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5.1. Operator norm

(a) Let 〈·, ·〉 be the the Euclidean scalar product on Rn and |·| the Euclidean norm.
We choose the standard basis and represent A ∈ L(Rn,Rn) by a matrix which we
denote also by A. Let Aᵀ be the transposed matrix. From the definition follows that

‖A‖2 = sup{|Ax|2 | x ∈ Rn, |x|2 = 1},
|Ax|2 = 〈Ax,Ax〉 = (Ax)ᵀ(Ax) = xᵀAᵀAx = 〈x,AᵀAx〉.

Recall that AᵀA is a symmetric matrix and therefore diagonalizable by an orthonormal
basis of eigenvectors e1, . . . , en with real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Let x ∈ Rn

with |x|2 = 1 be given. Then there exist x1, . . . , xn ∈ R such that x = x1e1 + . . .+xnen

and x2
1 + . . .+ x2

n = 1. From

〈x,AᵀAx〉 =
〈
x,AᵀA

n∑
i=1

xiei

〉
=
〈
x,

n∑
i=1

xiλiei

〉
=

n∑
i=1

λix
2
i ≤ λn

n∑
i=1

x2
i = λn

we conclude ‖A‖2 ≤ λn. Since 〈en, A
ᵀAen〉 = 〈en, λnen〉 = λn, we have ‖A‖2 = λn.

(b) Since A and B are assumed to be symmetric, we have AᵀA = A2 and BᵀB = B2.
In the basis B respectively B′ we see that (2017)2 is the largest eigenvalue of A2

respectively B2. Using (a), we have ‖A‖ = 2017 = ‖B‖. Since |By| ≤ ‖B‖|y| for all
y ∈ Rn and in particular for y = Ax, we have

‖BA‖ = sup
|x|=1
|BAx| ≤ sup

|x|=1
‖B‖|Ax| = ‖B‖ sup

|x|=1
|Ax| = ‖B‖‖A‖ ≤ (2017)2.

To conclude, we notice that (2017)2 < (2100)2 = 212 · 104 = 441 · 104.

5.2. Volterra equation
Let (X, ‖·‖X) =

(
C0([0, 1]), ‖·‖C0([0,1])

)
. Since the function k is continuous in both

variables, the integral operator T : X → X given by

(Tf)(t) =
∫ t

0
k(t, s)f(s) ds

is well-defined. We claim that for every n ∈ N and every f ∈ X and t ∈ [0, 1],

|(T nf)(t)| ≤ tn

n!‖k‖
n
C0([0,1]×[0,1])‖f‖X .

We prove the claim by induction. For n = 1 we have

|(Tf)(t)| ≤
∫ t

0
|k(t, s)||f(s)| ds ≤ t‖k‖C0([0,1]×[0,1])‖f‖X .
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Suppose the claim is true for some n ∈ N. Then,

|(T n+1f)(t)| ≤
∫ t

0
|k(t, s)||(T nf)(s)| ds

≤ 1
n!‖k‖

n+1
C0 ‖f‖X

∫ t

0
sn ds = tn+1

(n+ 1)!‖k‖
n+1
C0 ‖f‖X

which proves the claim. Since 0 ≤ t ≤ 1, the claim implies

rT := lim
n→∞
‖T n‖

1
n ≤ lim

n→∞

‖k‖C0

(n!) 1
n

= 0.

From rT = 0 we conclude that the operator (1 + T ) = (1− (−T )) is invertible with
bounded inverse (Satz 2.2.7). The solution to the Volterra equation f + Tf = g is
then given by f = (1 + T )−1g.

5.3. Right shift operator

(a) Let x ∈ `2. By definition of S and the `2-norm ‖Sx‖`2 = ‖x‖`2 , which implies
‖S‖ = 1. Being linear and bounded, the map S is continuous.

(b) Suppose x = (xn)n∈N ∈ `2 satisfies Sx = λx for some λ ∈ R. Then
(0, x1, x2, . . .) = (λx1, λx2, λx3 . . .).

If λ = 0, then x = 0 is immediate. If λ 6= 0, then x = 0 follows via
0 = λx1 ⇒ 0 = x1 = λx2 ⇒ 0 = x2 = λx3 ⇒ . . .

