6.1. Graph of bounded functions

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with graph $\Gamma \subset \mathbb{R}^2$. Let $((x_n, y_n))_{n \in \mathbb{N}}$ be a sequence in Γ converging to some $(x, y) \in \mathbb{R}^2$. Then, continuity of f implies

$$f(x) = f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} y_n = y$$

which means that $(x, y) \in \Gamma$. Therefore, Γ is closed.

Conversely, let $f: \mathbb{R} \to \mathbb{R}$ be a bounded function with closed graph Γ . Given $x \in \mathbb{R}$, let $(x_n)_{n \in \mathbb{N}}$ be any sequence in \mathbb{R} with limit x. Let $y_n = f(x_n)$. Since f is bounded, the sequence $(y_n)_{n \in \mathbb{N}}$ is bounded and therefore has a convergent subsequence $(y_{n_k})_{k \in \mathbb{N}}$. Let $y \in \mathbb{R}$ be its limit. Since Γ is closed, $(x, y) = \lim_{k \to \infty} (x_{n_k}, y_{n_k}) \in \Gamma$ which means that f(x) = y. Therefore, y = f(x) the unique limit of any convergent subsequence of $(y_n)_{n \in \mathbb{N}}$. Since $(y_n)_{n \in \mathbb{N}}$ is bounded with only one accumulation point $y \in \mathbb{R}$ we have $y_n \to y$ as $n \to \infty$. This implies continuity of f at x by virtue of

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} y_n = y = f(x) = f\left(\lim_{n \to \infty} x_n\right).$$

If f is not assumed to be bounded, we can construct the following counterexample.

$$f(x) = \begin{cases} \frac{1}{x} & \text{ for } x > 0, \\ 0 & \text{ for } x \le 0. \end{cases}$$

Since both restrictions $f|_{]0,\infty[}$ and $f|_{]-\infty,0]}$ are continuous, both connected components of the graph of f are closed but f is not continuous at x = 0.

6.2. An implication of Hellinger-Töplitz (coercive operators)

If Ax = 0, then the assumption implies $\lambda ||x||^2 \leq (Ax, x) = 0$. Since $\lambda > 0$, we have x = 0 which proves that the linear map A is injective.

Let $W_A := A(H)$ be the range of A. To prove that A is surjective, let $x \in W_A^{\perp}$. Then $0 = (Ax, x) > \lambda ||x||^2$

which implies x = 0. Therefore, $W_A^{\perp} = \{0\}$ and $\overline{W_A} = (W_A^{\perp})^{\perp} = H$. Surjectivity of A follows if we show that W_A is closed in H because then, $W_A = \overline{W_A} = H$. Let $(y_n)_{n \in \mathbb{N}}$ be a sequence in W_A converging to some $y \in H$. Let $x_n \in H$ such that $Ax_n = y_n$. Then $(x_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence in H, because for every $n, m \in \mathbb{N}$ we have

$$\lambda \|x_n - x_m\|^2 \le (Ax_n - Ax_m, x_n - x_m) = (y_n - y_m, x_n - x_m)$$

$$\le \|y_n - y_m\| \|x_n - x_m\|$$

and $(y_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence by assumption. Hence there exists $x = \lim_{n \to \infty} x_n$. The Hellinger–Töplitz theorem (Beispiel 3.3.2) implies that A is continuous. Therefore, Ax = y which implies $y \in W_A$ and proves that W_A is closed in H.

last update: 1 November 2017

1/4

We have shown that A is a continuous, bijective linear operator. The Inverse Mapping Theorem already implies that A has a continuous inverse. What remains to show is the estimate $||A^{-1}|| \leq \frac{1}{\lambda}$ which follows from the assumption since for every $y \in H$

$$\|A^{-1}y\|^{2} \leq \frac{1}{\lambda} (AA^{-1}y, A^{-1}y) \leq \frac{1}{\lambda} \|y\| \|A^{-1}y\|$$

$$\Rightarrow \|A^{-1}y\| \leq \frac{\|y\|}{\lambda}.$$

6.3. Derivative operator

Let $f \in D_{\overline{A}}$. Then there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in D_A with

$$||f_n - f||_{L^2([0,1])} \to 0,$$
 $||Af_n - \overline{A}f||_{L^2([0,1])} \to 0$

