} \le t < \frac{1}{n}, \\ 1, & \text{for } -\frac{1}{n} \le t \le 1. \end{cases}$$

In particular, $||f_n||_X = 1$ for every $n \in \mathbb{N}$. Computing the integrals explicitly, or applying the dominated convergence theorem, we have

$$\lim_{n \to \infty} \varphi(f_n) = 2.$$

(c) Suppose there exists $f \in X$ with $||f||_X = 1$ and $|\varphi(f)| = 2$. Since φ is linear, we may assume $\varphi(f) = 2$, otherwise we replace f by -f. Then, the estimates

$$\left| \int_{0}^{1} f(t) \, \mathrm{d}t \right| \le \max_{x \in [-1,1]} |f(x)| = \|f\|_{X} = 1, \qquad \left| \int_{-1}^{0} f(t) \, \mathrm{d}t \right| \le 1,$$

imply by definition of φ that

$$\int_0^1 f(t) \, \mathrm{d}t = -\int_{-1}^0 f(t) \, \mathrm{d}t = 1. \tag{(*)}$$

Since f is bounded from above by 1 we can conclude from (*) that $f|_{]0,1]} \equiv 1$. In fact, if $f(t^*) < 1$ for some $t^* \in]0,1]$, then f < 1 in some neighbourhood of t^* by continuity of f which together with the uniform bound $f \leq 1$ contradicts (*).

Analogously, we conclude $f|_{[-1,0[} \equiv -1$ which (combined with $f|_{[0,1]} \equiv 1$) violates continuity of f at 0.

4.6. Unbounded map and approximations

(a) The operation $T: (x_n)_{n \in \mathbb{N}} \mapsto (nx_n)_{n \in \mathbb{N}}$ is linear in each entry and therefore linear as map $T: c_c \to c_c$. For every $k \in \mathbb{N}$ we define the sequence $e^{(k)} = (e_n^{(k)})_{n \in \mathbb{N}} \in c_c$ by

$$e_n^{(k)} = \begin{cases} 1, & \text{if } n = k, \\ 0, & \text{otherwise} \end{cases}$$

Then, $\|e^{(k)}\|_{\ell^{\infty}} = 1$ for every $k \in \mathbb{N}$ but $\|Te^{(k)}\|_{\ell^{\infty}} = k$ is unbounded for $k \in \mathbb{N}$. As unbounded linear map, T is not continuous.

(b) For every $m \in \mathbb{N}$ we define

$$T_m: c_c \to c_c$$

$$(x_n)_{n \in \mathbb{N}} \mapsto (x_1, 2x_2, 3x_3, \dots, mx_m, 0, 0, \dots)$$

Then T_m is linear. $T_m: (c_c, \|\cdot\|_{\ell}^{\infty}) \to (c_c, \|\cdot\|_{\ell}^{\infty})$ is also bounded for every (fixed) $m \in \mathbb{N}$ since for every $x = (x_n)_{n \in \mathbb{N}} \in c_c$

$$||T_m x|| = \sup_{n \in \mathbb{N}} |(T_m x)_n| = \max_{n \in \{1, \dots, m\}} |nx_n| \le m ||x||_{\ell^{\infty}}.$$

Hence, T_m is continuous.

Let $x = (x_n)_{n \in \mathbb{N}} \in c_c$ be fixed. Then there exists $N \in \mathbb{N}$ such that $x_n = 0$ for all $n \geq N$ which implies $T_m x = Tx$ for all $m \geq N$. In particular,

$$T_m x \xrightarrow{m \to \infty} T x.$$