We conclude that S does not have eigenvalues. The spectral radius of S is

rS = lim
n→∞
‖Sn‖

1
n = 1

since ‖Sn‖ = 1 follows for every n ∈ N from ‖Snx‖`2 = ‖x‖`2 as in (a).

(c) We define T : `2 → `2 to be the left shift map T : (x1, x2, . . .) 7→ (x2, x3, . . .).
Then, T ◦ S = id and S ◦ T 6= id. Indeed,

(T ◦ S)(x1, x2, . . .) = T (0, x1, x2, . . .) = (x1, x2, . . .),

(S ◦ T )(x1, x2, . . .) = S(x2, x3, . . .) = (0, x2, x3, . . .).

5.4. Closed subspaces
Since the subspace V ⊂ X is closed in both statements (a) and (b), the canonical
quotient map π : X → X/V is continuous (Satz 2.3.1).

(a) dim π(U) ≤ dimU <∞ implies that π(U) ⊂ X/V is closed (Satz 2.1.3). Since π
is continuous, π−1(π(U)) = U + V ⊂ X is also closed.

(b) Since dim π(U) ≤ dim(X/V ) <∞, we can argue the same way as in (a).
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5.5. Vanishing boundary values
Let X = C0([0, 1]) and U = C0

0([0, 1]) := {f ∈ C0([0, 1]) | f(0) = 0 = f(1)}.

(a) Let (fn)n∈N be a sequence in U which converges to f in (X, ‖·‖X). Then, since
fn(0) = 0 = fn(1), we can colclude f(0) = 0 = f(1), i. e. f ∈ U by passing to the
limit n→∞ in the following inequalities.

|f(0)| = |fn(0)− f(0)| ≤ sup
x∈[0,1]

|fn(x)− f(x)| = ‖fn − f‖X ,

|f(1)| = |fn(1)− f(1)| ≤ sup
x∈[0,1]

|fn(x)− f(x)| = ‖fn − f‖X .

(b) Let u1, u2 ∈ X be given by u1(t) = 1 − t and u2(t) = t. We claim that the
equivalence classes [u1], [u2] ∈ X/U form a basis for X/U .

u2u1

f ∈ [u1]

t+
0

+
1

+1

Figure 1: The functions u1, u2 ∈ X and some f ∈ [u1].

To prove linear independence, let λ1, λ2 ∈ R such that λ1[u1] + λ2[u2] = 0 ∈ X/U
which means λ1u1 + λ2u2 ∈ U . This implies by definition

λ1 = λ1u1(0) + λ2u2(0) = 0 = λ1u1(1) + λ2u2(1) = λ2.

To show that [u1] and [u2] span X/U , let [h] ∈ X/U with representative h ∈ X. By
evaluation at t = 0 and t = 1, we conclude(

t 7→ h(t)− h(0)u1(t)− h(1)u2(t)
)
∈ U.

This implies [h] = h(0)[u1] + h(1)[u2] in X/U which proves the claim.
Remark. The components of [h] in this basis are unique since every representative
h̃ ∈ [h] must have the same boundary values h̃(0) = h(0) and h̃(1) = h(1).
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5.6. Topological complement

(a) Suppose, U ⊂ X is topologically complemented by V ⊂ X. Then, I : U×V → X
with (u, v) 7→ u+ v is an continuous isomorphism with continuous inverse. We define

P1 : U × V → U × V, P := I ◦ P1 ◦ I−1 : X → X.

(u, v) 7→ (u, 0)
P1 is linear, bounded since ‖P1(u, v)‖U×V = ‖u‖U ≤ ‖(u, v)‖U×V and hence continuous.
As composition of linear continuous maps, P is linear and continuous. Moreover,

P ◦ P = (I ◦ P1 ◦ I−1) ◦ (I ◦ P1 ◦ I−1) = I ◦ P1 ◦ P1 ◦ I−1 = I ◦ P1 ◦ I−1 = P,

P (X) = I(U × {0}) = U.