as $n \to \infty$. By definition, $f_n \in C_c^{\infty}([0,1[) \subset L^2([0,1]))$ has a representative which (after extension to t = 0 and t = 1) is a smooth function $\tilde{f}_n: [0,1] \to \mathbb{R}$ with $\tilde{f}_n(0) = 0 = \tilde{f}_n(1)$. But L^2 -convergence alone is *not* enough to conclude the same for f. Instead, we observe, that \tilde{f}_n is a primitive of $A\tilde{f}_n = \tilde{f}'_n$. We hope that f arises as a primitive of $\overline{A}f \in L^2([0,1])$. Therefore, we consider the function $g: [0,1] \to \mathbb{R}$ given by

$$g(t) := \int_0^t \overline{A} f \, \mathrm{d}x.$$

We apply Hölder's inequality to estimate

$$\begin{split} \left| \tilde{f}_n(t) - g(t) \right| &= \left| \int_0^t \left(\tilde{f}'_n - \overline{A}f \right) \mathrm{d}x \right| \\ &\leq \int_0^t \left| A \tilde{f}_n - \overline{A}f \right| \mathrm{d}x \\ &\leq \left(\int_0^t 1 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_0^t \left| A \tilde{f}_n - \overline{A}f \right|^2 \mathrm{d}x \right)^{\frac{1}{2}} \\ &\leq \left\| A \tilde{f}_n - \overline{A}f \right\|_{L^2([0,1])} \xrightarrow{n \to \infty} 0. \end{split}$$

Taking the supremum over $t \in [0, 1]$, we see that $(\tilde{f}_n)_{n \in \mathbb{N}}$ converges uniformly to g. Since uniform convergence implies L^2 -convergence, g must coincide with the L^2 -limit f of $(\tilde{f}_n)_{n \in \mathbb{N}}$. As a uniform limit of continuous functions, g = f is continuous. Finally, uniform convergence implies pointwise convergence, in particular

$$f(0) = \lim_{n \to \infty} \tilde{f}_n(0) = 0,$$
 $f(1) = \lim_{n \to \infty} \tilde{f}_n(1) = 0.$

6.4. Closed range

Given a linear operator $A: D_A \subset X \to Y$ with closed graph the claim is equivalence of

- (i) A is injective and its range $W_A := A(D_A)$ is closed in $(Y, \|\cdot\|_Y)$.
- (ii) $\exists C > 0 \quad \forall x \in D_A : \quad \|x\|_X \le C \|Ax\|_Y$

Proof. "(i) \Rightarrow (ii)" As a closed subspace of a complete space, $(W_A, \|\cdot\|_Y)$ is complete. Since $A: D_A \subset X \to W_A$ is bijective with closed graph and since X, W_A are Banach spaces and we may apply the Inverse Mapping Theorem to obtain a continuous inverse $A^{-1}: W_A \to D_A$. In particular, $\|A^{-1}\| =: C$ is finite and for every $x \in D_A$ we have

$$||x||_X = ||A^{-1}Ax||_X \le ||A^{-1}|| ||Ax||_Y = C ||Ax||_Y.$$

"(ii) \Rightarrow (i)" Let $x \in D_A$ with Ax = 0. Then, (ii) implies $||x||_X \leq 0$, hence x = 0. This implies that the linear map A is injective.

Let $(y_n)_{n \in \mathbb{N}}$ be a sequence in W_A converging to some $y \in Y$. By definition of W_A there exist $x_n \in D_A$ such that $Ax_n = y_n$. For every $n, m \in \mathbb{N}$, assumption (ii) implies

$$||x_n - x_m||_X \le C ||Ax_n - Ax_m||_Y = C ||y_n - y_m||_Y.$$

From $(y_n)_{n \in \mathbb{N}}$ being Cauchy in $(Y, \|\cdot\|_Y)$, we conclude that $(x_n)_{n \in \mathbb{N}}$ is Cauchy in $(X, \|\cdot\|_X)$. Since $(X, \|\cdot\|_X)$ is complete, there exists $X \ni x = \lim_{n \to \infty} x_n$. Since the graph of A is assumed to be closed, $x \in D_A$ and Ax = y. Therefore, $y \in W_A$ and we conclude that W_A is a closed subspace of Y.

6.5. Graph norm

(a) Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy-sequence in $(D_A, \|\cdot\|_{\Gamma_A})$. The definition of graph norm implies that then, $(x_n)_{n\in\mathbb{N}}$ is Cauchy in $(X, \|\cdot\|_X)$ and $(Ax_n)_{n\in\mathbb{N}}$ is Cauchy in $(Y, \|\cdot\|_Y)$. Since both spaces are complete, there exist $x \in X$ and $y \in Y$ such that $\|x_n - x\|_X \to 0$ and $\|Ax_n - y\|_Y \to 0$ as $n \to \infty$. Since the graph of A is closed, we have $x \in D_A$ with Ax = y. Therefore, $\|x - x_n\|_{\Gamma_A} \to 0$ which proves that $(D_A, \|\cdot\|_{\Gamma_A})$ is complete.

(b) Let Γ_1 and Γ_2 be the graphs of T_1 and T_2 respectively. Since T_1 and T_2 have closed graphs by assumption, (a) implies that $(D_1, \|\cdot\|_{\Gamma_1})$ and $(D_2, \|\cdot\|_{\Gamma_2})$ are Banach spaces. Since $D_1 \subset D_2$, we can consider the identity map Id: $(D_1, \|\cdot\|_{\Gamma_1}) \to (D_2, \|\cdot\|_{\Gamma_2})$ and claim that its graph is closed. Indeed, assume that $x_n \to x$ in $(D_1, \|\cdot\|_{\Gamma_1})$ and $\mathrm{Id}(x_n) = x_n \to y$ in $(D_2, \|\cdot\|_{\Gamma_2})$. Then, the definition of graph norm implies that both, $\|x_n - x\|_{X_0} \to 0$ and $\|x_n - y\|_{X_0} \to 0$ as $n \to \infty$ which implies x = y and proves the claim. The closed graph theorem implies that Id is continuous, which means

 $\exists C > 0 \quad \forall x \in D_1 : \quad \|x\|_{\Gamma_2} \le C \|x\|_{\Gamma_1}.$

By definition, this implies $||T_2x||_{X_2} \le C(||T_1x||_{X_1} + ||x||_{X_0}) - ||x||_{X_0}.$

last update: 1 November 2017

6.6. Closed sum

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in D_A . Then, by triangle inequality and the assumption,

$$\begin{aligned} \|A(x_n - x_m)\|_Y - \|(A + B)(x_n - x_m)\|_Y &\leq \|B(x_n - x_m)\|_Y \\ &\leq a\|A(x_n - x_m)\|_Y + b\|x_n - x_m\|_X. \end{aligned}$$

which implies the estimate

$$(1-a)\|A(x_n - x_m)\|_Y \le \|(A+B)(x_n - x_m)\|_Y + b\|x_n - x_m\|_X.$$
 (†)

Assume that $x_n \to x$ in X and $(A + B)x_n \to y$ in Y. The claim is (A + B)x = y. Since a < 1, estimate (†) implies that $(Ax_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence in $(Y, \|\cdot\|_Y)$ and therefore convergent to some $\tilde{y} \in Y$. Since the graph of A is a closed by assumption, we have $x \in D_A$ with $Ax = \tilde{y}$. Therefore, we may conclude

$$||B(x - x_n)||_Y \le a ||A(x - x_n)|| + b ||x - x_n|| \xrightarrow{n \to \infty} 0$$

which implies $Bx_n \to Bx$ in Y and thus,

$$y = \lim_{n \to \infty} (A+B)x_n = \lim_{n \to \infty} Ax_n + \lim_{n \to \infty} Bx_n = Ax + Bx = (A+B)x.$$

6.7. Closable inverse

Since the closure \overline{A} is assumed to be injective, A is injective and therefore has an inverse $A^{-1}: W_A \to D_A$, where $W_A := A(D_A)$ denotes the range of A. Defining

$$\chi \colon X \times Y \to Y \times X$$
$$(x, y) \mapsto (y, x)$$

we observe that the graph $\Gamma_{A^{-1}}$ of A^{-1} is given by

$$\Gamma_{A^{-1}} := \{ (y, x) \in Y \times X \mid y \in W_A, \ x = A^{-1}y \} = \chi(\Gamma_A).$$

Since χ is an isomorphism of normed spaces, we have

$$\overline{\Gamma_{A^{-1}}} = \overline{\chi(\Gamma_A)} = \chi(\overline{\Gamma_A}) = \chi(\Gamma_{\overline{A}}) = \Gamma_{(\overline{A})^{-1}}$$

This proves that $\overline{\Gamma_{A^{-1}}}$ is the graph of the linear operator $(\overline{A})^{-1}$ (which is well-defined, since \overline{A} is injective). Therefore, A^{-1} is closable as claimed and

$$\Gamma_{\overline{A^{-1}}} = \overline{\Gamma_{A^{-1}}} = \Gamma_{(\overline{A})^{-1}} \quad \Rightarrow \ \overline{A^{-1}} = (\overline{A})^{-1}.$$