Conversely, suppose U ⊂ X allows a continuous linear map P : X → X with P ◦P = P
and P (X) = U . Let V := ker(P ). Then

P ◦ (1− P ) = P − P = 0 ⇒ (1− P )(X) ⊆ ker(P ) = V. (1)
In fact, (1− P )(X) = V since given v ∈ V we have v = (1− P )v. Analogously,

(1− P ) ◦ P = P − P = 0 ⇒ U = P (X) ⊆ ker(1− P ). (2)
In fact, U = ker(1− P ) since x− Px = 0 implies x = Px ∈ U . The claim is, that

I : U × V → X

(u, v) 7→ u+ v

is continuous and has a continuous inverse. Continuity of I follows directly from
‖I(u, v)‖X = ‖u+ v‖X ≤ ‖u‖X + ‖v‖X = ‖(u, v)‖U×V .

By the assumptions on P , especially (1), the map
Φ: X → U × V

x 7→
(
Px, (1− P )x

)
is well-defined and continuous. Since Pu = u for all u ∈ U by (2) we have

(Φ ◦ I)(u, v) = Φ(u+ v) =
(
Pu+ Pv, u− Pu+ v − Pv

)
= (u, v).

(I ◦ Φ)(x) = I(Px, (1− P )x) = Px+ (1− P )x = x,

which implies that Φ is inverse to I. Consequently, U is topologically complemented.

(b) If U ⊂ X is topologically complemented, then (a) implies existence of a continuous
map P : X → X with ker(1− P ) = U . Thus, U must be closed as the kernel of the
continuous map 1− P .
Remark. If X is not isomorphic to a Hilbert space, then X has closed subspaces which
are not topologically complemented [Lindenstrauss & Tzafriri. On the complemented
subspaces problem. (1971)]. An example is c0 ⊂ `∞ but this is not easy to prove.
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5.7. Continuity of bilinear maps

(a) Let ((xk, yk))k∈N be a sequence in X × Y converging to (x, y) in (X × Y, ‖·‖X×Y ).
By definition,

‖xk − x‖X + ‖yk − y‖Y = ‖(xk − x, yk − y)‖X×Y = ‖(xk, yk)− (x, y)‖X×Y

which yields convergence xk → x in X and yk → y in Y . Since B : X × Y → Z is
bilinear, we have

‖B(xk, yk)−B(x, y)‖Z = ‖B(xk, yk)−B(x, yk) +B(x, yk)−B(x, y)‖Z

= ‖B(xk − x, yk)−B(x, yk − y)‖Z

≤ ‖B(xk − x, yk)‖Z + ‖B(x, yk − y)‖Z .

Using the assumption ‖B(x, y)‖Z ≤ C‖x‖X‖y‖Y and the fact, that convergence of
(yk)k∈N in (Y, ‖·‖Y ) implies that ‖yk‖Y is bounded uniformly for all k ∈ N, we conclude

‖B(xk, yk)−B(x, y)‖Z ≤ C‖x− xk‖X‖yk‖Y + C‖x‖X‖y − yk‖Y
k→∞−−−→ 0.

(b) Let BY
1 ⊂ Y be the unit ball around the origin in (Y, ‖·‖Y ). For every x ∈ X we

have by assumption

sup
y′∈BY

1

‖B(x, y′)‖Z ≤ sup
y′∈BY

1

‖y′‖Y ‖B(x, ·)‖L(Y,Z) ≤ ‖B(x, ·)‖L(Y,Z) <∞,

which means that the maps (B(·, y′))y′∈BY
1
∈ L(X,Z) are pointwise bounded. Since

X is assumed to be complete, the Theorem of Banach-Steinhaus implies that
(B(·, y′))y′∈BY

1
∈ L(X,Z) are uniformly bounded, i. e.

C := sup
y′∈BY

1

‖B(·, y′)‖L(X,Z) <∞.

From that we conclude

‖B(x, y)‖Z = ‖y‖Y

∥∥∥∥B(x, y

‖y‖Y

)∥∥∥∥
Z

≤ ‖y‖Y ‖x‖X

∥∥∥∥B(·, y

‖y‖Y

)∥∥∥∥
L(X,Z)

≤ C‖x‖X‖y‖Y .
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